Skip to main content
Log in

Changes in the midgut cells in the European cave spider, Meta menardi, during starvation in spring and autumn

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

During the growth period, in surface habitats, spiders catch enough prey to feed normally. In contrast, in the cave entrance zone, prey may be relatively scarce. Meta menardi inhabits this cave section, resulting in temporary starvation. We studied structural changes in the midgut epithelial cells of M. menardi during a short-term and a medium-term controlled starvation to mimic the occasional starvation in caves, during spring and autumn. Digestive cells, secretory cells and adipocytes were examined before the experimental starvation, in the middle and at the end of starvation. We used light microscopy, transmission electron microscopy and specific histochemical methods for the detection of lipids, polysaccharides and proteins. Detection of lysosomes, autolysosomes and apoptosis was also carried out. The general structures of the cells did not change during the experimental starvation in either season, while some specific differences in the ultrastructure were observed. In both sexes, in both seasons, the amounts of lipids, glycogen and proteins decreased during starvation. Larger amounts of lipids were found in autumn, while there were no significant differences in the amounts of glycogen and proteins. In both sexes, in both seasons, autophagy and apoptosis intensified with starvation in progress, but more intensively in females. Thus, autumn individuals, in contrast to spring ones, compile energy-supplying stores to confront the subsequent winter deficiency of prey in caves, while the cellular ultrastructures undergo the same starvation-dependant changes at any time during the growth period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Becker A, Peters W (1985a) The ultrastructure of the midgut and the formation of peritrophic membranes in a harvestman, Phalangium opilio (Chelicerata Phalangida). Zoomorphology 105:326–332. https://doi.org/10.1007/BF00312064

    Article  Google Scholar 

  • Becker A, Peters W (1985b) Fine structure of the midgut gland of Phalangium opilio (Chelicerata, Phalangida). Zoomorphology 105:317–332

    Article  Google Scholar 

  • Bourne JD (1976) Notes preliminaires sur la distribution spatiale du Meta menardi, Triphosa dubitata., Triphosa sabaudiata, Nelima aurantiaca et Culex pipiens au sain d’un ecosystème cavernicole (Grotte de Scierce: Mt.-Savoie). Int J Speleol 8:253–267

    Article  Google Scholar 

  • Bourne JD (1977) Mise en évidence de groupements temporaires de la faune pariétale dans un tunnel artificiel en fonction de l’humidité et des mouvements d’air. Rev Suisse Zool 84:527–539

    Article  Google Scholar 

  • Bourne JD, Robert J (1978) Remarques écologiques sur un population de l’aragnée troglophile Meta menardi Latreille. Actes du 6eme Congr suisse Spéléol. Porrentruy, pp 25–35

  • Boutin C (2004) Organisms: classification. In: Gunn J (ed) Encyclopedia of Cave and Karst Science. Fitzroy Dearborn, New York, pp 548–549

    Google Scholar 

  • Chiavazzo E, Isaia M, Mammola S, Lepore E, Ventola L, Asinari P, Pugno NM (2015) Cave spiders choose optimal environmental factors with respect to the generated entropy when laying their cocoon. Sci Rep 5:7611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deltshev C (2011) The faunistic diversity of cave-dwelling spiders (Arachnida, Araneae) of Greece. Arachnol Mitt 40:23–32

    Article  Google Scholar 

  • Dresco-Derouet L (1960) Étude biologique compare de quelques espèces d’araignées lucicoles et troglophiles. Arch de Zool Exp Gén 98:271–354

    Google Scholar 

  • Eckert R, Moritz M (1992) Meta menardi (Latr.) and Meta merianae (Scop.): on the Biology and Habitat of the two commonest spiders in the caves of the Harz, the Kyffhauser, Thuringia and the Zittau mountains. Mitt Zool Mus Berl 68:345–350

    Article  Google Scholar 

  • Felgenhauer BE (1999) Araneae. In: Harrison FW, Foelix RF (eds) Microscopic anatomy of invertebrates, Vol 8a: chelicerate arthropoda. Wiley, New York, pp 223–266

    Google Scholar 

  • Foelix RF (1996) Biology of spiders. Oxford University Press, New York

    Google Scholar 

  • Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ, Li JP, Li QR, Yang WY, Zeng WN, Casartelli M, Deng HM, Cappellozza S, Grimald A, Xia Q, Feng Q, Cao Y, Tettamanti G (2012) Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 17:305–324

    Article  CAS  PubMed  Google Scholar 

  • Fritzén NR, Koponen S (2011) The cave spider Meta menardi (Araneae, Tetragnathidae)—occurrence in Finland and notes on its biology. Memoranda Soc Fauna Flora Fennica 87:80–86

    Google Scholar 

  • Helsdingen PJ (2015) Araneae. In: Fauna Europaea. Database European spiders and their distribution—Faunistics—Version 2015.2. http://www.european-arachnology.org/reports/fauna.shtml

  • Hörweg C, Blick T, Zaenker S (2011) Die Große Höhlenspinne Meta menardi (LATREILLE, 1804)—Höhlentier des Jahres und Europäische Spinne des Jahres 2012. Mitt Verb dt Höhlen- u Karstforscher 57(4):108–109

    Google Scholar 

  • Isaia M, Paschetta M, Lana E, Pantini P, Schonhofer AL, Christian E, Badino G (2011) Aracnidi sotterranei delle Alpi Occidentali italiane / Subterranean Arachnids of the Western Italian Alps (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpiones). Monografie XLVII. Museo Regionale di Scienze Naturali, Torino

    Google Scholar 

  • Kamińska K, Włodarczyk A, Sonakowska L, Ostróżka A, Marchewka A, Rost-Roszkowska MM (2016) Ultrastructure of the salivary glands in Lithobius forficatus (Myriapoda, Chilopoda, Lithobiidae) according to seasonal and circadian rhythms. Arthr Str Dev 45:536–551

    Article  Google Scholar 

  • Kirchner W (1987) Behavioural and physiological adaptations to cold. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 66–77

    Chapter  Google Scholar 

  • Klionsky DJ et al. (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edn). Autophagy 12(1):1–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Lepore E, Marchioro A, Isaia M, Buehler MJ, Pugno NM (2012) Evidence of the most stretchable egg sac silk stalk, of the European spider of the year Meta menardi. PLoS One 7(2):e30500. https://doi.org/10.1371/journal.pone.0030500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leruth R (1939) La biologie du domaine souterrain et la faune cavernicole de la Belgique. Mém Mus r his nat Belg 87:1–506

    Google Scholar 

  • Lipovšek S, Novak T (2016) Autophagy in the fat body cells of the cave cricket Troglophilus neglectus Krauss, 1878 (Rhaphidophoridae, Saltatoria) during overwintering. Protoplasma 253(2):457–466

    Article  PubMed  Google Scholar 

  • Lipovšek S, Novak T, Janžekovič F, Senčič L, Pabst MA (2004) A contribution to the functional morphology of the midgut gland in phalangiid harvestmen Gyas annulatus and Gyas titanus during their life cycle. Tissue Cell 36:275–282

    Article  PubMed  Google Scholar 

  • Lipovšek S, Novak T, Janžekovič F, Pabst MA (2011) Role of the fat body in the cave crickets Troglophilus cavicola and Troglophilus neglectus (Rhaphidophoridae, Saltatoria) during overwintering. Arthropod Struct Dev 40(1):54–63

    Article  PubMed  Google Scholar 

  • Lipovšek S, Letofsky-Papst I, Hofer F, Devetak D (2012) The evidence on the degradation processes in the midgut epithelial cells of the larval antlion Euroleon nostras (Geoffroy in Fourcroy, 1785) (Myrmeleontidae, Neuroptera). Micron 43(5):651–665

    Article  PubMed  Google Scholar 

  • Lipovšek S, Janžekovič F, Novak T (2014) Autophagic activity in the midgut gland of the overwintering harvestmen Gyas annulatus (Phalangiidae, Opiliones). Arthr Str Dev 43:493–500

    Article  Google Scholar 

  • Lipovšek S, Novak T, Janžekovič F, Leitinger G (2015) Changes in the midgut diverticula in the harvestmen Amilenus aurantiacus (Phalangiidae, Opiliones) during winter diapause. Arthr Str Dev. https://doi.org/10.1016/j.asd.2014.12.002

    Google Scholar 

  • Lipovšek S, Janžekovič F, Novak T (2017) Ultrastructure of fat body cells and Malpighian tubule cells in overwintering Scoliopteryx libatrix (Noctuoidea). Protoplasma. https://doi.org/10.1007/s00709-017-1110-3

    PubMed  Google Scholar 

  • Litwin JA (1985) Light Microscopical Histochemistry on Plastic Sections. Prog Histochem Cyto 16:1–84

    CAS  Google Scholar 

  • Ludwig M, Alberti G (1988) Mineral congregations, spherites in the midgut gland of Coelotes terrestris (Araneae): structure, composition and function. Protoplasma 143:43–50

    Article  Google Scholar 

  • Ludwig M, Alberti G (1990) Peculiarities of arachnid midgut glands. Acta Zool Fenn 190:255–259

    Google Scholar 

  • Mammola S, Isaia M (2014) Niche differentiation in Meta bourneti and M. menardi (Araneae, Tetragnathidae) with notes on the life history. Int J Speleol 43(3):343–353

    Article  Google Scholar 

  • Mammola S, Isaia M (2016) The ecological niche of a specialized subterranean spider. Invertebr Biol 135(1):20–30

    Article  Google Scholar 

  • Manenti R, Lunghi E, Ficetola GF (2015) The distribution of cave twilight-zone spiders depends on microclimatic features and trophic supply. Invertebr Biol 134(3):242–251

    Article  Google Scholar 

  • Marusik YM, Koponen S (1992) A review of Meta (Araneae, Tetragnathidae), with description of two new species. J Arachnol 20:137–143

    Google Scholar 

  • McCall K (2010) Genetic control of necrosis—another type of programmed cell death. Curr Opin Cell Biol 22(6):882–888. https://doi.org/10.1016/j.ceb.2010.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114:3619–3629

    CAS  PubMed  Google Scholar 

  • Nentwig W, Blick T, Gloor D, Hanggi A, Kropf C (2017) Spiders of Europe, Version 472 02.2017. http://www.araneae.unibe.ch

  • Novak T, Tkavc T, Kuntner M, Arnett AE, Lipovšek Delakorda S, Perc M, Janžekovič F (2010) Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecol 36:522–529. https://doi.org/10.1016/j.actao.2010.07.005

    Article  Google Scholar 

  • Novak T, Perc M, Lipovšek S, Janžekovič F (2012) Duality of terrestrial subterranean fauna. Int J Speleol 41(2):181–188

    Article  Google Scholar 

  • Novak T, Šajna N, Antolinc E, Lipovšek S, Devetak D, Janžekovič F (2014) Cold tolerance in terrestrial invertebrates inhabiting subterranean habitats. Int J Speleol 43(3):265–272. http://scholarcommons.usf.edu/ijs/vol43/iss3/3

  • Nyffeler M, Symondson WOC (2001) Spiders and harvestmen as gastropod predators. Ecol Entomol 26:617–628. https://doi.org/10.1046/j.1365-2311.2001.00365.x

    Article  Google Scholar 

  • Park MS, Park P, Takeda M (2009) Starvation induces apoptosis in the midgut nidi of Periplaneta Americana: a histochemical and ultrastructural study. Cell Tissue Res 335:631 – 638

    Article  PubMed  Google Scholar 

  • Pötzsch J (1966) Notizen zur Ernährung und Lebensweise von Meta menardi Latr. (Araneae; Araneidae). Abh Ber Naturkundemus Görlitz 41(10):1–24

    Google Scholar 

  • Racoviță EG (1907) Essai sur les problemes biospéologiques. Arch Zool Exp Gén (Biospéologica I), 4e serie 6:371–488

    Google Scholar 

  • Romanelli D, Casati B, Franzetti E, Tettamanti G (2014) A molecular view of autophagy in lepidoptera. Review article. Hindawi Publishing Corporation. Biomed Res Int. https://doi.org/10.1155/2014/902315 (Article ID 902315)

    Google Scholar 

  • Rost-Roszkowska MM, Machida R, Fukui M (2010) The role of cell death in the midgut epithelium in Filientomon takanawanum (Protura). Tissue Cell 42(1):24–31

    Article  CAS  PubMed  Google Scholar 

  • Rost-Roszkowska MM, Poprawa I, Kaczmarek L (2011) Autophagy as the cell survival in response to a microsporidian infection of the midgut epithelium of Isohypsibius granulifer granulifer (Eutardigrada: Hypsibiidae). Acta Zool. https://doi.org/10.1111/j.1463-6395.2011.00552.x

    Google Scholar 

  • Rost-Roszkowska MM, Vilimova J, Sosinka A, Skudlik J, Franzetti E (2012) The role of autophagy in the midgut epithelium of Eubranchipus grubii (Crustacea, Branchiopoda, Anostraca). Arthr Str Dev 41:271–279

    Article  CAS  Google Scholar 

  • Rost-Roszkowska MM, Świątek P, Poprawa I, Rupik W, Swadźba E, Kszuk-Jendrysik M (2015) Ultrastructural analysis of apoptosis and autophagy in the midgut epithelium of Piscicola geometra (Annelida, Hirudinida) after blood feeding. Protoplasma 252(5):1387–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rost-Roszkowska MM, Chajec Ł, Vilimova J, Tajovsky K (2016) Apoptosis and necrosis during the circadian cycle in the centipede midgut. Protoplasma 253(4):1051–1061

    Article  CAS  PubMed  Google Scholar 

  • Růžička V (1990) The spiders of stony debris. Acta Zool Fennica 190:333–337

    Google Scholar 

  • Schiner JR (1854) Fauna der Adelsberger-, Lueggerund Magdalenen-Grotte. In: Schmidl A (ed) Die Grotten und Höhlen von Adelsberg, Lueg, Planina und Laas. Braumüller, Wien, pp 231–2725

    Google Scholar 

  • Smithers P (1996) Observations on the prey of the cave spider Meta menardi (Latreille 1804) in South Devon. Newsl Br Arachnol Soc 77:12–14

    Google Scholar 

  • Smithers P (2005a) The diet of the cave spider Meta menardi (Latreille 1804) (Araneae, Tetragnathidae). J Arachnol 33:243–246

    Article  Google Scholar 

  • Smithers P (2005b) The early life history and dispersal of the cave spider Meta menardi (Latreille 1804), Tetragnathidae. Bull Br Arachnol Soc 13:213–216

    Google Scholar 

  • Sonakowska L, Włodarczyk A, Wilczek G, Wilczek P, Student S, Rost-Roszkowska MM (2016a) Cell death in the epithelia of the intestine and hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS One. https://doi.org/10.1371/journal.pone.0147582

    PubMed  PubMed Central  Google Scholar 

  • Sonakowska L, Włodarczyk A, Wilczek G, Wilczek P, Student S, Rost-Roszkowska MM (2016b) Cell death in the epithelia of the intestine and hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS One. https://doi.org/10.1371/journal.pone.0147582

    PubMed  PubMed Central  Google Scholar 

  • Szymczakowski W (1953) Preferendum temniczne jaskiniowego paja˛ka “Meta menardi” Latr. (Argiopidae). Folia Biol 1:153–168

    Google Scholar 

  • Teixeira A, Fialho MC, Zanuncio JC, Ramalho FS, Serrão JE (2013) Degeneration and cell regeneration in the midgut of Podisus nigrispinus (Heteroptera: Pentatomidae) during post-embryonic development. Arthr Str Dev 42:237–246

    Article  Google Scholar 

  • Tercafs R (1960) Notes à propos de deux araignées cavernicoles “Meta menardi Latr.” et “Nesticus cellulanus Clerck (Argiopidae)”. Ann Féd Spéléol Belg 1:14–18

    Google Scholar 

  • Tercafs R (1972) Biométrie spatiale dans l’écosystème souterraine: repartition du Meta menardi Latr. (Argiopidae). Int J Speleol 4:351–355

    Article  Google Scholar 

  • Tettamanti G, Cao Y, Feng Q, Grimaldi A, de Eguileor M (2011) Autophagy in Lepidoptera: more than old wine in new bottle. ISJ 8:5–14

    Google Scholar 

  • Uwo MF, Vi-Tei K, Pak P, Takeda M (2002) Replacement of midgut epithelium in the greater wax moth Galleria mellonela during larval–pupal moult. Cell Tissue Res 308:319–331

    Article  PubMed  Google Scholar 

  • Vaidyanathan R, Scott TW (2006) Apoptosis in mosquito midgut epithelia associated with West Nile virus infection. Apoptosis 11:1643. https://doi.org/10.1007/s10495-006-8783-y

    Article  CAS  PubMed  Google Scholar 

  • Wilczek G, Rost-Roszkowska MM, Wilczek P, Babczyńska A, Szulińska E, Sonakowska L, Marek-Swędzioł L (2014) Apoptotic and necrotic changes in the midgut glands of the wolf spider Xerolycosa nemoralis (Lycosidae) in response to starvation and dimethoate exposure. Ecotoxicol Environ Saf 101:157–167

    Article  CAS  PubMed  Google Scholar 

  • Zakeri Z, Lockshin RA (2002) Cell death during development. J Immunol Methods 265(1–2):3–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Elisabeth Bock and Rudi Schmied (Medical University Graz) for their excellent technical assistance. Michelle Gadpaille valuably improved the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saška Lipovšek.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipovšek, S., Leitinger, G., Novak, T. et al. Changes in the midgut cells in the European cave spider, Meta menardi, during starvation in spring and autumn. Histochem Cell Biol 149, 245–260 (2018). https://doi.org/10.1007/s00418-017-1623-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1623-z

Keywords

Navigation