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Abstract
Background While the overall stiffness of the lens has
been measured in a number of studies, the knowledge
about the stiffness distribution within the lens is still
limited. The purpose of this study was to determine the
stiffness gradient in the human crystalline lens. A
secondary purpose was to determine whether the stiffness
gradient depends on age.
Methods The local dynamic stiffness was measured in 10
human crystalline lenses (age range: 19 to 78 years). The
lenses were stored at −70°C before being measured. The
influence of freezing on the mechanical properties has been
determined in a previous study. A small oscillating probe
was used to measure the local dynamic shear modulus as a
measure of lens stiffness. The measurements were taken in
the cross-sectional plane through the lens equator.
Results The local dynamic shear modulus varied with
location for all tested lenses. The central stiffness of the

oldest lens (78 years) was 104 times higher than the youngest
(19 years) lens. The equatorial stiffness of the oldest lens was
102 times higher than the youngest lens. For the older
lenses, the centre was 5.8–210 times stiffer than the
periphery, as opposed to earlier results described by Fisher
(1971), who found that the periphery was up to 3 times
softer than the centre for lenses younger than 70-years-old.
For the three youngest lenses (19 to 49 years), the periphery
was 2.2–16.6 times stiffer than the centre.
Conclusions The dynamic stiffness of the crystalline lens
varies with location within the lens. The stiffness gradient
depends on the age of the lens. The results of the 10 lenses
indicate that the stiffness of both centre and periphery
increase with age, but at a different rate.
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Introduction

The mechanical properties of the crystalline lens influence
the ability of the lens to change its shape during accommo-
dation. Consequently, the stiffness of the human crystalline
lens is thought to have an effect on the accommodative
ability and the development of presbyopia [3, 18–20]. The
young and soft crystalline lens is easy to deform, while the
old lens is stiff, hard and unable to be deformed [3, 18, 31,
32]. While some authors represent the stiffness of the lens
using a single value for the whole lens [2, 24], e.g. the
Young’s modulus, it has been shown that the stiffness of the
lens varies, depending on the location within the lens where
stiffness is measured [20]. Also measurements of lens
hardness [30, 35] have shown that there are mechanical
differences between the lens nucleus and the cortex. This is
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further supported by lens morphology [1, 36], which shows
a compaction of fibres toward the lens centre. Other
differences have also been observed between the lens
nucleus and cortex in terms of the protein gradient [13],
refractive index [33] and acoustic parameters [26].

Numerous studies have been conducted to measure
crystalline lens stiffness [2, 4, 10, 12, 15, 16, 19–22, 28];
however, only a few of these studies consider differences
between the nucleus and cortex. Several studies have
demonstrated that during accommodation, the axial defor-
mation in the lens takes place predominantly in the nucleus
[7, 11, 23, 29]. This phenomenon seems to contradict the
idea of a crystalline lens having a uniform and isotropic
stiffness throughout the entire lens.

Fisher [15] determined the stiffness of human lenses using
lens-spinning experiments. Nuclear and cortical stiffness were
calculated, based on the geometric changes of the lens during
spinning. Fisher concluded that the lens nucleus is softer than
the cortex at all ages between 0 and 70 years. However, a
recently published analysis suggests that this conclusion,
particularly in middle age, may be an artefact associated with
systematic errors, caused by the modelling assumptions
inherent in Fisher’s method [9]. Dynamic mechanical
analysis (DMA) measurements by Kuwahara [28] on bovine
lenses showed that the lens nucleus is indeed stiffer than the
lens as a whole. Pau and Kranz [30] measured the force
required to penetrate crystalline lenses with a conical probe.
For lenses 20 years or older, a higher force was required to
achieve axial lens penetration of the nucleus, compared to the
cortex. Heys et al. [20] did a similar experiment, in which
they measured the penetration force at different locations on a
lens cross-section, showing a large difference between the
central and peripheral stiffness of human lenses.

The stiffness of a viscoelastic material depends on the
deformation rate [14]. Therefore, we used dynamic mea-
surements, using multiple deformation rates. The measure-
ment methods were based on dynamic measurement
techniques that were also used in an earlier study on
human lenses [39].

The present study aimed to determine the local stiffness
of the human crystalline lens and possible changes with
age. We show that the lens stiffness depends strongly on the
location within the lens where stiffness is measured, and
that not only the stiffness, but also the stiffness profile/
gradient, changes dramatically with age.

Methods

Testing procedure

Ten human lenses ranging in age from 19 to 78 years were
obtained from donor eyes from the Cornea Bank in Halle.

The eyes had no known ocular diseases. The eyes were
frozen immediately after enucleation and stored at −70°C.
The sample collection followed the tenets of the Declaration
of Helsinki.

The lenses were subjected to dynamic mechanical
analysis (DMA). While a lens sample was held in a sample
holder, a load (displacement) is applied on one side of the
sample and the reaction force is measured at the opposite
side. The applied load is a sinusoidal displacement (oscil-
lation), which is defined by its amplitude and frequency. As
long as the measurement takes place in the linear viscoelas-
tic range, the measured force is proportional to the amplitude
of the applied displacement. The measurement procedure
has been described previously [39], when it was used for
determining the mechanical properties of the entire lens. In
the current setup, a lens half was placed in a sample holder,
while the load consisted of a vertical oscillation of a
cylindrical probe, which was inserted into the lens at several
positions across the cut lens surface (Fig. 1).

In preparation of a measurement, the lens was cut in half
along the equatorial plane, while the lens was still in a half-
frozen state. The lens half was positioned in a lens-shaped
sample holder of a size that fitted the lens. The cut surface
of the lens was covered with a thin aluminium plate
(thickness 1.0 mm), which had small openings (holes with

Fig. 1 Schematic drawing of the measurement setup. The top view of
the aluminium plate shows the measurement positions. In the
horizontal row, the holes are placed at 0, 0.5, 1.5, 2.5 and 3.5 mm
from the lens centre. In the vertical row, the holes are placed at 0, 1.0,
2.0, 3.0, and 4.0 mm from the lens centre. The double arrow near the
oscillator denotes the direction of the oscillation
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diameter of ca. 0.6 mm) at the measuring positions, so that
a cylindrical probe could be passed through to the lens at
these positions (Fig. 1). The holes were covered with a thin
layer of silicone oil (AK1000, Wacker-Chemie GmbH,
η=0.97 Pa·s). The aluminium plate together with the
silicone oil prevented the sample from drying.

The cylindrical probe (0.5 mm diameter) was lowered
until the load cell indicated that the lens surface was
reached. The load cell had a resolution of 10−6 Newton,
which was sufficient to measure even the softest lens. In
general, the forces were about 10 to 1000 times higher than
the resolution of the load cell. The probe was then lowered
another 0.5 mm into the lens. Then, the dynamic measure-
ment was taken over a frequency range of 0.10 to 20 Hz.
After the measurement, the probe was raised and moved to
the next position. In this way, the lens was scanned, starting
in the centre and progressing in 0.5-mm steps up to the
periphery, at 4.0 mm from the centre. A scan was finalized
with a repeat measurement in the centre to ensure that the
sample had not changed during the measurement (e.g. by
drying). The temperature of the sample was registered
continuously and was on average 25°C. Each measurement
was carried out with at least two different amplitudes (range
1–50 micrometers) to verify that the material properties
were measured in the linear range.

Data analysis

The raw data consist of the measured reaction forces
(amplitude and phase shift) at each frequency and at each
position of the probe across the cut lens surface. The

measured force, divided by the displacement of the
oscillating probe, represents the complex spring constant
of the lens. Dividing the spring constant by the shape factor
results in the complex shear modulus G=G′+i·G″. The real
part of the complex shear modulus (storage modulus, G′)
represents the elastic component and the imaginary part of
the complex shear modulus (loss modulus, G″) represents
the energy dissipated or lost as heat [14]. The shape factor
is defined by the ratio between the shear modulus of the
material and the force applied by the oscillating probe and
is derived from the geometry of the sample.

The shape factor was determined by a theoretical
analysis, consisting of two steps: (1) by determining an
initial shape factor, using a numerical simulation of the test
setup and (2) by applying a correction for the non-
uniformity of the stiffness.

For the first step of determining the shape factor, a
computer model of the test set-up (lens and probe) was
created (Fig. 2) using general-purpose finite element
software (MSC.Marc 2003, MSC.Software Corporation,
Santa Ana, CA, U.S.A.). The required force for a given
probe amplitude of oscillation of 10 micrometers was
calculated for each position of the probe. The calculated
shape factor values (Table 1) were verified by measuring
the shear loss modulus of a known material, silicone oil
(AK60000, Wacker-Chemie GmbH, η=58.2 Pa·s). The
shear loss modulus of this silicone oil is similar to that of
a 40-year-old lens. The difference between the measured
and calculated shape factor was 1%.

In the second step of determining the shape factor, a
correction factor was introduced to account for the

Fig. 2 Finite elements model
with the measurement probe in
two different positions. The
model is shown in the maximum
deformed state. For clarity of the
figure, the deformations are
magnified by a factor of 10
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influence of the stiffness gradient on the shape factor. The
correction factor was calculated using the average of
‘cylindrical shear’ ([14], pp 97–98) and ‘cylinder compres-
sion’, which were modified in order to incorporate a non-
uniform shear modulus (see Appendix). The correction
factor (Table 2) is a function of the measured (uncorrected)
ratio between the shear modulus at the lens equator (Go)
and in the lens centre (Gi).

Determining the measured shear modulus from the
spring constant follows the same two steps: First, the
spring constant is divided by the shape factor (Table 1),
which results in the (uncorrected) shear modulus and the
(uncorrected) ratio Go/Gi. Next, the values are corrected by
multiplying the (uncorrected) shear modulus with the
correction factor in Table 2.

Although the measurements were taken in the frequency
range of 0.10 to 20 Hz, only the frequencies 0.10, 0.17
and 0.30 Hz are reported, since at higher frequencies the
mass of the lens (sample inertia) influences the measured
force [5].

Results

Repeatability of the measurements was calculated accord-
ing to the international standard ISO-5725. The repeatabil-
ity standard deviation, as a percentage of the shear modulus
value, was 21%. Figure 3 shows the measured storage and
loss shear modulus at 3 frequencies for a 40-year-old (a)
and a 64-year-old (b) lens. Figure 4 shows the storage shear
modulus at 0.10 Hz of 4 lenses ranging in age from 19 to
78 years. For the 10 lenses tested, log(G) increased with
age for all 3 frequencies and at all 9 positions (P<0.01 for
all 27 cases). The increase with age was different for the
centre and the periphery of the lens: the central storage
shear modulus increased by a factor 104 and the equatorial
storage shear modulus increased by a factor 102 over the
measured age range.

For all 10 lenses and for all frequencies, the relationship
between log(G) and location on the lens was statistically
significant (P<0.05). The three youngest lenses had a
minimum stiffness in the centre of the lens. The peripheral
stiffness of these lenses was on average 5.8 times higher
than the central stiffness (range 2.2–16.5). The older lenses
had a maximum stiffness in the centre of the lens. The
centre was on average 64.7 times stiffer than the peripheral
stiffness (range 5.8–210).

The two youngest lenses exhibited a maximum stiffness
at 2.5–3.0 mm from the lens centre. The ratio between the
storage shear modulus in the centre to storage shear
modulus at R=3.0 mm increased exponentially with age
(P<0.01; Fig. 5). The ratio was 0.12 for the 19-year-old
lens and 32 for the 78-year-old lens.

Discussion

This study was undertaken to determine the local stiffness
of the human crystalline lens. In a previous study, we
measured the viscoelastic properties of entire lenses in a
large age range [39]. The age correlation observed in the
previous study is consistent with the findings in the current
study.

Comparisons with existing stiffness data

Fisher [15] measured the quasi-static Young’s modulus of
the crystalline lens using a lens-spinning technique. He
then calculated separate Young’s moduli for nucleus and
cortex stiffness to explain the macroscopic anisotropy.
This resulted in a cortical stiffness that is higher than the
nuclear stiffness for the entire age range of 0–70 years.
Fisher’s Young’s modulus can be compared with our shear
modulus results using the equation G ¼ 1=2E= 1þ νð Þ,
with E being the Young’s modulus and ν the Poisson’s ratio

Table 2 Correction factor for the ratio between the shear modulus at
the lens equator (Go) and in the lens centre (Gi)

True ratio Go/Gi Uncorrected ratio Go/Gi Correction factor

0.01 0.03 0.30
0.1 0.21 0.47
0.5 0.66 0.76
1 1.00 1.00
2 1.42 1.40
3 1.68 1.79
4 1.83 2.18
5 1.92 2.60

The measured ratio is always closer to 1 than the true ratio, which
means that the measurements underestimate the difference between
central and equatorial stiffness.

Position
[mm]

Shape factor
[mm]

t1.1

0.0 4.36t1.2
0.5 4.38t1.3
1.0 4.41t1.4
1.5 4.47t1.5
2.0 4.59t1.6
2.5 4.77t1.7
3.0 5.09t1.8
3.5 5.72t1.9
4.0 7.51t1.10

Table 1 Shape factor versus
radial position of the probe,
determined using the finite
elements method
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(assumed 0.5). Using this equation, a dramatic difference
can be observed between Fisher’s results and the results
of the current study. We found that at a young age
(20 years), the stiffness of the cortex is almost five times
higher than the stiffness of the nucleus, while at 70 years of
age, the stiffness of the nucleus is 24 times higher than the
stiffness of the cortex. At the age of 38 years, at which
point Fisher’s data shows the largest difference between
nucleus and cortex (1.04 kPa), we found a relatively small
difference between lens centre and periphery (0.37 kPa).
Although our method has some shortcomings (as discussed
below), we believe that the current data better reflects the
real stiffness gradient of the lens, since it is based on the
direct measurement of the stiffness across the cross-section
of the lens. Additionally, a recently published analysis
suggests that Fisher’s conclusion that the cortex is stiffer
than the nucleus, particularly in middle age, may be an

artefact associated with systematic errors, caused by the
modelling assumptions inherent in Fisher’s method [9].
Furthermore, the current data seem fairly consistent with
published lens hardness data [30].

More recently, Heys et al. [20] used a quasi-static
penetration technique to determine local mechanical prop-
erties of the lens. In principle, this method determines the
local hardness of the lens, but it was converted to shear
modulus, assuming a linear relationship between hardness
and stiffness. This relationship between hardness and
stiffness is not obvious, especially when mechanical
properties are non-linear material. Comparing the regres-
sion lines between 20 and 70 years of age, we found that
the modulus in the centre of the lens increased from
0.023 kPa to 134 kPa (Heys et al.: from 0.040 kPa to
19 kPa) and the modulus in the periphery of the lens
increased from 0.20 kPa to 14 kPa (Heys et al.: 0.089 Pa to

Fig. 3 Measured storage (G′)
and loss (G″) shear modulus at
three frequencies, for a 40- and
64-year-old lens
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1.9 kPa). Despite the differences in methods and assump-
tions, the trends they found for the relationship between the
nuclear and cortical mechanical properties with age support
our results nicely.

Limitations of the test method

Measuring the stiffness modulus of the crystalline lens is a
difficult task. Generally, the mechanical properties of
human tissues are non-linear [17]. In simple terms, this
means that the stress-strain curve is not a straight line. This
was well-demonstrated for the capsular bag by Krag et al.
[27]. Their study also showed a close-to-linear behaviour

for small strains. Two other studies also demonstrated this
behaviour in the crystalline lens [16, 39]. In the current
study, the measurements were taken in the linear elastic part
of the stress-strain curve.

Due to logistic limitations, the lenses used in the current
study were stored in a frozen state, prior to the experiment.
Therefore, our results only apply to previously frozen
lenses. The effect of freezing on the measured shear
modulus has been discussed extensively in a previous
publication [39] and the arguments also apply to this
study’s results. In the previous study, pairs of porcine lenses
were measured, one fresh and the other after being stored in
a frozen state. The difference between fresh and frozen

Fig. 5 Ratio (log-scale) be-
tween central and peripheral
stiffness versus age, based on
the storage shear modulus at
0.1 Hz. The central modulus is
taken as the nuclear stiffness and
the modulus at 3 mm away from
the centre is taken as the
peripheral stiffness

Fig. 4 Shear modulus of four
lenses across the age range,
plotted on a logarithmic scale
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lenses was 8% in storage compliance and 32% in loss
compliance. This can be considered small when compared
to the very large changes of modulus with age and position.

The structure of the lens material directly in contact with
the probe will be disturbed. The effect of the disturbance
on the measurement result is unknown. A correction factor
was calculated during the data analysis, assuming a radially
linear stiffness distribution. This does not mean that the
measured stiffness distribution is also radially linear. The two
younger lenses show a highly non-linear stiffness distribution.

In our study, the analysis has some influence on the
observed trends. Figure 6 shows the spring constant (C′) in
arbitrary units of two lenses, together with the final storage
shear modulus at 0.1 Hz. The figure shows that the
conversion to shear modulus has some influence on the
shape and the absolute value of the shear modulus, but
the relative magnitudes are hardly affected.

Although the fibre cell structure in the crystalline lens
suggests anisotropy of the mechanical properties, rabbit
lens experiments by Itoi [21] and human lens experiments

by Fisher [15] indicate that the anisotropy is relatively
small compared to the large differences of shear modulus
with position and with age found in the current study.

The number of lenses used in this study was small.
Although several prior studies that have considered the
effects of age on the lens have used even fewer lenses [6, 7,
25, 32], the fact that the age related trends are observed
despite the small number of lenses used indicates the
significance of the age related changes. This study may be
confirmed by a larger study, and preferably avoiding
freezing the lenses before the measurement.

Lens changes and stiffness profiles

There can be several causes for the increasing stiffness of
the lens. Recently, Al-Ghoul et al. [1] quantified the
compaction of the lens fibres in the fetal and embryonic
nucleus of adult lenses. The authors suggested that lens
fibre compaction may cause an increase in lens hardness,
which contributes to the loss of accommodation. We found

Fig. 6 Measured spring con-
stant (C′) in arbitrary units and
resulting calculated shear mod-
ulus (G′) for a 40- and 64-year-
old lens
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that the change of lens stiffness with age differs between
centre and periphery. On a morphological and biochemical
level, several age-related changes in the lens occur. The
mechanisms by which these age-related changes in the lens
occur are different between nucleus and cortex [37]. This
may explain, in part, our finding that the rate of lens stiffening
with age is different for the centre and the periphery.

A relationship between nuclear hardness and presbyopia
was suggested by Pay and Kranz [30]. Here we should note
that in ophthalmic literature, there is often a confusion
between the terms ‘hardness’ and ‘stiffness,’ which is at
least partly due to different definitions of hardness [34].
While stiffness defines the relationship between stress and
strain, lens hardness is often measured by penetration/
guillotine experiments, so that it depends on the force at
which the material breaks. For non-linear mechanical
properties in general, the force at break and the stiffness
are not proportional.

In the current study, the three youngest lenses of the pre-
presbyopic age had a soft centre. For lenses of these ages,
the difference between centre and periphery was much
larger than the suggested differences in measurements of
anisotropy [15, 21]. As an exploratory analysis, the shear
modulus was determined as a function of all data, meaning
as a function of age and position. A single function was
used, log(G) = f(age, position), being a two variable 3rd
order polynomial, which was fitted through 90 points (10
lenses, so 10 ages, with 9 measured positions per lens),

using the least squares method (Fig. 7). No effort was made
to determine the goodness of fit and the figure only serves
to demonstrate the type of trend that was found in this
study. According to this trend analysis, the stiffness of the
crystalline lens is generally uniform throughout the entire
lens at the age of 45 years (at least in the equatorial plane).
This also follows from the ratio between the stiffness of the
centre and the stiffness of the periphery (Fig. 5).

Implications

This study involves a limited number of lenses over the age
range of 19 to 78 years old. These measurements showed the
following trends: 1) the centre was softer than the periphery
in the three youngest lenses; 2) the centre was stiffer than the
periphery in older lenses; 3) the stiffness of both centre and
periphery increase with age, but at a different rate.

The ratio between the stiffness of centre and the stiffness
of the periphery could have a special relationship with the
onset of presbyopia. If we want to know the influence of
the stiffness profile on accommodation and presbyopia, we
should determine the influence of the stiffness profile on
the pliability of the total lens. This could be done by
mechanical calculations. Burd et al. [8] already included a
nucleus in their mechanical model, while preliminary
investigations, also based on the finite elements method,
have demonstrated that the accommodative amplitude is
very sensitive to the relative stiffness of the nucleus [38].

Fig. 7 Trend graph of the shear
modulus versus position in the
lens and age. The line at the
bottom is the 20-year-old lens.
The modulus increases with age
for all positions in the lens.
The line at the top is the
70-year-old lens. Measurements
were taken up to 4.0 mm from
the lens centre. The lines are
extrapolated to a radius of
4.5 mm (lens diameter 9.0 mm)
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Future research efforts could concentrate on the physi-
ological mechanisms that are responsible for the changes in
lens stiffness.

Appendix

Shape factor and correction for a non-uniform material

Cylindrical shear with a non-uniform modulus:

A probe with radius ri is inserted in a cylinder with radius
ro. For a uniform material, the shape factor is ([14], pp 98):

M ¼ 2p � l
ln ro

ri

� � :

A non-uniform shape-factor is introduced:

G� rð Þ ¼ G�
c þ B�r

with G*c being the central stiffness and B the stiffness slope.
For an infinitesimal element of sample material (width of

dr, height of dw), the shear stress is:

t ¼ �G� rð Þ� dw=drÞ:ð ð1Þ
When F is the applied force and l is the length of the

probe, the shear force is also:

t ¼ F=2prl ð2Þ
so that:

dw=drÞ ¼ �F= G� rð Þ�2prlf g:ð ð3Þ
This leads to the integral for the deflection:

w rð Þ¼ Rr
ri

@w
@r dr ¼ �F

2πlG�
c

ln rð Þ�ln G�
c þ B�r

� �� �#r

ri

¼

¼ �F
2πlG�

c
ln r

ri

� �
� ln G�

cþB�r
G�

cþB�ri

� �n o
þ w rið Þ

ð4Þ

(Handbook of Chem & Phys. 77th ed, Page A-26,
equation 110)

w roð Þ ¼ 0 ¼ �F

2πlG�
c

ln
ro
ri

� 	
� ln

G�
c þ B�ro

G�
c þ B�ri

� 	
 �

þ w rið Þ ð5Þ

w rð Þ ¼ þF

2plG�
c

ln
ro
r

� �
� ln

G�
c þ B�ro

G�
c þ B�r

� 	
 �
ð6Þ

1

C
¼ w rið Þ

P
¼ J �

2pl
ln

ro
ri

� 	
� ln

G�
c þ B�ro

G�
c þ B�ri

� 	
 �
ð7Þ

So for the compliance (J) and with:
G*o = modulus at r=ro
G*i = modulus at r=ri

J� ¼ 1

C
� 2pl

ln ro
ri

� �
� ln G�

o
G�

i

� � ð8Þ

and for the shear modulus:

G�
0 ¼

C

2pl
ln

ro
ri

� 	
� ln

G�
o

G�
i

� 	
 �
ð9Þ

Mcs ¼ 2πl

�
ln

ro
ri

� 	
� ln

G�
o

G�
i

� 	
 �
: ð10Þ

Compression of a cylinder:

The area directly under the probe is represented by the
compression of a cylinder, the cylinder having a linear
changing stiffness.

s ¼ E" ð11Þ
and for a material with Poisson’s ratio of 0.5:

" ¼ s=E ¼ s=3G ð12Þ
with σ the normal stress, E the Young’s modulus and ɛ the
relative compression (dl/l for a uniform stiffness). Each
slice (dz) at vertical position z below the probe is
compressed, influenced by the local shear modulus G(z):

d dzð Þ
dz

¼ s 3G zð Þ ¼ F


3pr2i G zð Þ:
 ð13Þ

The total compression of the cylinder:

z ¼
Zh

0

d dzð Þ
dz

dz ¼
Zh

0

F

3pr2i G zð Þ dz: ð14Þ

Introducing a non-uniform material:

G zð Þ ¼ Go 1þ D�zð Þ ð15Þ
With Eq. (15), Eq. (14) becomes:

z ¼ F

3pR2Go

Zh

0

1

1þ D � zdz ¼
F � ln 1þ h � Dð Þ

3pr2i GoD
: ð16Þ

And for the shape factor:

Mcc ¼ F=z

Go
¼ 3pr2i � D

ln 1þ h � Dð Þ : ð17Þ

In the data analysis, a cylinder height of 2.0 mm was
used.

17ð Þ
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The average correction factor is defined by:

0:5�
Mcs Go=Gið Þ

Mcs Go=Gi ¼ 1ð Þ þ
Mcc Go=Gið Þ

Mcc Go=Gi ¼ 1ð Þ

 �

:
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