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Abstract Mutations in the A-type lamins A and C, two major
components of the nuclear lamina, cause a large group of
phenotypically diverse diseases collectively referred to as lam-
inopathies. These conditions often involve defects in chromatin
organization. However, it is unclear whether A-type lamins
interact with chromatin in vivo and whether aberrant chroma-
tin—lamin interactions contribute to disease. Here, we have used
an unbiased approach to comparatively map genome-wide
interactions of gene promoters with lamin A and progerin, the
mutated lamin A isoform responsible for the premature aging
disorder Hutchinson—Gilford progeria syndrome (HGPS) in
mouse cardiac myoytes and embryonic fibroblasts. We find
that lamin A-associated genes are predominantly transcription-
ally silent and that loss of lamin association leads to the relo-
cation of peripherally localized genes, but not necessarily to
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their activation. We demonstrate that progerin induces global
changes in chromatin organization by enhancing interactions
with a specific subset of genes in addition to the identified
lamin A-associated genes. These observations demonstrate
disease-related changes in higher order genome organization
in HGPS and provide novel insights into the role of lamin—

chromatin interactions in chromatin organization.

Abbreviations

AIRE

Autoimmune regulator

ANOVA One-way analysis of variance

BAC Bacterial artificial chromosome

BPTF Bromeodomain and plant homeo-domain
transcription factor

ChIP Chromatin immunoprecipitation

FDR False discovery rate

FPLD Familial partial lipodystrophy

FC Fold change

GT Gene trap

GO Gene ontology

GUCE GTF2IRDI upstream control element

HAML Human acute myelogenous leukemia factor

HGPS Hutchinson—Gilford progeria syndrome

INM Inner nuclear membrane

IFNy Interferon gamma

LAD Lamin-associated domain

LMNA®®™"  LMNA knockout

MEF Mouse embryonic fibroblast

NE Nuclear envelope

NPC Nuclear pore complex

OLFR Olfactory receptor

OST-A One-STrEP tagged lamin A

OST-P One-STrEP tagged progerin

ONM Outer nuclear membrane

SF1 Steroidogenic factor-1
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TF Transcription factor

TFM Transcription factor motif
VMNR Vomeronasal receptor
WT Wild type

ZF10 Zinc finger 10

Introduction

The nuclear envelope (NE) defines the boundary between
the nucleus and the cytoplasm. The NE is composed of an
outer and an inner nuclear membrane (ONM and INM,
respectively) interrupted by nuclear pore complexes (NPCs)
and is lined by the lamina, a network of the intermediate
filaments made up largely of the A-type lamins (lamin A,
A10, C, and C2), encoded by the LMNA gene, and B-type
lamins (lamin B1, B2 and B3), encoded by the LMNB1 and
LMNB? genes, respectively (Broers et al. 2006).

Mutations in A-type lamins cause a group of phenotypical-
ly diverse diseases, collectively referred to as laminopathies
(Broers et al. 2004). They include several types of muscular
dystrophies, lipodystrophies, cardiomyopathies, neurological
disorders, and premature aging syndromes. In line with the
well-established role of A-type lamins in maintaining higher
order chromatin organization (Sullivan et al. 1999),
laminopathy-associated point mutations in the lamin A/C gene
(LMNA) often deregulate chromatin structure and organiza-
tion. The most dramatic laminopathy-associated chromatin
reorganization occurs in the premature aging disease Hutch-
inson—Gilford progeria syndrome (HGPS), where the disease-
causing mutant lamin A isoform progerin causes loss of
heterochromatin and reduces mono- and trimethylation of
lysines 9 and 20 on histone 3 (Scaffidi and Misteli 2006;
Goldman et al. 2004). Another progeria-related lamin A mu-
tation, E145K, leads to alterations in pericentric chromatin,
abnormal clustering of centromeres, and mislocalization of
telomeres (Taimen et al. 2009). Loss of heterochromatin and
mislocalization of HP1{3 also occur in LMNA mutation-
mediated mandibuloacral dysplasia (Filesi et al. 2005).

Several lines of evidence suggest that A-type lamins
interact directly with chromatin in vivo and that these inter-
actions are affected by LMNA mutations. First, the structur-
ally related B-type lamins directly bind histones H2A and
H2B in vitro (Goldberg et al. 1999), and lamin B interacts
with chromatin in vivo at discrete lamin-associated domains
(LADs; de Wit and van Steensel 2009). These domains are
characterized by a low gene activity and are demarcated by
insulators (9). Second, amino acids 396430 of the human
lamin A/C tail bind core histones in vitro (Taniura et al.
1995). Third, the immunoglobulin domain of lamin A/C
covalently binds 30-bp dimerized DNA fragments in vitro,
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and the FPLD-associated R483Q and W mutations lower
this affinity (Stierlé et al. 2003). Based on these findings, it
was hypothesized that direct interaction of A-type lamins
with chromatin is important for chromatin organization and
gene regulation (Dechat et al. 2008). While interactions of
chromatin with lamin B have been mapped (Peric-Hupkes et
al. 2010; Pickersgill et al. 20006), it is unknown which
chromatin regions directly interact with A-type lamins in
vivo and how loss or mutation of lamin A/C affects chro-
matin organization and gene expression.

To probe the role of the lamina in genome organization,
gene expression, and its relevance to laminopathies, we have
conducted unbiased, genome-wide mapping of gene pro-
moters that interact with lamin A and/or progerin using a
high-affinity pull-down technique (Kubben et al. 2010). We
find that lamin A preferentially binds silent or lowly expressed
genes. This association facilitates, but does not determine, the
peripheral localization, and loss of the interaction is not suffi-
cient for gene activation. Progerin increases lamina—gene
interactions by interacting with a specific subset of silent or
lowly expressed genes in addition to binding regular lamin A-
associated genes. These data demonstrate a direct and distinct
effect of lamin A and progerin on chromatin interaction and
organization at the lamina.

Materials and methods
Cell lines and culture

An OST-P lentiviral expression plasmid was created by delet-
ing amino acids 609-658 of the pPCDH MCSNard One-STrEP
tagged lamin A (OST-A) plasmid (Pegoraro et al. 2009). A
lentiviral vector expressing shRNA directed against mouse
lamin A/C (pSIHpuro-shRNA-mouseLMNA) was generated
by annealing 5'gatccGAGCTTGACTTCCAGAAGAACA
TttcaagagaATGTTCTTCTGGAAGTCAAGCTCtttttg3’ and
5'aattcaaaaaGAGCTTGACTTCCAGAAGAACATtctct
tgaaATGTTCTTCTGGAAGTCAAGCTCg 3' oligos and sub-
sequent ligation into BamHI- and EcoRlI-restricted pSIH H1
plasmid (System Biosciences, Mountain View, USA). Mouse
cardiac myocyte NkITAg cells (Rybkin et al. 2003) and mouse
embryonic fibroblasts (MEFs) of wild-type and LMNA knock-
out (LMNAX97") embryos (Sullivan et al. 1999) expressing
OST-A or OST-P at expression levels comparable to endoge-
nous lamin A levels were created and cultured as described
elsewhere (Kubben et al. 2010).

Western blot
Cells were lysed in SDS-PAGE Laemmli loading buffer and

further denatured by heating for 5 min at 95°C. Western
blots and immunodetection were performed essentially as
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described elsewhere (Pegoraro et al. 2009). The primary
antibodies used for immunodetection were o-lamin A/C
(1:500 dilution, Sc6215; StCruz, Santa Cruz, CA, USA)
and «o-beta actin (1:5,000 dilution, A-5441; Sigma, St.
Louis, MO, USA).

Immunofluorescence microscopy

Immunofluorescence was essentially performed as described
elsewhere (Pegoraro et al. 2009). Cells were grown on 0.1 %
gelatin/PBS solution-coated multi-well glass slides (MP Bio-
medicals, Solon, OH, USA), and «-LMNA/C (1:500 dilution,
Sc-7292; StCruz), «-LMNBI1 (1:500 dilution, Sc-6217;
StCruz), or Chromeo642-conjugated Strep-Tactin and «-
StrepMAB (both diluted 1:250, IBATAGnology, Géttingen,
Germany) were used as a primary antibodies.

Chromatin immunoprecipitation

NkITAg and MEF cell lines expressing OST-A, OST-P or
control vector constructs were formaldehyde fixed (1 %,
5 min), solubilized by sonication in the presence of a high
percentage of detergents (1 % SDS, 1 % Trx-100) and
diluted to contain equal concentrations of genomic DNA
as described previously (Kubben et al. 2010). Samples were
end-over-end rotated (overnight, 4°) with herring sperm
DNA coated Strep-Tactin Matrix (IBA BioTagnology, Got-
tingen, Germany). Pelleted Strep-Tactin matrix was washed
with low and high salt buffer (0.1 % SDS, 1 % Triton X-
100, 2 mM EDTA, 20 mM Tris pH 8.1, 150 mM and
500 mM NacCl respectively), LiCl buffer (0.25 M LiCl,
1 % Igepal-CA630, 1 % deoxycholic acid, ]| mM EDTA,
10 mM Tris pH 8.1), OST stringent wash buffer (2 M NaCl,
2 % Trx-100, 500 mM LiCl, 0.1 % SDS, 1 % Sodium
Deoxycholate, 20 mM Tris pH 8.1, 2 mM EDTA) and TE
buffer (10 mM Tris, 1 mM EDTA pH 8.0). Precipitated
protein—chromatin complexes were eluted at room tempera-
ture in fresh elution buffer (1 % SDS and 0.1 M NaHCO3).
After de-cross-linking for 6 h at 65°C in the presence of
200 mM NaCl and 30 pg/ml RNAase A, DNA was purified
using a Qiagen PCR cleanup kit (Qiagen, Hilden, Germany)
and amplified according to Whole Genome Amplification
kit instructions (Sigma, St. Louis, USA) for further analysis
on promoter arrays. Amplified DNA fragments were hybrid-
ized to NimbleGen MM8 385 K Refseq promoter arrays,
tiling a region of 2000 bp downstream to 500 bp upstream
for transcription start sites of ~19,000 Refseq genes, accord-
ing to Electronic supplementary material (ESM) Fig. S3.
Hybridization and data acquisition were performed in-
house by NimbleGen according to standard procedures
(Roche NimbleGen, Madison, WI, USA). To identify
OST-A-bound gene promoters in NkITAg cell lines, we
compared OST-A chromatin immunoprecipitated DNA vs.

control chromatin immunoprecipitated DNA hybridized to
the same arrays (ESM Fig. S3) using a within-array analysis
approach as specified by NimbleGen (version 6.2; Nimble-
Gen 2010; http://www.nimblegen.com/products/lit/
NG_ChIP-chip_Guide v6p2.pdf), requiring overlapping
peaks between replicates in addition to a false discovery
rate (FDR) of <20 % in each replicate, as successfully
applied previously (Romano et al. 2010). Identical to the
NKITAG cell line ChIP analysis in MEF cell lines, genes
interacting with OST-A or OST-P were identified by a
within-array analysis comparing the probe levels of OST-A
vs. control chromatin immunoprecipitated DNA or OST-P
vs. control chromatin immunoprecipitated DNA hybridized
on the same array (ESM Fig. S3). To further test whether the
identified OST-A and OST-P targets in MEFs preferentially
bind to OST-A or OST-P or interact with equal frequencies
to both lamins, we next applied an in-between-array analysis
(FDR=5 %) to directly compare the probe signals of OST-A
chromatin immunoprecipitated DNA with OST-P chromatin
immunoprecipitated DNA, which were hybridized on sepa-
rate arrays (ESM Fig. S3). This analysis has been previously
successfully applied in ChIP studies and is further described
elsewhere (Peric-Hupkes and van Steensel 2010). Both
analyses combined led to the identification of three subsets
of targets in MEFs: (1) gene promoters that bind preferen-
tially to OST-A (referred to as A targets; OST-A ChIP
enriched over OST-P and control ChIP and OST-P ChIP
not enriched over control ChIP); (2) gene promoters that
bind to both OST-A and OST-P (A&P targets; OST-A and
OST-P ChIP enriched over control ChIP, in which OST-A
and OST-P ChIP have comparable levels); (3) or gene
promoters that preferentially bind to OST-P (P targets;
OST-P ChIP enriched over OST-A and control ChIP and
OST-A ChIP not enriched over control ChIP).

Cluster analysis of the identified lamin targets was essen-
tially performed as described previously (Peric-Hupkes and
van Steensel 2010). To test whether lamin targets were clus-
tered, we defined the clusters as two or more adjacent lamin-
associated genes not interrupted by non-target genes. Next,
unclustered (cluster size=1 gene) and clustered (cluster size
>1 gene) lamin targets for all chromosomes were compared by
Fisher’s exact test to the randomly expected occurrences of
gene clusters, determined in 10,000 random simulations. Gene
ontology (GO) analysis was performed with the DAVID da-
tabase, comparing gene sets against all annotated gene pro-
moters represented on NimbleGen MMS8 385K Refseq
promoter arrays, using standard settings for functional anno-
tation clustering and listing significant clusters by the most
significant GO biological process classes (Dennis et al. 2003;
da Huang et al. 2009). Conservation plots were generated with
CEAS analysis (http:/cistrome.org/ap/root; Ji et al. 2006),
showing the level of conservation of the ChIP regions com-
pared to the genomic background. Genomatix Matlnspector
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software (Cartharius et al. 2005) combined with the Genoma-
tix transcription factor motif database (www.genomatix.de)
was used to identify enriched transcription factor motifs
(TFMs) in target sites and target promoters.

Fluorescent in situ hybridization

To produce probes for DNA fluorescent in situ hybridization
(FISH), bacterial artificial chromosomes (BACs; BACPAC
Resources Center, Oakland, CA, USA) were labeled by nick
translations with dUTP conjugated with biotin or dioxygenin
(Roche, Madison, WI, USA) using mouse BAC clones (Acpp,
RP24-383K20; Sp100, RP24-235A6; OLFR681, RP24-
324M2; OLFR1471, RP24-346K11; Eif2b, RP24-285P5;
Fanca, RP24-157M4) as described (Meaburn and Misteli
2008). FISH was performed as described elsewhere (Meaburn
and Misteli 2008), with the exception of altered denaturation
conditions (5 min, 85°C) and the introduction of a 45-min
(20°C) incubation step in a block buffer (3 % BSA/0.05 %
Tween-20/4x SSC) diluted (1:50) lamin B antibody (Sc-6217;
Santa Cruz Biotechnology, Santa Cruz, CA, USA) prior to
incubation with appropriate secondary antibodies.

Using SoftWoRx 3.7.0 Release 13EL (Applied Preci-
sion), FISH signals were detected on an IX70 microscope
(Olympus) controlled by a Deltavision System (Applied
Precision, x60 1.4 oil objective lens, auxiliary magnification
of 1.5 and optical step size of 0.2 um) and analyzed in the z
section with the brightest signal intensity. The two brightest
FISH signals were used for quantification. The frequency of
cells with minimally one FISH signal within 500-nm dis-
tance of lamin B staining was quantified. Minimally, 150
nuclei were analyzed in duplicate per probe per cell line. Per
probe quantification results were statistically tested between
different cell lines using the chi-square test. SigmaStat 3.1
software was used for statistical analysis. All test P values
<0.05 were considered significant.

RNA isolation and expression microarray

RNA from the cardiac left ventricles of 5-day-old wild-type
(WT) and LMNAST"" mice (N=2 each); a LMNA null
mouse model (Kubben et al. 2011); and from MEFs infected
with a OST-A, OST-P, or empty vector lentivirus (N=2
each) were isolated with the RNAeasy minikit (Qiagen,
Hilden, Germany) and hybridized to Nugo Mouse Affyme-
trix Moe430A expression arrays and Affymetrix Mouse
Gene 1.0 ST arrays, respectively. Intensity values after hy-
bridization were normalized to the median signal intensity
of the array. For individual genes, differences in expression
levels were statistically tested by one-way ANOVA. The
expression profiles for all sets of targets were statistically
analyzed in R using a two-sample Kolmogorov—Smirnov
test between groups, comparing the profiles of the subsets of
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targets as defined above to one another and against the
expression profile of non-targets. Values of p below 0.05
were considered significant. For verification of microarray
expression data by PCR, cDNA was synthesized with the
iScript™ cDNA synthesis kit (BioRad, Hercules, CA,
USA). SYBR Green real-time quantitative PCR analysis
was performed with primers specified in ESM Fig. S4c.
Differences in real-time PCR quantification were deter-
mined with Student’s ¢ test and at the 0.05 significance level.

Results
Identification of lamin A-associated genes

To map lamin A-interacting chromatin regions at a genome-
wide scale, we used a recently described high-efficiency
pull-down system in which lamin A tagged with the
biotin-derived One-STrEP tag (OST-A) is stably expressed
at endogenous levels (Kubben et al. 2010) in a murine
cardiac myocyte NkITAg cell line (Rybkin et al. 2003).
The OST-A fusion protein has previously been characterized
in detail (Kubben et al. 2010) and co-localizes in NkiTAg
cells with endogenous lamin A and lamin Bl (ESM
Fig. S1). To identify lamin A-associated genome regions,
we performed chromatin immunoprecipitation (ChIP) using
the Strep-Tactin matrix, an engineered streptavidin analogue
for selective binding (K4=1 pM) to the OST tag (Junttila et
al. 2005; ESM Fig. S2a). The recovered chromatin was
hybridized in duplicate to the NimbleGen promoter tiling
arrays covering the 2,500-bp promoter regions flanking the
transcriptional start site of ~19,000 annotated Refseq genes.
Chromatin immunoprecipitated DNA from empty vector
infected cells was used as a control (ESM Fig. S2a). Six
hundred ninety-two lamin A-associated (OST-A) genes
were identified based on enrichment in two independent
experiments and statistical criteria (Romano et al. 2010;
ESM Table S1; see “Materials and methods”). Visual in-
spection of the processed probe-level data for eight random-
ly chosen lamin A targets and four non-targets showed little
variability between duplicates and confirmed an overall high
enrichment of OST-A chromatin immunoprecipitated DNA
vs. control chromatin immunoprecipitated DNA in lamin A
targets, but not in non-targets.

The 692 OST-A target genes localize to all chromosomes
(Fig. 1a and ESM Fig. S5). Of the lamin A targets, 28 %
localize in gene clusters (defined as two or more adjacent
genes), which is fivefold higher (p<1.0x10"*; Fisher’s ex-
act test) than expected for random gene association (ESM
Fig. S6a, b). GO analysis identified the enrichment of lamin
A targets in the categories “G protein-coupled receptor
signaling” (N=147/659 annotated genes, p<1.0x10"2%
Fig. 1b), mainly consisting of olfactory receptors (OLFR)
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annotated ChIP targets

GO Category ChIP targets for p=0.05 P value

G protein coupled receptor signaling 147/659 67/659 <1.0x10%

Glutamate Receptor Activity 8/659 6/659 2.5x10™

and VMNR (N=104, N=11 respectively), and “glutamate
receptor activity” (N=8/659, p=2.5x10"*; Fig. 1b). Conser-
vation plots did not reveal a significant sequence conserva-
tion of precipitated DNA fragments (ESM Fig. S7), arguing
against the existence of a specific lamin A-binding se-
quence. Analysis of TFMs revealed 4 of the 181 known
TFMs to be significantly enriched in OST-A-associated
gene promoters in comparison to random promoter sequen-
ces (p<0.05; ESM Table S2). These enriched TFMs consist
of those for the HAML (p=3.2x10"%), BPTF (p=4.3x
107, AIRE (p<1.0x10"*), and ZF10 TF families (p=
3.2x107%). These data demonstrate that A-type lamin-
interacting gene promoters preferentially localize in ge-
nomic clusters, lack unique consensus lamin A-binding
sequences, and are enriched for a small set of specific
transcription factor binding motifs.

Nuclear localization of lamin A-associated genes

To assess the subnuclear localization of lamin A-associated
genes and to validate the ChIP technique, the location of
four randomly chosen lamin A targets and two non-targets
were probed by DNA FISH in NkITAg cells. We measured
the percentage of cells with at least one FISH signal within
500 nm of the nuclear periphery identified by lamin B,
representing <5 % of the average nuclear diameter (10.5+

1.5 um; Fig. 2a). For the randomly selected lamin A targets
Acpp, Sp100, OIfr681, and Olfr1471 located on chromo-
somes 9, 1, 7, and 19, respectively, at least one allele
localized to the periphery in 55, 45, 55, and 30 %, respec-
tively, of cells compared to 17 and 9 % for the non-targets
Eif2b and Fanca (Fig. 2b). The difference between the
peripheral localization of lamin A targets and non-targets
is statistically significant at p<0.001 in a x? test.

Next, we set out to probe the effects of loss of A-type
lamins on the subnuclear localization of lamin A-associated
genes by knocking down lamin A/C in NkITAg cells using
shRNA. As a control, the expression of lamin A/C shRNA
resulted in over 90 % knockdown for both lamin A and C
proteins (ESM Fig. S4b). Upon knockdown, the peripheral
localization of the lamin A target loci Acpp, Spl100, and
OLFR681 decreased significantly to 35, 31, and 25 % e
test: p<0.01; Fig. 2b). In contrast, the least peripherally local-
ized lamin-associated OLFRI1471 locus did not change its
position upon loss of lamin A (x? test: p>0.05; Fig. 2b).
The non-targets Eif2b and Fanca retained their subnuclear,
non-peripheral positions (x> test: p>0.05; Fig. 2b). On the
other hand, the overexpression of OST-A at endogenous levels
did not affect the localization of lamin A-associated genes,
with the exception of the lamin A target OLFR681 (from 46 to
63 %, p<0.05, * test). These findings support a role for lamin
A in retaining gene promoters at the nuclear periphery.
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Fig. 2 Subnuclear localization A
of lamin A-associated genes. a

Target at nuclear lamina

Target not at nuclear lamina

FISH analysis of one lamin A
targets (Sp100, green) and one
non-target (Fanca, red) gene in
NkITAg cells. Targets are de-
fined as FISH signals overlap-
ping with or within 500 nm of
lamin B staining (blue). The
white line indicates a distance
of 1,500 nM. b Quantification
of FISH signals for four lamin
A targets (Acpp, Sp100, B g0
Olfr681, and Olfr1471) and two

non-targets (Eif2b and Fanca) ?3. 70
in NkITAg cells infected with =
control shRNA, lamin A/C E 60
shRNA, OST-A, or a control o
vector. Asterisks indicate a sig- 5 S50
nificant (p<0.05, x* test) 9
. . ” ]
change in peripheral position- 3 40
ing in comparison to control 5
infected cells : 30
2 20
©
-
E' 10
E 0

Loss of lamin A association is not sufficient for gene
activation

To test whether loss of lamina association is sufficient for
the reactivation of silent genes, we first probed for the
transcriptional activity of the lamin A-associated and pe-
ripherally located genes Acpp, Sp100 (Fig. 2b), and several
other randomly chosen lamin A targets (OIfi826, Olfr686,
Olfr1098, Defb28; Fig. 3a). The expression levels were
determined by qPCR analysis on NkITAg cardiac myocytes
expressing control vs. lamin A/C shRNA (ESM Fig. S4b)
and the microarray expression profiles of neonatal cardiac
tissues of WT and LMNAST" mice, a LMNA null model
based on gene trap technology (Kubben et al. 2011). These
lamin A targets were mostly very lowly or not expressed
(Cy=28-38), and none changed expression upon loss of
lamin A association in NkITAG cardiac mycoytes (Fig. 3a).

We extended these findings to the genome-wide level
as the basal expression profiles of all annotated lamin
A-interacting genes (N=559) differed significantly from
non-target genes and indicated overall lower expression
levels (Alog,=-0.66, p<0.05, two-sample Kolmogorov—
Smirnov test; Fig. 3b). Among the 559 annotated lamin
A targets, 175 genes (31 %) were expressed at levels
below the 20th percentile within the total cardiac myo-
cyte transcriptome (log,<2.57, which translates into
>170 times lower expression than the housekeeping
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Overlap with lamin B

<500nm from lamin B

>500nm from lamin B

* B shRNA Control
] m shRNA LMNA
I W Overexpression Control
1 - Overexpression OST-A
*
4 [
T

Acpp Spl00 OIfr681 Olfr1471 Eif2b Fanca

Lamin A Targets Non -Targets

gene GAPDH), 313 genes (56 %) were expressed be-
tween the 20th and 80th percentiles (2.57<log,>6.77),
and 71 genes (13 %) were expressed above the 80th
percentile (log,>6.77; ESM Table S3). Highly expressed
lamin A interactors (log,>6.77, N=71) were not
enriched for any GO category. Loss of A-type lamins
in LMNAST™" cardiac tissues significantly changed the
transcriptional profile of 1,136 genes (Kubben et al.
2011). The average expression fold change (FC) of the
559 lamin A-associated genes was similar to the FC
observed in the total genome and indicated no prefer-
ential effect of loss of A-type lamins on the lamin A
targets (OST-A targets: FC=0.99+0.08, p=0.734; non-
target: FC=1.01£0.11, p=0.624, two-sample Kolmo-
gorov—Smirnov test; Fig. 3a). Individual lamin A-
bound genes that significantly changed expression upon
loss of A-type lamins (N=12) were mostly expressed
between log, expressions of 2.57 and 6.77 (20th to 80th
percentiles, N=8), but also included three low expres-
sors (log,<2.57, 20th percentile) and repinl, which was
expressed highly (log,=7.30; ESM Table S4). This
group of 12 lamin A targets was not enriched for a
particular GO category (p>0.05; ESM Table S4). These
findings not only support a role for lamin A in the
nuclear organization of chromatin via capturing tran-
scriptionally silent genes but also suggest that loss of
this association is not sufficient for gene activation.
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A RT-PRC Ct-values

15 20 25 30 35 40
B-Actin
Non-
Targets
PCNA
Sp100
Olfr 826
Olfr 686
Lamin A
Targets

Olfr 1098

DefB28

Acpp

Il NKITAg + shRNA Control
I NKITAg + ShRNA LMNA

Fig. 3 Expression profiles of lamin A-associated genes. a Real-time
quantitative PCR on six lamin A targets (Sp100, OIfir826, olfr686,
olfr1098, Defb28, and Acpp) and two non-targets (B-Actin and Pcna)
in the presence and absence of lamin A/C shRNA in NkITAg myo-
cytes. C; values (+SD) were determined in six independent samples
using equal amounts of starting material (100 ng cDNA) and corrected

Identification of lamin A- and progerin-associated
genome regions

After characterizing lamin A—chromatin interactions in car-
diac mycoytes, we next set out to probe for aberrant pro-
gerin—chromatin interactions in a separate set of
experiments performed in MEFs. To identify genome
regions which interact preferentially with lamin A, progerin,
or both, we expressed OST-tagged lamin A (OST-A) or
progerin (OST-P) at endogenous levels in MEFs (Kubben
etal. 2010). OST-A and OST-P co-localize with endogenous
A-type lamins and LMNBI in MEFs (ESM Fig. S1). OST-P
expression, in contrast to OST-A, leads to distortions of the
nuclear lamina (ESM Figs. S1 and S4a) and global loss of
LAP2 and HP1vy nuclear levels (Kubben et al. 2010) similar
to the cellular phenotypes observed in HGPS patient cells
(Scaffidi and Misteli 2006), further indicating the full func-
tionality of OST-tagged lamin A and progerin in MEFs.
Lamin A- and progerin-associated gene promoters were

Frequency
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for the mRNA levels of the housekeeping gene GAPDH. The detection
limit of quantitative PCR (C;~35) is indicated with a dotted line
(Akhunova et al. 2009). b Genome-wide RNA expression profiles
(log, values) of lamin A-associated genes and non-target genes in
cardiac left ventricle of wild-type and LMNAST™™ mice, a functional
knockout for A-type lamins (Kubben et al. 2011)

identified by a combined statistical analysis (see “Materials
and methods™) comparing individual array signals from
OST-A chromatin immunoprecipitated chromatin and
OST-P chromatin immunoprecipitated chromatin with each
other and chromatin immunoprecipitated chromatin from
control vector infected cells (ESM Fig. S2b). We identified
1,900 lamin A-associated gene promoters and 1991
progerin-associated gene promoters (Fig. 4a and ESM
Table S1). Lamin-associated genes identified in NkITAg
and MEF cells significantly overlapped as 37 and 38 % of
the genes identified at the nuclear lamina in NkITAg cells,
associated with lamin A or progerin, respectively, in MEFs
as well (p<1x10"%, x? test).

The vast majority (99.6 %, N=1,892) of the identified
lamin-associated genes in MEFs interacted with both lamin
A and progerin and will further be referred to as A&P
targets (Fig. 4a). With the exception of eight genes (A
targets; ESM Table S5), all lamin A-associated genes were
also bound by progerin. In contrast, a larger set of 99 genes
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Fig. 4 Characteristics of common and differential lamin A- and
progerin-associated genes. a Venn diagram of lamin A- and progerin-
interacting genes determined by ChIP-chip in MEF cells (ESM
Fig. S2). b Gene ontology (GO) analysis on A&P and P targets
indicating the GO class, the amount of genes (V) per total amount of

(0.5 %) was found to preferentially interact with progerin,
but not lamin A (P targets; ESM Table S6). Closer exami-
nation of the genomic localization reveals that 76 and 74 %
of the lamin A- and progerin-associated genes, respectively,
are located in clusters (2-31 adjacent targets), which is more
frequent than expected for random gene sets (p<1x10"%;
ESM Fig. S6¢c—f), and both sets of interactors overlap sig-
nificantly (p<1x10"'%; Fisher’s exact test).

A&P targets were significantly enriched in “G protein-
coupled receptor signaling” (788 of 1,488 annotated genes,
p<1.0x10"2°; Fig 4b), “aromatase activity” (14 of 1,488,
p=1.5x10">; Fig 4b), and “steroid delta-isomerase activity”
(3 of 1,488, p=5.0x10 ") GO categories. P targets were to a
lesser extent enriched for “G protein-coupled receptor sig-
naling” (21 of 98 annotated genes, p=8.6x10"*) and also
enriched for the “endopeptidase activity” (9 of 98, p=1.5x
107%) GO category. The enrichment of different GO families
amongst P and A&P targets suggests distinct preferential
association of various gene groups with progerin.

@ Springer

annotated ChIP target genes, the minimal amount of targets needed for
a significance level of 0.05, and the significance level. ¢ Transcription
factor motif analysis on all subclasses of lamin-associated genes for
respectively over-, under-, and normal representation of 181 transcrip-
tion factor motifs (7FM)

No consensus lamin binding sequence could be identified
in P or A&P targets (ESM Fig. S7). TFM analysis indicated
the enrichment of A&P-associated gene promoters for 92 of
181 TFMs (p<0.05; Fig. 4c and ESM Table S2). The most
highly enriched TFMs include those for the hepatocyte
nuclear factor 6 (p<1.0x107'°%), the spermatide-specific
transcription factor RUSH (p<1.0x107'%), the keratinocyte
differentiation required transcription factor Brn-5 (p<1.0x
107'%), and neuronal expressed Brn Pou domain TF families
(BRNF, p<1.0x10"'°). In contrast, P targets were less strong-
ly enriched (minimal p=9.99x10"7) for fewer TEMs (N=57).
Of'the 57 TFMs that occurred more frequently than in random
promoter sequences, SF1 (p=4.6x10"%) and craniofacial de-
velopment involved GTF2IRD1 upstream control element
(GUCE, p=2.4x10"%) were found to be not enriched in
A&P-associated gene promoters. Overall, these data show that
lamin A and progerin interact differentially with chromatin
and that progerin-associated genes possess distinct features,
including their biological function and TFMs.
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Global gene expression profiles of lamin A- and progerin-
associated genes

To examine the expression behavior of lamina-associated
genes in response to the overexpression of lamin A or pro-
gerin, we analyzed mRNA from MEFs transfected with OST-
A, OST-P, or a control vector using expression arrays. The
introduction of progerin changed the global transcriptional
profile significantly (468 genes down, 702 genes up; p<
0.05, ANOVA), and these changes were different from the
overexpression of wild-type lamin A (571 up, 517 down; 379
changed by both OST-A and OST-P). In agreement with
previous studies using HGPS patient skin fibroblasts (Csoka
et al. 2004), we found specific misregulation of genes in-
volved in extracellular matrix organization and cell cycle
control in cells expressing progerin. In MEFs infected with a
control vector, the expression profiles of P and A&P targets
were statistically different from non-target genes (p<0.05,
two-sample Kolmogorov—Smirnov test; Fig. 5b). Both A&P
targets (Alog,=—2.2, p<0.05, two-sample Kolmogorov—
Smirnov test) and, to a lesser extent, P targets (Alog,=—1.7,
p<0.05, two-sample Kolmogorov—Smirnov test) were re-
pressed compared to non-target genes. The mRNA levels of
both classes of interactors differed significantly from each
other as well (Alog,=-0.6, p<0.05, two-sample Kolmo-
gorov—Smirnov test). These basal expression levels of the
subclasses did not change significantly upon OST-A or
OST-P expression in WT MEFs (p>0.05, two-sample Kol-
mogorov—Smirnov test; Fig. Sa, b), suggesting that the ex-
pression of lamin A or progerin is not sufficient to induce a
global change in the gene activity of lamina-associated genes.

Progerin-induced changes in gene expression
of lamina-associated genes

Finally, to identify lamina-associated genes whose expres-
sion is specifically misregulated in HGPS, we searched for
ChIP targets whose transcription was affected by progerin in
MEFs. One hundred eighty-nine of the 1,999 genes associ-
ated with lamin A and/or progerin display significantly
altered expressions upon the introduction of OST-A or
OST-P into MEFs (Table 1). This group of interacting genes
(N=189) is particularly enriched for transcriptional regula-
tors (N=43, “regulation of transcription” GO category, p=
1.9x107°) and includes ten zinc finger proteins (MYM-type
2 zinc finger, Zinc finger-64, Zinc finger-157, Zinc finger-
187, Zinc finger-386, Zinc finger-397, Zinc finger-426, Zinc
finger-568, and Zinc finger-760); two members of the SWI/
SNF complex (Smarcc2 and Smarca?2); two PPAR transcrip-
tion factor-related proteins (Ppara and Pparglcb); and well-
described transcriptional regulators like JunD and Retino-
blastoma 1 (RbI; Table 1).

Sixteen targets out of the group of 189 lamin-interacting
genes were considered bona fide candidates for HGPS as they
all changed expression upon the introduction of progerin in
comparison to MEFs expressing lamin A or empty vector
constructs (Table 1). Of these candidates, 12 changed expres-
sion in response to progerin only (range Cd93, +16 %; Ppcdc,
—12 %), 3 were down-regulated in response to progerin while
lamin A increased their expression (Lass6: +8 % OST-A vs.
=3 % OST-P; Smg7: +4 % OST-A vs. —5 % OST-P; Map3kS:
+4 % OST-A vs. =5 % OST-P), and 1 decreased expression
more upon the introduction of progerin as compared to lamin A
(Jundl: —4 % OST-A vs. =7 % OST-P). The expression levels
of 11 candidates remained below the 20th percentile of control
MEF transcriptome gene expression levels (log,<3.31), while
the other five candidates were only slightly more highly
expressed (range=3.52<log,>3.69). Among the HGPS candi-
dates, Junld, Lagl homolog ceramide synthethase (Lass6), and
PPAR~y coactivator 1B (Pparglcb) are all involved in transcrip-
tional regulation (GO annotation; Table 1). Overall, these anal-
yses identify lamina-associated genes that are specifically
controlled by progerin.

Discussion

Aberrant chromatin organization is a hallmark of many
laminopathies, and disrupted lamin A—chromatin interac-
tions have been suggested to contribute to the etiology of
several laminopathies (Dechat et al. 2008). We here map in a
genome-wide, unbiased fashion genes which interact with
lamin A or with the disease-causing lamin A isoform pro-
gerin. We found that lamin A preferentially binds to periph-
erally localized, genomically clustered, and silent genes and
that lamin A and progerin display differential chromatin
interaction. Furthermore, we demonstrate that loss or gain
of interaction with lamins changes the subnuclear position
of several interacting genes, but per se is not sufficient to
change their gene expression levels. We speculate that al-
tered gene location may predispose genes for subsequent
aberrant regulation.

Recent studies using the DamID method to map lamin-
interacting genome regions have revealed the importance of
lamina—chromatin interactions in chromatin organization and
gene regulation by identifying sharply defined LADs across
the genome (Guelen et al. 2008; Peric-Hupkes et al. 2010).
LADs typically contain gene-poor, low-expressed regions and
cell type specifically silenced gene clusters (Shevelyov et al.
2009). In agreement with these studies which were based on
the analysis of chromatin interactions with lamin B, we here
report, using an independent complementary approach, that
lamin A-associated genes are generally silent or expressed at
very low levels, genomically clustered, and preferentially
localized at the nuclear periphery. Consistent with this, GO
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Fig. 5 Expression profiles of lamina/progerin- and progerin-specific
associated genes. a Genome-wide RNA expression profiles of A&P, P,
and non-targets in MEFs expressing an empty control vector vs. OST-

analysis reveals that lamin A-associated genes are enriched in
gene groups such as sensory perception or glutamate-based
neurotransmission, which are non-functional in the fibroblasts
or cardiomyocytes analyzed here and hence expected to be
transcriptionally silent (Lomvardas et al. 2006; Palmada and
Centelles 1998). The enrichment of many tissue and cell type-
specific transcription factor binding motifs (TFMs) in lamin
A-associated gene promoters further supports this notion.
Other enriched TFMs may contribute to the transcriptional
repressive environment of the NE by maintaining condensed
chromatin (Aoki et al. 1998).

We identified and compared lamin A- and progerin-
associated gene promoters. Nearly all lamin A-associated
genes (99.5 %) also interact with progerin. While we cannot
completely rule out that the large overlap is due to the cross-
linking of endogenous lamin A plus its associated promoter
regions to OST-tagged progerin, two lines of evidence argue
against this scenario. Firstly, we find that under similar
experimental cross-linking conditions, OST-tagged progerin
does not pull down NPC components despite the presence
of lamin A, which is known to interact with NPCs (Kubben

@ Springer

B A&P Targets
= 'i\ —— MEF+ CTRL
25 1 MEF+ OST-P
g a 7 :\
- 1
A
] A
l,t g 9 Ir : AY
o 18 i,
8 +—= — :
0 H 5 10 15
i
1
'
1
i P Targets
1
1
>3 i —— MEF+ CTRL
S o . MEF+ OST-P
L o
g- = |'=/\
) (=] i
oo [i \
w s I \
= s | ———
< 1 T T T
0 i 5 10 15
1
1
1
1
1
: Non-Targets
!
e i — MEF+ CTAL
E - ! MEF+ OST-P
3 a 1 I
g3 ’
1
L. 1
W (:”-“.\H--.--—-—--.‘_
o ‘/I T A
d = . T T
0 5 10 15

Log expression

A. b Similar expression profiles in MEFs expressing an empty control
vector vs. OST-P

et al. 2010). Secondly, DamID experiments to map lamina—
chromatin interactions performed in the absence of cross-
linking using multiple nuclear lamina proteins (lamin Bl
and emerin) show a large degree of overlap in the set of
interacting genes (de Wit and van Steensel 2009; Peric-
Hupkes et al. 2010).

We probed the relevance of lamin—chromatin interactions
in the subnuclear positioning and regulation of gene
expression in lamin A knockdown and overexpression
systems. Despite a substantial relocalization of various
lamin A-associated genes to the nuclear interior upon
lamin A/C knockdown, these loci remain overall more
frequently localized at the NE compared to non-targets.
The reverse experimental approach by the overexpres-
sion of lamin A in cardiac myocytes demonstrates that
elevated levels of lamin A can result in even further
increased peripheral localization for some lamin A tar-
gets. Combined, these findings support a role for A-type
lamins in facilitating the recruitment of silenced genes
to the nuclear periphery. Interactions with additional
nuclear lamina proteins, like emerin and lamin B, which
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are known chromatin interactors (de Wit and van Steen-
sel 2009), likely contribute to this functional nuclear
organization. These findings are in line with the obser-
vation that the overexpression of lamin A results in
altered gene expression (Scaffidi and Misteli 2011).

A key finding is that while the localization of pre-
dominantly silent genes to the periphery is dependent
on lamin A, dissociation from the lamina does not
necessarily lead to their activation. We speculate that
loss of lamina association is only one of multiple steps
required for gene activation. Similar behavior has pre-
viously been observed for the CFTR locus whose
relocation due to the activation and consequent inter-
nalization of neighboring genes by itself is insufficient
for its activation (Zink et al. 2004; Sadoni et al. 2008).
Furthermore, olfactory receptors, which were identified
as the most prominent group of lamin A targets in our
study, require a multistep process for their stochastic
activation (Lomvardas et al. 2006). It is possible that
dissociation from the nuclear periphery renders these
genes “poised” and facilitates their activation by sub-
sequent signals that may occur, e.g., during differenti-
ation. Extending these studies to differentiation models
in which additional factors support the gene activation
of specific subsets of target genes will be important.

We identify a group of genes which attach to the
lamina only in the presence of progerin. This class of
genes is distinct from common lamin A and progerin
targets by a number of characteristics: First, progerin
targets are involved in different biological processes as
compared to common targets, including the general ac-
tive pathway of proteolysis, and are less enriched for
TFMs enriched in promoters bound by both lamin A
and progerin. Furthermore, genome-wide expression pro-
file analysis shows that regardless of the presence of
progerin, the basal expression levels of common targets
are lower than for progerin target genes. These data
indicate that transcriptional silencing at the nuclear lam-
ina is strongest for common targets and suggest that
progerin targets partially escape a repressive effect of
the NE, possibly due to a loss of interaction with the
lamina under normal conditions. Despite the fact that
these progerin-sensitive genes remain lowly expressed
and do not change expression dramatically upon the
presence of progerin, additional steps might be required
for gene activation in disease situations. A particular
enrichment for transcriptional regulators amongst lamin
interactors whose expression is differentially regulated
by lamin A and progerin hints at a role of general
transcriptional misregulation in HGPS, which is in line
with previous findings indicating widespread misregula-
tion (Csoka et al. 2004). Among the targets for HGPS,
the transcription factor JunD is of particular interest as

it has been previously linked to senescence-associated
growth arrest (Meixner et al. 2010; Sheerin et al. 2002).
Further studies will, however, be required to prove and
characterize a role of JunD, as well as the other pro-
gerin targets identified here, in HGPS.
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