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Abstract Ion transport and its regulation in the endolym-

phatic sac (ES) are reviewed on the basis of recent lines of

evidence. The morphological and physiological findings

demonstrate that epithelial cells in the intermediate portion

of the ES are more functional in ion transport than those in

the other portions. Several ion channels, ion transporters,

ion exchangers, and so on have been reported to be present

in epithelial cells of ES intermediate portion. An imaging

study has shown that mitochondria-rich cells in the ES

intermediate portion have a higher activity of Na?, K?-

ATPase and a higher Na? permeability than other type of

cells, implying that molecules related to Na? transport,

such as epithelial sodium channel (ENaC), Na?–K?–2Cl-

cotransporter 2 (NKCC2) and thiazide-sensitive Na?–Cl-

cotransporter (NCC), may be present in mitochondria-rich

cells. Accumulated lines of evidence suggests that Na?

transport is most important in the ES, and that mitochon-

dria-rich cells play crucial roles in Na? transport in the ES.

Several lines of evidence support the hypothesis that

aldosterone may regulate Na? transport in ES, resulting in

endolymph volume regulation. The presence of molecules

related to acid/base transport, such as H?-ATPase, Na?–

H? exchanger (NHE), pendrin (SLC26A4), Cl-–HCO3
-

exchanger (SLC4A2), and carbonic anhydrase in ES

epithelial cells, suggests that acid/base transport is another

important one in the ES. Recent basic and clinical studies

suggest that aldosterone may be involved in the effect of

salt-reduced diet treatment in Meniere’s disease.
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Introduction

The endolymphatic system homeostasis is crucial to

maintain the normal function in the inner ear [1]. The stria

vascularis in the cochlea, the dark cells in the vestibular

organ, and the endolymphatic sac (ES) are mainly involved

in the maintenance of homeostasis in the endolymphatic

system [1]. Two main homeostatic mechanisms of inner ear

fluid regulation have been proposed, i.e., radial and lon-

gitudinal endolymph movements [2, 3]. The physiology of

the stria vascularis has been clarified on the basis of more

studies, whereas the ES physiology is still unknown in

many parts because of less research.

One of the pathological findings caused by the disturbance

of homeostasis in the endolymphatic system is endolymphatic

hydrops, which is known to be the typical pathological finding

of Menière’s disease [4, 5]. The obliteration of the endolym-

phatic sac and endolymphatic duct induces endolymphatic

hydrops in experimental animals [6]. Therefore, the ES is

assumed to play crucial roles inmaintaining theendolymphatic

system homeostasis. It is important to know the roles of the ES

in the endolymphatic system homeostasis to elucidate the

pathogenesis underlying the development of Menière’s dis-

ease. Recent research on the ES has revealed the aspects of ion

transport in the ES. The present review will outline ion trans-

port and its regulation in the ES on the basis of recent research

findings with suggestions for clinical aspects of Menière’s

disease from the viewpoint of ion transport in the ES.
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Morphology of ES and classification of ES
epithelial cells

The ES is divided into the following three parts on the basis of

morphological features: proximal, intermediate, and distal

portions [2, 7]. The morphological findings imply that

epithelial cells in the intermediate portion may be more

functional in ion transport than those in the other portions

[2, 8]. The epithelial cells in the intermediate portion have

been recently classified electronmicroscopically into two

types of cells: mitochondria-rich cells and ribosome-rich cells

in the rat [8]. Mitochondria-rich cells have been reported to

occupy 20–25% of epithelial cells in the intermediate portion

of the rat [8]. Cytoorganelle-rich cells and filament-rich cells

reported in the guinea pig [7] and the mouse [9] correspond to

mitochondria-rich cells and ribosome-rich cells in the rat,

respectively. Mitochondria-rich cells and ribosome-rich cells

correspond roughly to light cells and dark cells termed by

Lundquist [2], repectively. However, it has been pointed out

that both cytoorganelle-rich cells and filament-rich cells in the

guinea pig and themouse [9] and bothmitochondria-rich cells

and ribosome-rich cells in the rat [8] may be stained lightly or

darkly as fixation artifacts by electron microscope. Terms of

mitochondria-rich cell and ribosome-rich cell have been

widely used [10–12]. Table 1 summarizes the classification of

epithelial cells in several species based on the morphological

findings [2, 7–9, 13–15].

Resting potential and ion concentration in ES
endolymph

Endolymph in the ES is quite different in resting potential, ion

concentration and pH from that in the other parts of the inner

ear, such as the cochlea or vestibular organ (Table 2) [16–27].

It should be stressed that resting potential in the ES is higher

than that in endolymph of the vestibular organ, although it is

quite lower than that in the cochlea, and that endolymph in the

ES has higher Na? and lower K? and Cl- concentrations and

lower pH than cochlear and vestibular endolymph.

Resting potential in the ES named endolymphatic sac

potential (ESP) [28, 29] was found by Amano et al. [20].

ESP, which is oxygen-dependent, has the following dif-

ferent properties from resting potentials in cochlear and

vestibular endolymph:

1. ESP has no negative potential induced by anoxia

[30, 31].

2. ESP shows different responses to several diuretics

from resting potentials in cochlear and vestibular

endolymph [28, 31–34]. It is less sensitive to loop

diuretics, whereas it is more sensitive to canrenoate, an

aldosterone antagonist, and acetazolamide, a carbonic

anhydrase inhibitor.

3. Catecholamines produce a reversible depression in

ESP by b2 adrenergic action [35].

4. ESP is mainly composed of an acetazolamide-sensitive

part and an isoproterenol-sensitive part [36].

ESP is assumed to have plural origins, one of which may

be H?-ATPase [37]. The presence of ESP may prompt Na?

transport from the ES lumen to the outside although its

physiological roles remain to be clarified.

Molecules related to transport of ion and water
in ES epithelial cells

Molecules related to ion transport in epithelial cells in the

intermediate portion of the ES are shown in Table 3

[10, 38–60]. The type of cells with most molecules has not

been identified except only a few molecules [10, 46]. It

should be stressed that Na?–K?–2Cl- cotransporter 2

(NKCC2) [56, 57, 59, 60] and thiazide-sensitive Na?–Cl-

cotransporter (NCC) [55, 58], which had been previously

recognized to be selectively located in kidney, are present

in ES epithelial cells.

Several isoforms of aquaporin (AQP) as molecules

related to water transport in ES epithelial cells have been

reported, as shown in Table 3 [44, 57, 59, 61–63].

Table 1 The morphological

classification of epithelial cells

in the intermediate portion of

the endolymphatic sac of

several species

Species Cell types References

Guniea pig Light cell, dark cell [2]

Cytoorganelle-rich cell (type 1) filament-rich cell (type 2) [7]

Mouse Light cell, dark cell [13]

Cytoorganelle-rich cell (type 1) filament-rich cell (type 2) [9]

Rat Light cell, dark cell [14]

Mitochondria-rich cell, ribosome-rich cell [8]

Human Two types of cells: (1) cells with numerous microvilli and Basal

infoldings (2) cells with few microvilli and packed

[15]
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Electrophysiological profile on ion transport in ES
epithelial cells

Recent lines of evidence on ion transport in the ES (in-

cluding cation, anion and acid/base transports) is as

follows:

1. ES epithelial cells have resting membrane potential of

approximately -60 mV [41].

2. ES endolymph has resting potential of approximately

?15 mV [24, 37, 64].

3. ES endolymph has a higher Na? concentration and

lower K? and Cl- concentrations. There are active

Table 2 Values of resting potential, ion concentration and pH in endolymph and perilymph of the guinea pig

Resting potential Ion concentration (mM) pH References

Na? K? Ca2? Cl- HCO3
-

Endolymph

Endolymphatic sac 14.7 103.3 11.6 0.47 85 20 6.7 [20, 23, 24, 26, 27]

Saccule 7.3 3 150 0.09 119 [16, 19, 25]

Utricle 4.8 14.3 150 0.13 119 [16, 19, 25]

Semicircular ampulla 3.9 18.4 130.4 0.26 [22, 24]

Cochlea 84 0.23 154.5 0.017 127.8 21.4 7.4 [17, 18, 21, 22, 25]

Perilymph

Scala tympani 0 144.7 2.7 1.36 124.3 21 [17, 21, 25]

Scala vestibuli 0 141 9 123 18 [17, 21, 25]

Table 3 Molecules related to ion transport in epithelial cells of the endolymphatic sac

Molecules Cell localization Species References

Ion channels

Na? channel (amiloride-sensitive) Apical membrane Guinea pig [38]

Epithelial sodium channel (ENaC) Apical membrane Rat, human [39, 40]

K? channel (outward delayed rectifier) Basolateral membrane Guinea pig [41]

Non-selective cation channel (ATP-activated) Apical membrane Guinea pig [42, 43]

Cystic fibrosis transmembrane conductance regulator (CFTR) Apical membrane Rat [40]

Transient receptor potential vanilloid (TRPV) 4 Apical membrane Rat, mouse, human [44, 45, 46]

K? channel (KCNN2, KCNK2, KCNK6, KCNJ14) Human [47]

ATPases

Na?–K?-ATPase Basolateral membrane Guinea pig [48]

H?-ATPase Apical membrane Guinea pig, mouse [49, 50]

Carbonic anhydrase Membrane, cytoplasm Guinea pig, mouse,

chinchilla

[50, 51, 52, 53]

Ion exchangers

Cation exchanger: Na?–H? exchanger Apical membrane Guinea pig, human [54, 55]

Anion exchangers

Cl-–HCO3
- exchanger (SLC4A2) Basolateral membrane Guinea pig [49]

Pendrin (SLC26A4) Apical membrane Mouse, human [10, 50, 55]

Cotransporters

Bumetanide-sensitive Na?–K?–2Cl- cotransporter 2 (NKCC2) Apical membrane Rat, human [55, 56, 57, 59, 60]

Thiazide-sensitive Na?–Cl- cotransporter (NCC, SLC12A3) Apical membrane Rat, human [55, 58]

Na?-phosphate cotransporter (SLC34A2) Apical membrane Human [55]

Aquaporins

AQPs 1–4, 6–9 Rat [59, 61]

AQPs 1–3 Mouse [63]

AQPs 1–4 Human [44, 57, 62]
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Na? and Cl- outflows from the ES lumen into the

outside [20, 24].

4. K? and Na? are permeable ions, but Cl- is a negligible

ion in the ES isolated epithelial cells [65].

5. Mitochondria-rich cells in the ES have a higher

activity of Na?, K?-ATPase and a higher Na?

permeability [11].

6. ES endolymph has a weak acidity [26], in which H?-

ATPase may be involved [66].

7. ES epithelial cells have molecules related to acid/base

transport, such as H?-ATPase [49, 50], Na?–H?

exchanger (NHE) [54, 55], pendrin (SLC26A4)

[10, 50, 55], Cl-–HCO3
- exchanger (SLC4A2) [49],

and carbonic anhydrase [50–53].

Ion transport properties in ES epithelial cells

Our Na? imaging study [11] demonstrates that mitochon-

dria-rich cells in the ES have a higher activity of Na?, K?-

ATPase and a higher Na? permeability, strongly suggest-

ing that molecules related to Na? transport may be densely

located in mitochondria-rich cells. Mitochondria-rich cells

in ES have characteristic qualities of Na? absorption

(Fig. 1). Na? enters the cell across the apical membrane

through ion channels and ion transporters driven by an

estimated electrochemical driving force of approximately

140 mV. K? enters the cell from endolymph across the

apical membrane through the non-selective cation channel

driven by an estimated electrochemical driving force of

approximately 20 mV and through NKCC2 driven by a

higher Na? inflow. Na? is removed across the basolateral

membrane by Na?, K?-ATPase. K? is brought into the cell

by the pump, and subsequently diffuses out through K?

channel (outward delayed rectifier), which is involved in

the maintenance of negative intracellular potential. The

model is similar to that found classically in several other

Na?-absorbing epithelia [67]. Na? transport is a major part

of ion transport system in ES.

Molecules related to acid/base transport are H?-ATPase,

Na?–H? exchanger (NHE) and pendrin in the apical

membrane, Cl-–HCO3
- exchanger (SLC4A2) in the

basolateral membrane, and intracellular and membrane-

bound carbonic anhydrase [50]. H?-ATPase, pendrin, and

carbonic anhydrase have been shown to be localized in the

same type of ES epithelial cells [50]. Pendrin has been

reported to be present in mitochondria-rich cells [10]. For

the maintenance of acidity in ES lumen, the inflow of H?

into the lumen is necessary to be larger than the inflow of

HCO3
-. NHE in the apical membrane, which is presumed

to be active due to a large Na? inflow into the cell, besides

H?-ATPase may be largely involved in the acidity of ES

endolymph. Acid–base transport is another important part

of ion transport system in ES.

Molecules related to Cl- transport have been reported to

be an ion channel (cystic fibrosis transmembrane conduc-

tance regulator, CFTR) in the apical membrane [40], ion

cotransporters in the apical membrane (NKCC2 and NCC)

Fig. 1 Na? and K? transport model in mitochondria-rich epithelial

cells of the endolymphatic sac. Large positive electrochemical

gradients for Na? promote Na? inflow into the cell from apical and

basolateral membrane. Inflowing Na? is actively transported by Na?,

K?-ATPase with a high activity. Na? absorption is followed by water

movement from endolymph to the outside
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[56, 58], and ion exchangers (pendrin in the apicalmembrane

[50], and Cl-–HCO3
- exchanger (SLC4A2) in the basolat-

eral membrane [49]). CFTR has been shown to be co-lo-

calized with ENaC [40]. There has been no report on

intracellular Cl- concentration of ES epithelial cells. When

intracellular Cl- concentration of ES epithelial cells is

assumed to be similar to 4 mM in other tissues [68], the

electrochemical gradient for Cl- into the cell is calculated to

be around 0 mV. Since the results using whole cell patch

clamp showed that Cl- current was negligible in the ES

isolated epithelial cells [65], it is unlikely that Cl- is a

leading ion in ES ion transport system. Cl- is assumed to be

transported following Na? transport and acid/base transport.

Regulation of Na1 transport in ES

Several agents, such as vasopressin [44, 69, 70], aldos-

terone [71], cortisol [72, 73], atrial natriuretic peptide [74],

catecholamines [75–77], and ATP [78], have been sug-

gested as the candidates for regulators of ion transport in

ES. It has been known that several hormones such as

vasopressin and aldosterone regulate Na? transport in other

tissues such as the kidney [79, 80, 81]. More lines of evi-

dence supporting aldosterone as a regulator of Na? trans-

port in ES has been accumulated in comparison with other

candidates as follows:

1. The presence of mineralocorticoid receptors (MRs) in

ES epithelial cells has been shown [71].

2. 11b-hydroxysteroid dehydrogenase type 2 (11b-
HSD2), which enables aldosterone selectively to bind

to MRs by converting cortisol (corticosterone) into

inactive metabolites, has been detected in ES epithelial

cells [82]. The presence of 11b-HSD2 is considered

essential in aldosterone-target tissues [83]. The

absence of 11b-HSD2 has been shown in cochlear

and vestibular tissues [84].

3. The presence of ENaC in ES epithelial cell has been

shown [40].

4. The presence of NCC in ES epithelial cells has been

shown [58]. NCC had been accepted to have a specific

localization in distal convoluted tubule of the kidney

until NCC was found in ES epithelial cells. NCC is

regulated by aldosterone [85].

5. The antagonist of aldosterone, canrenoate, intravenously

produced a decreased ESP change with no change in the

endocochlear potential, suggesting that aldosterone could

act more sensitively on the ES [28, 31].

Aldosterone activates Na? transport from endolymph into

ES epithelial cells, mainlymitochondria-rich cells in a similar

manner to epithelial cells in other aldosterone-target tissues

(Fig. 2). Activation of Na? absorption increases water

absorption, resulting in increased endolymph absorption.

Several AQP isoforms including AQP2 activated by

vasopressin have been detected in the ES epithelial cells, as

shown in Table 3. The specific presence of various kinds of

AQP isoforms in the ES reinforces more effective water

movement accompanying Na? transport, resulting in effi-

cient endolymph absortption in the ES.

Suggestions for clinical aspects of Meniere’s
disease from recent evidence on ion transport
in ES

Plasma aldosterone concentration has been reported to be

within the normal range in patients with Meniere’s disease

[86, 87]. Therefore, the elevation of plasma aldosterone

Fig. 2 Activation of Na?

absorption in ES epithelial cells

by aldosterone. Aldosterone

activates ENaC and NCC in the

apical membrane and Na?, K?-

ATPase in the basolateral

membrane through the binding

to mineralocorticoid receptors

in cytoplasm, resulting in

increased Na? absorption in ES

epithelial cells
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concentration is not considered to be directly involved in the

pathogenesis of Meniere’s disease. However, the findings

suggesting that aldosterone may be involved in endolymph

volume regulation through the regulation of Na? transport in

the ES give an experimental support to empirical salt-re-

duced diet treatment in Meniere’s disease. Our recent study

[87] has shown that salt-reduced diet with no administration

of thiazide is an effective treatment inMeniere’s disease, and

that during 2-year treatment period, salt-reduced diet

induced the elevation of plasma aldosterone concentration

with no change in other hormones, such as vasopressin,

cortisol, and brain natriuretic peptide in patients with

Meniere’s disease as the elevation of plasma aldosterone

concentration has been reported in patients with hyperten-

sion [88]. The presence of NCC in the ES besides the kidney

[55, 58] may propose a necessity to reconsider the indication

of thiazide in Meniere’s disease.

The presence of vasopressin-AQP-2 system in ES

epithelia may play important roles in endolymph volume

regulation [44, 61], suggesting that vasopressin-AQP-2

system in the ES would be involved in the development of

Meniere’s disease [70, 89, 90].

The findings that catecholamines increased the hydro-

static pressure of cochlear and vestibular endolymph

[76, 77] probably through b adrenergic action on the ES

give a basic support to the clinical empirical finding that

the stress often worsens the symptoms in patients with

Meniere’s disease. Results that the degree of an increase in

endolymphatic hydrostatic pressure induced by b agonist

was significantly larger in the pars inferior than that in the

pars superior [77] may give any suggestions in considering

the clinical course in Meniere’s disease.
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