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The adverse impact of environmental chemicals on the 
human brain has been recognized as an important endpoint 
in toxicology. In one of the most influential toxicology text-
books, the authors stated in their introduction that … “the 
target organ of toxicity most frequently involved in systemic 
toxicity is the CNS” [1]. Accordingly, the 2nd edition of 
“Experimental and clinical neurotoxicology”, edited by 
Peter Spencer and Herbert H. Schaumburg [2], listed more 
than 450 compounds that are suspected or proven neurotox-
ins/toxicants in humans. Naturally occurring neurotoxins, 
such as domoic acid (DA) or tetrodotoxin (TTX), are among 
the most potent poisons that can be found in nature, whereas 
organic solvents are among the man-made neurotoxicants 
shown to be associated with severe damage in the central and 
peripheral nervous system [3]. Already in the early 1980s, 
Acta Neuropathologica published human biopsy pictures 
showing demyelination of giant axons taken from the ter-
minal portion of the musculocutaneous nerve of the leg of 
a patient chronically exposed to n-hexane and methyleth-
ylketone [4]. Later, details about specific neuropathologi-
cal changes after chronic solvent abuse via inhalation could 
be shown in 88 autopsy cases [5]. In addition to macro-
scopic findings, such as enlarged ventricles, white matter 
abnormalities, and cerebral atrophy, the study showed that 
chronic solvent leukoencephalopathy can be identified by 
birefringent PAS-staining macrophages and reactive micro-
glia in the white matter. However, the study was not able 
to disentangle the neuropathological effects of the differ-
ent solvents that the cases abused simultaneously. Never-
theless, such a neuropathological differential diagnosis was 
possible in the field of aluminum (Al) neurotoxicity. The 
neurotoxicity of Al is well known and described in detail 

for various endpoints and species [6]. Al exposure has also 
been linked to the pathogenesis of Alzheimer’s Disease 
(AD) [7]. Aluminum neurotoxicity is also thought to play 
a role in dialysis-associated encephalopathy (DAE) where 
Al-containing drugs are used to control hyperphosphatemia, 
and dialysis dementia has been frequently observed as clini-
cal outcome. Despite the proven neurotoxicity of Al, another 
well-conducted neuropathology study by Reusche et al. [8] 
could show that the changes in human brain tissue in DAE 
patients differed markedly from AD patients. DAE patients 
did not show AD-type neurofibrillary tangles (NFT) above 
the normal or expected age-related changes, even though 
the Al concentrations in the brain samples were markedly 
increased. These examples illustrate the valuable contribu-
tions of neuropathology to the area of toxicology, in particu-
lar neurotoxicology. When searching the electronic archive 
of Acta Neuropathologica, one can find approximately 120 
publications related to neurotoxicology but only a few, like 
the examples given before, included histopathological anal-
yses in human brain tissue. Moreover, these studies were 
mostly performed under conditions of high exposures or 
even intoxication. During the last decades, only a few neu-
rotoxicity studies or reviews have been published that have a 
strong focus on human neuropathology (e.g., [9]). This defi-
cit has been identified by the former Editor-in-Chief, Werner 
Paulus, who developed and initiated the idea of a cluster of 
reviews addressing current hot topics in neurotoxicology. 
This was a challenging endeavour as there are some differ-
ences between these obviously-related disciplines.

Why the disparity between these two 
disciplines within neuroscience?

There are some reasons for this weak association between 
neuropathology and toxicology that are inherent to the sci-
entific and societal aims of toxicology. Toxicology tries to 
contribute to risk assessment procedures, and consequently, 
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studies are needed that determine dose–response relation-
ships between the magnitude of exposure and the probability 
to cause adverse health effects. While the histopathological 
examination of other target organs (e.g., liver and lung) is 
still a cornerstone in toxicological guideline studies (e.g., as 
proposed by the Organization for Economic Cooperation and 
Development (OECD) [10]), neurotoxicity testing in rodents 
also relies on functional or behavioral testing (e.g., motor 
activity [11]). With respect to animal studies, the various 
regulatory agencies also provide some guidance regarding 
neuropathology assessment [12], but these examinations are 
more often a rough estimate of neuropathological changes 
not fully exploiting the current state of the art in neuro-
pathology. Accordingly, behavioral tests in animals, which 
have been suggested as an important, sensitive, and apical 
endpoint in chemical risk assessment, are used more fre-
quently [13, 14], and “safe” levels of exposure are often 
derived from these endpoints, as in the case of the solvent 
toluene [15] that also causes neuropathological effects at 
higher doses [5]. Recently, and related to the efforts of devel-
oping alternative methods in toxicity testing [16], behavioral 
testing in zebrafish has been proposed as a model to investi-
gate adverse outcomes in a whole organism upon exposure 
to neurotoxic compounds [17]. Accordingly, neuropathology 
is often only a minor point in neurotoxicity testing, both in 
guideline studies and scientific research.

In humans, epidemiological studies of exposed popula-
tions (e.g., occupationally or environmentally) are the only 
source to derive dose–response relationships, and here, the 
availability of brain tissue is limited. Even in cases like the 
solvent abusers [5], it is difficult to link individual exposure 
data to these brain samples. Therefore, in human studies, 
neurobehavioral testing has been the only or at least most 
important endpoint for the assessment of adverse health 
effects to the human brain [18]. In addition to the strong 
focus on behavioral measures as a “surrogate marker” of 
impaired brain functions, the deficit of neurophysiologi-
cal and even pathological human data in neurotoxicology 
was also caused by (a) the lack of non-invasive methods 
to investigate brain functions in vivo, and (b) the limited 
availability of neuroimaging techniques, such as functional 
and structural Magnetic Resonance Imaging (MRI). Vari-
ous neurophysiological techniques have become increas-
ingly available in epidemiological studies among workers, 
e.g., manganese-exposed welders [19], and thereby, the 
knowledge about neurotoxic mechanisms can be used for 
the selection of sensitive, neurophysiological endpoints in 
experimental or epidemiological studies [20, 21]. Later, the 
validation of such neuroimaging findings in brain tissue 
could provide conclusive information about dose-depend-
ent neuropathological changes after neurotoxic exposures. 
Thereby, the impact of neurotoxic exposures could also be 
evaluated more precisely as these findings can be compared 

to the neuropathology of aging [22] or neurogenerative dis-
eases [23].

Recent developments that might facilitate 
interactions between neuropathology 
and toxicology

The ongoing paradigm shift towards toxicological testing 
strategies that are based on mechanistic knowledge about 
the perturbations of molecular and cellular events within 
neural cells and networks [24, 25] might promote or revive 
the integration of neuropathology into toxicology. One con-
ceptional tool that is relevant here is the idea of an “Adverse 
Outcome Pathway” [26] that has be adopted by neurotoxic-
ity [27]. Here, the molecular initiating event (MIE), e.g., 
the chronic antagonism of N-methyl-d-aspartate receptors 
(NMDARs) during brain development, should cause impair-
ment of learning and memory abilities in children. The api-
cal endpoint of this adverse effect might be the reduced IQ 
of children as shown for low-level lead exposures [28]. Such 
adverse effects of environmental toxicants have also been 
addressed in neurophysiological and pathological studies, 
as summarized for prenatal exposure to maternal cigarette 
smoking (PEMCS) [29]. In particular, the MRI readouts 
were able to detect adverse neurotoxic effects in exposed 
children, such as thinner orbitofrontal, middle frontal, and 
parahippocampal cortices in smoke-exposed children [30]. 
These morphometric readouts were more sensitive than 
the Wechsler Intelligence Scale for Children. Moreover, in 
this review, neuropathological findings from animal studies 
were able to provide more details about the pathological 
changes in the brain of rats (e.g., increased spine density 
in the granule cells, and terminal and basal dendrites of the 
pyramidal neurons of CA3 and CA1 of the hippocampus). 
These examples clearly showed that the paradigm change in 
neurotoxicology might be a chance to intensify the collabo-
ration between neuropathology and neurotoxicology.

The present neurotoxicity review cluster is intended to be 
a first step in this direction and might encourage research-
ers from both disciplines to intensify collaborations. Two 
hot topics from neurotoxicology, namely the exposure to 
pesticides [19] and polychlorinated biphenyls (PCBs) [31], 
will be addressed in detail. Both reviews will provide some 
information about the history of these neurotoxicants, their 
diversity with respect to chemistry, and their ability to per-
sist in the environment and human tissue even for decades. 
Summaries of in vivo and in vitro studies describing the 
different neurotoxic mechanisms that have been discovered 
are presented, and their relevance for the epidemiological 
findings has been discussed. While the review on PBC has a 
stronger focus on developmental neurotoxicity, the pesticide 
review will also address possible associations of this class 
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of neurotoxicants with neurodegenerative diseases. Finally, 
both reviews focus on the need for a comprehensive charac-
terization of the neurotoxic properties of new chemicals that 
may be developed to substitute the two groups of chemicals 
reviewed in this cluster.

I am confident that this cluster of two reviews is an excel-
lent starting point to stimulate the dialogue between these 
two “neuro” research areas.
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