Skip to main content
Log in

Determination of the critical micellar temperature of F127 aqueous solutions at the presence of sodium bromide by cyclic voltammetry

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The properties of Pluronic F127 aqueous solutions with the variation of concentration and temperature were studied by cyclic voltammetry at the presence of sodium bromide. By this method, the relationship between the peak currents of electroactive probe, 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO), and the viscosity of F127 aqueous solutions within some temperature ranges was discussed, and the diffusion coefficient (D) of TEMPO in F127 aqueous solutions at various concentrations under different temperatures was determined. The critical micellar temperature (CMT) of F127 aqueous solution at various concentrations can be obtained from the curve of the peak current i p against the square root of reciprocal viscosity (1/η)1/2 and from the curve of logarithm diffusion coefficient (logD) of TEMPO as a function of reciprocal temperature (1/T). All the results are in good agreement with the results from 1H NMR measurements. Besides, the thermodynamic parameters such as diffusion activation energy (E D) and hydrodynamic radius (R H) can be also obtained from the above two curves. A new method was introduced to determine the CMT of copolymer systems, which is simple, quick, and accurate.

For Pluronic F127 in aqueous solutions containing NaBr, the critical micellar temperature (CMT) can be determined by the plot of anodic peak currents of electroactive probe TEMPO against the square root of reciprocal viscosities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Malmsten’ M, Lindman B (1992) Macromolecules 25:5440–5445

    Article  Google Scholar 

  2. Miyazaki S, Tobiyama T, Takada M, Attwood D (1995) J Pharm Pharmacol 47:455–457

    Article  CAS  Google Scholar 

  3. Ho HO, Chen CN, Sheu MT (2000) J Control Release 68:433–440

    Article  CAS  Google Scholar 

  4. Oh KS, Lee KE, Han SS, Cho SH, Kim D, Yuk SH (2005) Biomacromolecules 6:1062–1067

    Article  CAS  Google Scholar 

  5. Wang YQ, Yang CM, Zibrowius B, Spliethoff B, Linden M, Schuth F (2003) Chem Mater 15:5029–5035

    Article  CAS  Google Scholar 

  6. Flodstrom K, Wennerstrom H, Alfredsson V (2004) Langmuir 20:680–688

    Article  Google Scholar 

  7. Sun DJ, Zhang CG, Chen YJ, Guo BY, Liu SY, Sun MB (2004) Drill Fluid Complet Fluid 21:8–10

    Google Scholar 

  8. Mortensen K, Pedersen JS (1993) Macromolecules 26:805–812

    Article  CAS  Google Scholar 

  9. Yang L, Alexandridis P, Steytler DC, Kositza MJ, Holzwarth JF (2000) Langmuir 16:8555–8561

    Article  CAS  Google Scholar 

  10. Patel T, Bahadur P, Mata J (2010) J Colloid Interface Sci 345:346–350

    Article  CAS  Google Scholar 

  11. Jia LW, Guo C, Yang LR, Xiang JF, Tang YL, Liu CZ et al (2010) J Colloid Interface Sci 345:332–337

    Article  CAS  Google Scholar 

  12. Su YL, Wang J, Liu HZ (2002) Macronolecules 35:6426–6431

    Article  CAS  Google Scholar 

  13. Ganguly R, Aswal VK, Hassana PA (2007) J Colloid Interface Sci 315:693–700

    Article  CAS  Google Scholar 

  14. Sardar N, Ali MS, Kamil M, Kabir-ud-Din (2010) J Chem Eng Data 55:4990–4994

    Article  CAS  Google Scholar 

  15. Bharatiya B, Guo C, Ma JH, Kubota O, Nakashima K, Bahadur P (2009) Colloid Polym Sci 287:63–71

    Article  CAS  Google Scholar 

  16. Mata JP, Majhi PR, Guo C, Liu HZ, Bahadur P (2005) J Colloid Interface Sci 292:548–556

    Article  CAS  Google Scholar 

  17. Naskar B, Ghosh S, Moulik SP (2012) Langmuir 28:7134–7146

    Article  CAS  Google Scholar 

  18. Li Y, Xu R, Couderc S, Bloor M, Wyn-Jones E, Holzwarth JF (2001) Langmuir 17:183–188

    Article  CAS  Google Scholar 

  19. O’Lenick TG, Jiang XM, Zhao B (2009) Polymer 50:4363–4371

    Article  Google Scholar 

  20. Bakshi MS, Kaur N, Mahajan RK (2007) J Photochem Photobiol A 186:349–356

    Article  CAS  Google Scholar 

  21. Bakshi MS, Bhandari P (2007) J Photochem Photobiol A 186:166–172

    Article  CAS  Google Scholar 

  22. Grant CD, DeRitter MR, Steege KE, Fadeeva TA, Castner JEW (2005) Langmuir 21:1745–1752

    Article  CAS  Google Scholar 

  23. Grant CD, Steege KE, Bunagan MR, Castner JEW (2005) J Phys Chem B 109:22273–22284

    Article  CAS  Google Scholar 

  24. Sony G, Manoj K, Prabhat Kr. S, Rajib G, Sukhendu N et al (2009) J Phys Chem B 113:5117–5127

    Article  Google Scholar 

  25. Mali KS, Dutt GB, Mukherjee T (2007) Langmuir 23:1041–1046

    Article  CAS  Google Scholar 

  26. Patel K, Bahadur P, Guo C, Ma JH, Liu HZ, Yamashita Y et al (2007) Eur Polym J 43:1699–1708

    Article  CAS  Google Scholar 

  27. Kadama Y, Singh K, Marangoni DG, Ma JH, Aswal VK, Bahadur P (2010) Colloids Surf A: Physicochem Eng Asp 369:121–127

    Article  Google Scholar 

  28. Ma JH, Guo C, Tang YL, Xiang JF, Chen S, Wang J et al (2007) J Colloid Interface Sci 312:390–396

    Article  CAS  Google Scholar 

  29. Ma JH, Guo C, Tang YL, Wang JL, Zheng L, Liang XF et al (2006) J Colloid Interface Sci 299:953–961

    Article  CAS  Google Scholar 

  30. Desai PR, Jain NJ, Sharma RK, Bahadur P (2001) Colloids Surf A Physicochem Eng Asp 178:57–69

    Article  CAS  Google Scholar 

  31. álvarez-Ramírez JG, Fernández VVA, Macías ER, Rharbi Y, Taboada P et al (2009) J Colloid Interface Sci 333:655–662

    Article  Google Scholar 

  32. Wen SY, Knoll D, Knoll H (2005) J Colloid Interface Sci 291:244–250

    Article  CAS  Google Scholar 

  33. Li GB, Li HG, Hao JC (2013) J Colloid Polym Sci 291:1479–1486

    Article  CAS  Google Scholar 

  34. Nandni DK, Vohra K, Mahajan RK (2009) J Colloid Interface Sci 338:420–427

    Article  CAS  Google Scholar 

  35. Mahajan RK, Vohra KK, Shaheen A, Aswal VK (2008) J Colloid Interface Sci 326:89–95

    Article  CAS  Google Scholar 

  36. Mahajan RK, Kaur N, Bakshi MS (2005) Colloids Surf A 255:33–39

    Article  CAS  Google Scholar 

  37. Ding YH, Wang Y, Guo R (2004) J Surfactant Deterg 7:379–385

    Article  CAS  Google Scholar 

  38. Cai C, Gao ZN (2004) Chem Res Appl 16:643–645

    CAS  Google Scholar 

  39. Zhang XL, Wang AJ, Zhang XS, Xu P (2007) Chin J Appl Chem 24:374–377

    CAS  Google Scholar 

  40. Kissinger PT, Heineman WR (1983) J Chem Educ 60:702–706

    Article  CAS  Google Scholar 

  41. Stackellberg MV, Pilgram M, Toome V (1953) Z Elektrochem 57:342–350

    Google Scholar 

  42. Baur JE, Wang S, Brandt MC (1996) Anal Chem 68:3815–3821

    Article  CAS  Google Scholar 

  43. Wu DG, Malec AD, Head-Gordon M, Majda M (2005) J Am Chem Soc 27:4490–4996

    Article  Google Scholar 

  44. Krzyczmonik PHS (1992) J Electroanal Chem 335:233–251

    Article  CAS  Google Scholar 

  45. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York

    Google Scholar 

  46. Waldeck AR, Kuchel PW, Lennon AJ, Chapman BE (1997) Prog Nucl Magn Reson Spectrosc 30:39–68

    Article  CAS  Google Scholar 

  47. Dean JA (1999) Langep’s handbook of chemistry [M]. 15th ed. Mc Graw-Hill, New York

    Google Scholar 

  48. Yang JZ, Jin Y, Pan W (2004) Acta Chim Sin 2035–2039:62

    Google Scholar 

  49. Alexandridis P, Holzwarth JFT, Hatton A (1994) Macromolecules 27:2414–2425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the International Science Cooperation Project of Shandong Province, China (2012GHZ20205), the Hundred Talents Program of Chinese Academy of Sciences (Y20245YBR1), and the Doctor Foundation of University of Jinan (No. XBS1204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongguang Li or Weiping Sui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Hao, J., Li, H. et al. Determination of the critical micellar temperature of F127 aqueous solutions at the presence of sodium bromide by cyclic voltammetry. Colloid Polym Sci 293, 787–796 (2015). https://doi.org/10.1007/s00396-014-3461-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3461-z

Keywords

Navigation