Skip to main content
Log in

Novel carbon nanotube composites by grafting reaction with water-compatible redox initiator system

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes were chemically functionalized with methacrylic acid and methacrylated bovine serum albumin by free radical grafting reaction to obtain novel nanocomposites. The nanotubes were synthesized by aerosol-assisted chemical vapor deposition, and then the monomers were directly grafted by the action of hydrogen peroxide/ascorbic acid redox pair which allows operating in water-compatible and eco-friendly environment without the generation of any toxic reaction by-product. A multi-technique approach was used to evaluate the effectiveness of the grafting process employing Fourier transform infrared, Raman, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analyses. Considering the high importance of methacrylate polymers and bovine serum albumin, the proposed nanocomposites could be of great applicability in biomedical and pharmaceutical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marulanda JM (2010) Carbon nanotubes. In-Tech, Vukovar

    Google Scholar 

  2. Xu T, Zhang N, Nichols HL, Shi D, Wen X (2007) Modification of nanostructured materials for biomedical applications. Mater Sci Eng C 27:579–594

    Article  CAS  Google Scholar 

  3. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stöckli T, Burnham NA, Forró L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944–947

    Article  CAS  Google Scholar 

  4. Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine 4:173–182

    Article  CAS  Google Scholar 

  5. Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 15:1765–1768

    Article  CAS  Google Scholar 

  6. Hampel S, Kunze D, Haase D, Krämer K, Rauschenbach M, Ritschel M, Leonhardt A, Thomas J, Oswald S (2008) Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3:175–182

    Article  CAS  Google Scholar 

  7. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38:2214–2230

    Article  CAS  Google Scholar 

  8. Smith JG, Connell JW, Delozier DM, Lillehei PT, Watson KA, Lin Y, Zhou B, Sun YP (2004) Space durable polymer/carbon nanotube films for electrostatic charge mitigation. Polymer 45:825–836

    Article  CAS  Google Scholar 

  9. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  10. Kong J, Franklin NR, Zhou C, Capline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  CAS  Google Scholar 

  11. Chen X, Lee GS, Zettle A, Betozzi CR (2004) Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics. Angew Chem Int Ed 43:6111–6116

    Article  CAS  Google Scholar 

  12. An KH, Jeong SY, Hwang HR, Lee YH (2004) Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube–polypyrrole nanocomposites. Adv Mater 16:1005–1009

    Article  CAS  Google Scholar 

  13. Shim M, Kam NWS, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288

    Article  CAS  Google Scholar 

  14. Roy S, Vedala H, Choi W (2006) Vertically aligned carbon nanotube probes for monitoring blood cholesterol. Nanotechnology 17:S14

    Article  CAS  Google Scholar 

  15. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214

    Article  CAS  Google Scholar 

  16. Ma P-C, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A 41:1345–1367

    Article  Google Scholar 

  17. Yang BX, Pramoda KP, Xu GQ, Goh SH (2007) Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv Funct Mater 17:2062–2069

    Article  CAS  Google Scholar 

  18. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49:89–112

    Article  Google Scholar 

  19. Lourie O, Cox DM, Wagner HD (1998) Buckling and collapse of embedded carbon nanotubes. Phys Rev Lett 81:1638–1641

    Article  CAS  Google Scholar 

  20. Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 72:188–190

    Article  CAS  Google Scholar 

  21. Fang G, He J, Wang S (2006) Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. J Chromatogr A 1127:12–17

    Article  CAS  Google Scholar 

  22. Fangming D, Fisher JE, Winey KI (2003) Coagulation method for preparing single walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Sci B Polym Phys 41:3333–3338

    Article  Google Scholar 

  23. Feng FD, He F, An LL, Wang S, Li YH, Zhu DB (2008) Fluorescent conjugated polyelectrolytes for biomacromolecule detection. Adv Mater 20:2959–2964

    Article  CAS  Google Scholar 

  24. Fernando KA, Lin Y, Sun YP (2004) High aqueous solubility of functionalized single-walled carbon nanotubes. Langmuir 20:4777–4778

    Article  CAS  Google Scholar 

  25. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12:750–753

    Article  CAS  Google Scholar 

  26. Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45:618–623

    Article  CAS  Google Scholar 

  27. Szleifera I, Yerushalmi-Rozen R (2005) Polymers and carbon nanotubes-dimensionality, interactions and nanotechnology. Polymer 46:7803–7818

    Article  Google Scholar 

  28. Qin S, Qin D, Ford WT, Resasco DE, Herrera JE (2004) Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J Am Chem Soc 126:170–176

    Article  CAS  Google Scholar 

  29. Mylvaganam K, Zhang LC (2004) Nanotube functionalization and polymer grafting: an ab initio study. J Phys Chem B 108:15009–15012

    Article  CAS  Google Scholar 

  30. Yan L, Zheng YB, Zhao F, Li S, Gao X, Xu B, Weiss PS, Zhao Y (2012) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41:97–114

    Article  CAS  Google Scholar 

  31. Rasheed A, Howe JY, Dadmun MD, Britt PF (2007) The efficiency of the oxidation of carbon nanofibers with various oxidizing agents. Carbon 45:1072–1080

    Article  CAS  Google Scholar 

  32. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    Article  CAS  Google Scholar 

  33. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237

    CAS  Google Scholar 

  34. Qin S, Qin D, Ford WT, Resasco DE, Herrera JE (2004) Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37:752–757

    Article  CAS  Google Scholar 

  35. Fisher FT, Bradshaw RD, Brinson LC (2002) Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl Phys Lett 80:4647–4649

    Article  CAS  Google Scholar 

  36. Yao Z, Braidy N, Botton GA, Adronov A (2003) Polymerization from the surface of single-walled carbon nanotubes—preparation and characterization of nanocomposites. J Am Chem Soc 125:16015–16024

    Article  CAS  Google Scholar 

  37. Liu M, Zhu T, Li Z, Liu Z (2009) One-step in situ synthesis of poly(methyl methacrylate)-grafted single-walled carbon nanotube composites. J Phys Chem C 113:9670–9675

    Article  CAS  Google Scholar 

  38. Baskaran D, Mays JW, Bratcher MS (2004) Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew Chem 43:2138–2142

    Article  CAS  Google Scholar 

  39. Gao C, Muthukrishnan S, Li W, Yuan J, Xu Y, Muller AHE (2007) Linear and hyperbranched glycopolymer-functionalized carbon nanotubes: synthesis, kinetics, and characterization. Macromolecules 40:1803–1815

    Article  CAS  Google Scholar 

  40. Maity A, Sinha Ray S, Hato MJ (2008) The bulk polymerisation of N-vinylcarbazole in the presence of both multi- and single-walled carbon nanotubes: a comparative study. Polymer 49:2857–2865

    Article  CAS  Google Scholar 

  41. Kong H, Gao C, Yan D (2004) Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc 126:412–413

    Article  CAS  Google Scholar 

  42. Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of CNTs and their composites: a review. Compos Sci Technol 1:1899–1912

    Article  Google Scholar 

  43. Tasis D, Papagelis K, Prato M, Kallitsis I, Galiotis C (2007) Water-soluble carbon nanotubes by redox radical polymerization. Macromol Rapid Commun 28:1553–1558

    Article  CAS  Google Scholar 

  44. Cirillo G, Hampel S, Klingeler R, Puoci F, Iemma F, Curcio M, Parisi OI, Spizzirri UG, Picci N, Leonhardt A, Ritschel M, Buchner B (2011) Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications. J Pharm Pharmacol 63:179–188

    Article  CAS  Google Scholar 

  45. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  46. Tagmatarchis N, Georgakilas V, Prato M, Shinohara H (2002) Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Chem Commun 18:2010–2011

    Google Scholar 

  47. Cirillo G, Iemma F, Spizzirri UG, Puoci F, Curcio M, Parisi OI, Picci N (2011) Synthesis of stimuli-responsive microgels for in vitro release of diclofenac diethyl ammonium. J Biomater Sci 22:823–844

    Article  CAS  Google Scholar 

  48. Krause B, Ritschel M, Täschner C, Oswald, S, Gruner W, Leonhardt A, Pötschke P (2010) Comparison of nanotubes produced by fixed bed and aerosol-CVD methods and their electrical percolation behaviour in melt mixed polyamide 6.6 composites. Compos Sci Technol 70:151–160

    Google Scholar 

  49. Iemma F, Spizzirri UG, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N (2009) Synthesis and release profile analysis of thermo-sensitive albumin hydrogels. Colloid Polym Sci 287:779–787

    Article  CAS  Google Scholar 

  50. Kumar NA, Ganapathy HS, Kim JS, Jeong YS, Jeong YT (2008) Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites. Eur Polym J 44:579–586

    Article  CAS  Google Scholar 

  51. Cirillo G, Kraemer K, Fuessel S, Puoci F, Curcio M, Spizzirri UG, Altimari I, Iemma F (2011) Biological activity of a gallic acid-gelatin conjugate. Biomacromolecules 11:3309–3315

    Article  Google Scholar 

  52. Gao C, Jin YZ, Kong H, Whitby RLD, Acquah SFA, Chen GY, Qian H, Hartschuh A, Silva SRP, Henley S, Fearon P, Kroto HW, Walton DRM (2005) Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J Phys Chem B 109:11925–11932

    Article  CAS  Google Scholar 

  53. Maccallini E, Tsoufis T, Policicchio A, La Rosa S, Caruso T, Chiarello G, Colavita E, Formoso V, Gournis D, Agostino RG (2010) A spectro-microscopic investigation of Fe–Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes. Carbon 48:3434–3445

    Article  CAS  Google Scholar 

  54. Tugulu S, Barbey R, Harms M, Fricke M, Volkmer D, Rossi A, Klok HA (2007) Synthesis of poly(methacrylic acid) brushes via surface-initiated atom transfer radical polymerization of sodium methacrylate and their use as substrates for the mineralization of calcium carbonate. Macromolecules 40:168–177

    Article  CAS  Google Scholar 

  55. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1290

    Article  CAS  Google Scholar 

  56. Rosca JD, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131

    Article  CAS  Google Scholar 

  57. Davies MC, Lynn RAP, Hearn J, Paul AJ, Vickerman JC, Watts JF (2006) Surface chemical characterization using XPS and ToF-SIMS of latex particles prepared by the emulsion copolymerization of methacrylic acid and styrene. Langmuir 12:3866–3875

    Article  Google Scholar 

  58. Kong H, Luo P, Gao P, Yan D (2005) Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly. Polymer 46:2472–2485

    Article  CAS  Google Scholar 

  59. Rose C, Sastry TP, Madhavan V, Rao NM (1998) Graft copolymerization of 2-hydroxyethyl methacrylate onto bovine serum albumin: preparation and characterization. J Macromol Sci A Pure Appl Chem 35:193–202

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by MIUR (Programma di ricerca di rilevante interesse nazionale 2008), University of Calabria funds. Financial support of Regional Operative Program (ROP) Calabria ESF 2007/2013–IV Axis Human Capital–Operative Objective M″–Action D.5 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Cirillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirillo, G., Caruso, T., Hampel, S. et al. Novel carbon nanotube composites by grafting reaction with water-compatible redox initiator system. Colloid Polym Sci 291, 699–708 (2013). https://doi.org/10.1007/s00396-012-2779-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2779-7

Keywords

Navigation