Skip to main content
Log in

Cellular senescence in normal and premature lung aging

Zelluläre Seneszenz bei normaler und verfrühter Lungenalterung

  • Beiträge zum Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

The incidence of chronic respiratory diseases (e.g., chronic obstructive pulmonary disease, COPD) and interstitial lung diseases (e.g., pneumonia and lung fibrosis) increases with age. In addition to immune senescence, the accumulation of senescent cells directly in lung tissue might play a critical role in the increased prevalence of these pulmonary diseases. In the last couple of years, detailed studies have identified the presence of senescent cells in the aging lung and in diseased lungs of patients with COPD and lung fibrosis. Cellular senescence has been shown for epithelial cells of bronchi and alveoli as well as mesenchymal and vascular cells. Known risk factors for pulmonary diseases (cigarette smoke, air pollutions, bacterial infections, etc.) were identified in experimental studies as being possible mediators in the development of cellular senescence. The present findings indicate the importance of cellular senescence in normal lung aging and in premature aging of the lung in patients with COPD, lung fibrosis, and probably other respiratory diseases.

Zusammenfassung

Chronische Atemwegserkrankungen, insbesondere die chronisch obstruktive Lungenerkrankung (COPD), sowie interstitielle Lungenerkrankungen wie die Pneumonie und die Lungenfibrose nehmen mit dem Alter deutlich zu. Dabei könnte neben der Immunseneszenz auch das vermehrte Auftreten von seneszenten Zellen direkt in der Lunge eine wichtige Rolle spielen. In den letzten Jahren wiesen detaillierte Studien seneszente Zellen in der alten Lunge und in der erkrankten Lunge von Patienten mit COPD oder Lungenfibrose nach. Neben den epithelialen Zellen von Bronchien und Alveolen waren von der Seneszenz auch Bindegewebszellen und Gefäßzellen betroffen. Mithilfe experimenteller Studien wurden bekannte Risikofaktoren von Atemwegserkrankungen (Zigarettenrauch, Luftverschmutzung, bakterielle Infektionen etc.) als mögliche Auslöser der zellulären Seneszenz identifiziert. Die Erkenntnisse weisen auf die Bedeutung der zellulären Seneszenz bei der normalen Lungenalterung hin, aber auch bei der verfrühten Alterung der Lunge bei Patienten mit COPD, Lungenfibrose oder möglicherweise anderen Atemwegserkrankungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

53BP1:

p53-binding protein-1

ATM:

ataxia telangiectasia-mutated

ATR:

ATM- and Rad-3-related kinase

CDC:

cell division cycle

CDK:

cyclin-dependent kinase

Chk:

checkpoint kinase

COPD:

chronic obstructive pulmonary disease

CKI:

cyclin-dependent kinase inhibitor

DDR:

DNA damage response

DNA-PK:

DNA-dependent protein kinase

ds:

double stand

GADD45:

growth arrest and DNA damage 45

HR:

homologue recombination

hTERT:

telomerase catalytic subunit

IPF:

idiopathic pulmonary fibrosis

ICD-10:

international statistical classification of diseases and related health problems, version 10

IL:

interleukin

MAPK:

mitogen-activated protein kinase

MCP-1:

monocyte chemotactic protein-1

mTOR:

mammalian target of rapamycin

NAD:

nicotinamide adenine dinucleotide

NHEJ:

non-homologue end-joining

NF-κB:

nuclear factor κ-light-chain-enhancer of activated B-cells

P:

phosphorylated

p16Ink4a :

protein 16 (CKI 2A)

p19Arf :

protein 19 (CKI 2A)

p21Cip1/Waf1 :

protein 21 (cyclin-dependent kinase inhibitor protein 1A)

p53:

protein 53

pRb:

retinoblastoma susceptibility protein

SA:

senescence-associated

SAHF:

senescence-associated heterochromatin foci

SAM:

senescence accelerated mouse

SIRT:

sirtuin (silent mating type information regulation)

Src:

Swiss raid commando

References

  1. Taylor NAS (2011) Pulmonary function in aging humans. In: Masoro EJ, Austad, SN (eds) Handbook of the biology of aging. Elsevier, Academic Press, pp 421–446

  2. Kerstjens HA, Rijcken B, Schouten JP et al (1997) Decline of FEV1 by age and smoking status: facts, figures, and fallacies. Thorax 52:820–827

    Article  PubMed  CAS  Google Scholar 

  3. Sint T, Donohue JF, Ghio AJ (2008) Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease. Inhal Toxicol 20:25–29

    Article  PubMed  CAS  Google Scholar 

  4. Milara J, Cortijo J (2012) Tobacco, inflammation, and respiratory tract cancer. Curr Pharm Des 18:3901–3938

    Article  PubMed  CAS  Google Scholar 

  5. Statistisches Bundesamt, Zweigstelle Bonn (eds) (2011) Sterbefälle ab 1998. Gesundheitsberichterstattung des Bundes. http://www.gbe-bund.de. Accessed: 12 August 2013

  6. Decramer M, Janssens W, Miravitlles M (2012) Chronic obstructive pulmonary disease. Lancet 379:1341–1351

    Article  PubMed  Google Scholar 

  7. Meyer KC (2010) The role of immunity and inflammation in lung senescence and susceptibility to infection in the elderly. Semin Respir Crit Care Med 31:561–574

    Article  PubMed  Google Scholar 

  8. Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579

    Article  PubMed  CAS  Google Scholar 

  9. Morla M, Busquets X, Pons J et al (2006) Telomere shortening in smokers with and without COPD. Eur Respir J 27:525–528

    Article  PubMed  CAS  Google Scholar 

  10. Lee J, Sandford AJ, Connett JE et al (2012) The relationship between telomere length and mortality in chronic obstructive pulmonary disease (COPD). PLoS One 7:e35567

    Article  PubMed  CAS  Google Scholar 

  11. Baur JA, Zou Y, Shay JW et al (2001) Telomere position effect in human cells. Science 292:2075–2077

    Article  PubMed  CAS  Google Scholar 

  12. Mallette FA, Ferbeyre G (2007) The DNA damage signaling pathway connects oncogenic stress to cellular senescence. Cell Cycle 6:1831–1836

    Article  PubMed  CAS  Google Scholar 

  13. Toussaint O, Remacle J, Dierick JF et al (2002) From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing. Int J Biochem Cell Biol 34:1415–1429

    Article  PubMed  CAS  Google Scholar 

  14. Gorbunova V, Seluanov A (2005) Making ends meet in old age: DSB repair and aging. Mech Ageing Dev 126:621–628

    Article  PubMed  CAS  Google Scholar 

  15. Zglinicki T von, Saretzki G, Ladhoff J et al (2005) Human cell senescence as a DNA damage response. Mech Ageing Dev 126:111–117

    Article  Google Scholar 

  16. Yang J, Yu Y, Hamrick HE et al (2003) ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis 24:1571–1580

    Article  PubMed  CAS  Google Scholar 

  17. Houtgraaf JH, Versmissen J, Giessen WJ van der (2006) A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 7:165–172

    Article  PubMed  Google Scholar 

  18. Lin AW, Barradas M, Stone JC et al (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:3008–3019

    Article  PubMed  CAS  Google Scholar 

  19. Sanchez-Perez Y, Chirino YI, Osornio-Vargas AR et al (2009) DNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutants. Cancer Lett 278:192–200

    Article  PubMed  CAS  Google Scholar 

  20. Alder JK, Guo N, Kembou F et al (2011) Telomere length is a determinant of emphysema susceptibility. Am J Respir Crit Care Med 184:904–912

    Article  PubMed  CAS  Google Scholar 

  21. Muller M, Li Z, Maitz PK (2009) Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: role for p38 mitogen-activated protein kinase. Burns 35:500–508

    Article  PubMed  Google Scholar 

  22. Zhou F, Onizawa S, Nagai A et al (2011) Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury. Respir Res 12:78

    Article  PubMed  Google Scholar 

  23. Buchner N, Ale-Agha N, Jakob S et al (2013) Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes. Exp Gerontol 48:8–16

    Article  PubMed  Google Scholar 

  24. Aoshiba K, Zhou F, Tsuji T et al (2012) DNA damage as a molecular link in the pathogenesis of COPD in smokers. Eur Respir J 39:1368–1376

    Article  PubMed  CAS  Google Scholar 

  25. Kreiling JA, Tamamori-Adachi M, Sexton AN et al (2011) Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell 10:292–304

    Article  PubMed  CAS  Google Scholar 

  26. Wang C, Jurk D, Maddick M et al (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8:311–323

    Article  PubMed  CAS  Google Scholar 

  27. Shivshankar P, Boyd AR, Le Saux CJ et al (2011) Cellular senescence increases expression of bacterial ligands in the lungs and is positively correlated with increased susceptibility to pneumococcal pneumonia. Aging Cell 10:798–806

    Article  PubMed  CAS  Google Scholar 

  28. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  Google Scholar 

  29. Tsuji T, Aoshiba K, Nagai A (2004) Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol 31:643–649

    Article  PubMed  CAS  Google Scholar 

  30. Kim CO, Huh AJ, Han SH et al (2012) Analysis of cellular senescence induced by lipopolysaccharide in pulmonary alveolar epithelial cells. Arch Gerontol Geriatr 54:e35–e41

    Article  PubMed  CAS  Google Scholar 

  31. Muller M (2006) Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic Biol Med 41:1670–1677

    Article  PubMed  CAS  Google Scholar 

  32. Aoshiba K, Tsuji T, Nagai A (2003) Bleomycin induces cellular senescence in alveolar epithelial cells. Eur Respir J 22:436–443

    Article  PubMed  CAS  Google Scholar 

  33. Nyunoya T, Monick MM, Klingelhutz AL et al (2009) Cigarette smoke induces cellular senescence via Werner’s syndrome protein down-regulation. Am J Respir Crit Care Med 179:279–287

    Article  PubMed  CAS  Google Scholar 

  34. Hara H, Araya J, Takasaka N et al (2012) Involvement of creatine kinase B in cigarette smoke-induced bronchial epithelial cell senescence. Am J Respir Cell Mol Biol 46:306–312

    Article  PubMed  CAS  Google Scholar 

  35. Fujii S, Hara H, Araya J et al (2012) Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology 1:630–641

    Article  PubMed  Google Scholar 

  36. Amsellem V, Gary-Bobo G, Marcos E et al (2011) Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 184:1358–1366

    Article  PubMed  CAS  Google Scholar 

  37. Minagawa S, Araya J, Numata T et al (2011) Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 300:L391–L401

    Article  PubMed  CAS  Google Scholar 

  38. Savale L, Chaouat A, Bastuji-Garin S et al (2009) Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 179:566–571

    Article  PubMed  CAS  Google Scholar 

  39. Houben JM, Mercken EM, Ketelslegers HB et al (2009) Telomere shortening in chronic obstructive pulmonary disease. Respir Med 103:230–236

    Article  PubMed  Google Scholar 

  40. Mui TS, Man JM, McElhaney JE et al (2009) Telomere length and chronic obstructive pulmonary disease: evidence of accelerated aging. J Am Geriatr Soc 57:2372–2374

    Article  PubMed  Google Scholar 

  41. Alder JK, Chen JJ, Lancaster L et al (2008) Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A 105:13051–13056

    Article  PubMed  CAS  Google Scholar 

  42. Cronkhite JT, Xing C, Raghu G et al (2008) Telomere shortening in familial and sporadic pulmonary fibrosis. Am J Respir Crit Care Med 178:729–737

    Article  PubMed  CAS  Google Scholar 

  43. Holz O, Zuhlke I, Jaksztat E et al (2004) Lung fibroblasts from patients with emphysema show a reduced proliferation rate in culture. Eur Respir J 24:575–579

    Article  PubMed  CAS  Google Scholar 

  44. Parker SM, Goriwiec MR, Borthwick LA et al (2008) Airway epithelial cell senescence in the lung allograft. Am J Transplant 8:1544–1549

    Article  PubMed  CAS  Google Scholar 

  45. Fukuchi Y (2009) The aging lung and chronic obstructive pulmonary disease: similarity and difference. Proc Am Thorac Soc 6:570–572

    Article  PubMed  CAS  Google Scholar 

  46. Ito K, Barnes PJ (2009) COPD as a disease of accelerated lung aging. Chest 135:173–180

    Article  PubMed  Google Scholar 

  47. Faner R, Rojas M, Macnee W et al (2012) Abnormal lung aging in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 186:306–313

    Article  PubMed  CAS  Google Scholar 

  48. Kasagi S, Seyama K, Mori H et al (2006) Tomato juice prevents senescence-accelerated mouse P1 strain from developing emphysema induced by chronic exposure to tobacco smoke. Am J Physiol Lung Cell Mol Physiol 290:L396–L404

    Article  PubMed  CAS  Google Scholar 

  49. Londhe VA, Sundar IK, Lopez B et al (2011) Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung. Pediatr Res 69:371–377

    Article  PubMed  CAS  Google Scholar 

  50. Müller KC, Welker L, Paasch K et al (2006) Lung fibroblasts from patients with emphysema show markers of senescence in vitro. Respir Res 7:32

    Article  PubMed  Google Scholar 

  51. Waisberg DR, Parra ER, Barbas-Filho JV et al (2012) Increased fibroblast telomerase expression precedes myofibroblast alpha-smooth muscle actin expression in idiopathic pulmonary fibrosis. Clinics (Sao Paulo) 67:1039–1046

    Google Scholar 

  52. Diaz de Leon A, Cronkhite JT, Katzenstein AL et al (2010) Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PLoS One 5:e10680

    Article  Google Scholar 

  53. Naik PK, Moore BB (2011) Viral infection and aging as cofactors for the development of pulmonary fibrosis. Expert Rev Respir Med 4:759–771

    Article  Google Scholar 

  54. Linge A, Weinhold K, Blasche R et al (2007) Downregulation of caveolin-1 affects bleomycin-induced growth arrest and cellular senescence in A549 cells. Int J Biochem Cell Biol 39:1964–1974

    Article  PubMed  CAS  Google Scholar 

  55. Volonte D, Zhang K, Lisanti MP et al (2002) Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell 13:2502–2517

    Article  PubMed  CAS  Google Scholar 

  56. Shivshankar P, Brampton C, Miyasato S et al (2012) Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am J Respir Cell Mol Biol 47:28–36

    Article  PubMed  CAS  Google Scholar 

  57. Fridlender ZG, Cohen PY, Golan O et al (2007) Telomerase activity in bleomycin-induced epithelial cell apoptosis and lung fibrosis. Eur Respir J 30:205–213

    Article  PubMed  CAS  Google Scholar 

  58. Liu T, Chung MJ, Ullenbruch M et al (2007) Telomerase activity is required for bleomycin-induced pulmonary fibrosis in mice. J Clin Invest 117:3800–3809

    PubMed  CAS  Google Scholar 

  59. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233

    Article  PubMed  CAS  Google Scholar 

  60. Bartling B, Desole M, Silber RE et al (2007) Dicarbonyl-mediated protein modifications affect matrix metalloproteinase (MMP) activity. Z Gerontol Geriatr 40:357–361

    Article  PubMed  CAS  Google Scholar 

  61. Bartling B, Rehbein G, Silber RE et al (2006) Senescent fibroblasts induce moderate stress in lung epithelial cells in vitro. Exp Gerontol 41:532–539

    Article  PubMed  CAS  Google Scholar 

  62. Ito K, Colley T, Mercado N (2012) Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease. Int J Chron Obstruct Pulmon Dis 7:641–652

    Article  PubMed  CAS  Google Scholar 

  63. Noureddine H, Gary-Bobo G, Alifano M et al (2011) Pulmonary artery smooth muscle cell senescence is a pathogenic mechanism for pulmonary hypertension in chronic lung disease. Circ Res 109:543–553

    Article  PubMed  CAS  Google Scholar 

  64. Tsuji T, Aoshiba K, Nagai A (2006) Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med 174:886–893

    Article  PubMed  CAS  Google Scholar 

  65. Tsuji T, Aoshiba K, Nagai A (2010) Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease. Respiration 80:59–70

    Article  PubMed  Google Scholar 

  66. Hosokawa M, Fujisawa H, Ax S et al (2000) Age-associated DNA damage is accelerated in the senescence-accelerated mice. Mech Ageing Dev 118:61–70

    Article  PubMed  CAS  Google Scholar 

  67. Albino AP, Huang X, Jorgensen E et al (2004) Induction of H2AX phosphorylation in pulmonary cells by tobacco smoke: a new assay for carcinogens. Cell Cycle 3:1062–1068

    Article  PubMed  CAS  Google Scholar 

  68. Tanaka T, Huang X, Jorgensen E et al (2007) ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke. BMC Cell Biol 8:26

    Article  PubMed  Google Scholar 

  69. Rammah M, Dandachi F, Salman R et al (2012) In vitro cytotoxicity and mutagenicity of mainstream waterpipe smoke and its functional consequences on alveolar type II derived cells. Toxicol Lett 211:220–231

    Article  PubMed  CAS  Google Scholar 

  70. Klimova TA, Bell EL, Shroff EH et al (2009) Hyperoxia-induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. FASEB J 23:783–794

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. B. Bartling states that there are no conflicts of interests.

The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bartling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartling, B. Cellular senescence in normal and premature lung aging. Z Gerontol Geriat 46, 613–622 (2013). https://doi.org/10.1007/s00391-013-0543-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-013-0543-3

Keywords

Schlüsselwörter

Navigation