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compared with only 1.5 °C in the standard simulation. The 
feasibility and effectiveness of using the CNOP-based tech-
nique to improve ENSO simulations are demonstrated in 
the context of the 2015 El Niño event. The limitations and 
further applications are also discussed.
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based approach · Optimal bias corrections to ICs and MPs

1 Introduction

The El Niño and Southern Oscillation (ENSO) phenomenon 
has been recognized as the most predictable short-term cli-
mate anomaly in the climate system (Philander 1983; Wang 
and Picaut 2004). Predicting its onset, development and evo-
lution accurately and effectively is of great significance to 
society and the public (e.g., Zebiak and Cane 1987; Chen 
et al. 1995, 2004; Zhang et al. 2003). Currently, various cou-
pled models have been developed and used to make 6-month 
and longer real-time ENSO predictions in advance and with 
reasonable success. Nevertheless, coupled models with dif-
ferent degrees of complexity still have systematic biases with 
large uncertainties in the real-time prediction of ENSO (Jin 
et al. 2008; Luo et al. 2008; Zhang and Gao 2016b); for a 
summary of the model ENSO forecasts, see the International 
Research Institute for Climate and Society (IRI) website at 
http://iri.columbia.edu/climate/ENSO/currentinfo/update.
html. In particular, ENSO predictions are widely spread 
across models, with each model having characteristic biases.

Understanding error sources for ENSO predictions is 
critically important for finding a way by which biases can 
be reduced appropriately (Blumenthal 1991; Goswami and 
Shukla 1991). Errors in initial conditions (ICs) and model 
parameters (MPs) are two main sources that limit ENSO 
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prediction skills when using coupled ocean–atmosphere 
models (Moore and Kleeman 1996; Xue 1997). For example, 
based on NCEP CFSv2, Zhu et al. (2012) found that ENSO 
prediction skill is highly sensitive to initial states that are 
derived from different ocean analyses. Using an intermedi-
ate coupled model (ICM), Gao and Zhang (2017) examined 
the effects of the two key model parameters on depicting 
the intensity and phase transition for the second-year re-
emergence of the 2010 cold event (Zhang et al. 2013). At 
present, large uncertainties exist in determining ICs and MPs 
when using oceanic observations for ENSO predictions. 
Indeed, the current observations that are available in the 
ocean are very sparse due to their high cost and inhomogene-
ous distributions in space and time. Limited ocean observa-
tions therefore need to be combined with data assimilation 
techniques to determine ICs for model predictions. Also, 
observations are used to estimate model parameters and 
tune model performance. Nevertheless, oceanic and atmos-
pheric models are comprehensive and very complicated, 
with model parameters that are strongly season and state 
dependent (Zhang et al. 2003, 2005). Thus, it is not easy to 
find suitable model parameters that allow accurate predic-
tions. In addition, model parameters are often estimated in 
an empirical and subjective way; such a priori estimates of 
parameters may not be consistent with the model dynam-
ics. It is desirable to estimate parameters in an optimal and 
objective way such that the best possible predictions can 
be made for a given model. Furthermore, large biases are 
strongly model-dependent, and the model error characteris-
tics need to be quantified so that they can be adequately and 
effectively reduced.

Various approaches have been developed to find a way 
to characterize errors in ICs/MPs and their relationships 
with prediction biases. For example, Mu et al. (2003) devel-
oped a conditional nonlinear optimal perturbation (CNOP) 
approach to identify some types of errors in ICs that can 
have the largest growth. Theoretically, the CNOPs represent 
types of errors in ICs that can make dominant contributions 
to prediction biases (e.g., Mu et al. 2007; Duan et al. 2009, 
2012). Practically, if the CNOP-type errors in initial states 
used for predictions are corrected or removed, the predic-
tions can be improved optimally and effectively. Indeed, the 
CNOP approach has been extensively used to study ENSO 
predictability using the ENSO model developed by Zebiak 
and Cane (1987). For instance, Duan and Wei (2012) found 
that the CNOP-like errors exist in the initial fields used to 
make realistic ENSO predictions and thought that the ENSO 
forecast skill can be greatly improved if the initial analysis 
fields are corrected according to the CNOP-like errors. Xu 
(2006) and Mu et al. (2014) found the similarities between 
optimal precursors for ENSO and the CNOP-type errors 
derived in ENSO predictions. Moreover, one application 
of the CNOP approach is to identify sensitive areas where 

observations can have the strongest impacts on predictions. 
Duan et al. (2012) demonstrated that optimal uses of obser-
vations in the sensitive areas determined by CNOPs are not 
only able to reduce the effects of IC errors on predictions but 
also can better detect precursors of ENSO events and give 
relatively accurate predictions. These modeling experiments 
clearly demonstrate that the values of observational data for 
improving model predictions through ICs are dynamically 
different from one region to another, being geographically 
and seasonally dependent. Furthermore, Duan and Zhang 
(2010) and Mu et al. (2010) extended the CNOP approach 
to identify errors in MPs in an ENSO theoretical model. 
Subsequently, Yu et al. (2012a, b) used the Zebiak–Cane 
model to investigate the parametric errors that have the 
largest error growth in ENSO predictions. More recently, 
the CNOP approach has been extended to identify errors in 
boundary conditions that can cause the largest error growths 
in predictions (e.g., Wang and Mu 2015).

Previously, we developed an improved intermediate cou-
pled model (ICM) at the Institute of Oceanology, Chinese 
Academy of Sciences (IOCAS), which is named IOCAS 
ICM (Zhang and Gao 2016a, b). The model has been rou-
tinely used to predict SST evolution in the tropical Pacific 
(Zhang et al. 2013). Nevertheless, pronounced biases still 
exist in real-time predictions of ENSO and needs to be 
reduced adequately. Recently, a four-dimensional variational 
data assimilation (4-D Var) technique has been implemented 
into the IOCAS ICM (Gao et al. 2016), which can provide 
dynamically consistent ICs for improved ENSO prediction. 
In addition, the adjoint component involved with the 4-D 
Var data assimilation technique allows the calculation of the 
gradient of a defined object function with respect to ICs and/
or MPs. More recently, applying the CNOP approach to the 
ICM, Tao et al. (2017) identified the spatial characteristics 
of errors in initial states that can lead to the largest growth 
in ENSO predictions. It was found that the CNOP-induced 
error evolution in the ICM exhibits a strong spring predict-
ability barrier (SPB) phenomenon in ENSO predictions. In 
addition, the CNOPs derived from the IOCAS ICM provide 
useful information for targeted observations through ocean 
data assimilation. That is, when the CNOP-related errors 
in ICs are removed or reduced, ENSO prediction can be 
improved optimally and effectively. Note that these previous 
studies using the ICM are based on idealized experiments 
for ENSO predictability studies and predictions (Gao et al. 
2016; Tao et al. 2017).

In this paper, we focus on a real El Niño case in 2015 
to which the CNOP-based approach was applied using the 
IOCAS ICM. In 2015, the tropical Pacific experienced an 
extremely strong El Niño event, which caused significant cli-
mate anomalies and extreme weather conditions worldwide. 
Nevertheless, large biases existed in its real-time prediction 
when using various state-of-art coupled ocean–atmosphere 
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models (Zhang and Gao 2016a, b). For example, a warm 
event was incorrectly predicted to occur in 2014 by many 
models, whereas the intensity of the strong El Niño event 
that occurred in late 2015 was significantly underestimated 
when predictions were made in early 2015. Our aim here is 
to find a way to improve simulations of the 2015 El Niño 
event by adopting the CNOP approach-based technique. 
Theoretically, this approach is able to characterize domi-
nant errors in ENSO predictions that can be attributed to 
those in ICs and MPs, which can then be corrected for an 
improved simulation of the 2015 El Niño event. To this 
end, several steps are taken. First, an object function is 
defined as the differences between observed and predicted 
SST anomalies (i.e., SST errors in the ICM prediction). Its 
gradients with respect to initial fields and the MPs are cal-
culated using the adjoint component of the 4-D Var data 
assimilation technique implemented in the ICM; here, two 
initial fields (SST and SL) and two MPs that are important 
to ENSO (ατ and αTe; Gao and Zhang 2017) are considered. 
The corresponding error corrections to SST, SL, and the 
two MPs (ατ and αTe) are then optimally quantified using 
the CNOP-based technique through the minimization of the 
object function under the constraint of model dynamics. As 
such, optimized error corrections to the ICs and two MPs are 
made such that the modeled SST evolution can be as close 
as possible to the corresponding observations (the object 
function is minimized). Finally, optimized simulations are 
performed with error corrections to the ICs and MPs. As 
will be shown below, the 2015 El Niño simulation can be 
effectively improved when the derived CNOP-type errors are 
optimally corrected in the ICM.

The paper is organized as follows. Section 2 describes the 
methodologies, including the ICM, 4-D Var data assimila-
tion method, CNOP approach, and experimental designs. In 
Sect. 3, the extent to which the simulations of the 2015 El 
Niño event can be improved by making optimal error correc-
tions to ICs and MPs is demonstrated. Finally, a conclusion 
and discussion are presented in Sect. 4.

2  Methods

The CNOP approach is applied to an intermediate coupled 
model (ICM) developed by Zhang et al. (2003). The ICM 
has already been successfully used for ENSO simulations 
and predictions (Zhang and Gao 2016a). Recently, Gao et al. 
(2016) implemented a four-dimensional variational (4-D 
Var) data assimilation technique into the ICM, including 
the development of its adjoint component, which provides 
a way to calculate the gradient of a defined object function 
with respect to state variables and model parameters. Fur-
thermore, the CNOP-based technique is adopted to quantify 
errors in ICs and MPs that can make dominant contributions 

to prediction biases. In an idealized model setting, Tao et al. 
(2017) has applied the CNOP approach to characterizing 
errors in ICs that can have the largest error growth in ENSO 
prediction (Mu et al. 2003). On the basis of those develop-
ments, the CNOP-based technique was further applied to 
a realistic case for the 2015 El Niño event using the ICM. 
Optimized corrections to errors in ICs and MPs were per-
formed to demonstrate an improved simulation of the 2015 
El Niño event.

2.1  The ICM and its 4‑D Var data assimilation 
technique

The ICM used in this work is an anomaly model consist-
ing of an intermediate ocean model (IOM) and an empirical 
wind stress model (Zhang and Gao 2016a). One important 
process for ENSO is related to the anomalous temperature 
of subsurface water entrained into the mixed layer  (Te), 
which is explicitly and empirically related to sea level (SL) 
variation and is written as  Te = αTe⋅F1(SL), in which  F1 is 
a relationship between interannual variations in  Te and SL 
that is determined using a singular value decomposition 
(SVD) analysis from historical data, and αTe is a parameter 
introduced to represent the strength of thermocline effect 
on SST (referred as the thermocline effect). A statistical 
atmospheric model is also constructed from an SVD analy-
sis, in which interannual anomalies of wind stress (τ) and 
sea surface temperature (SST) fields are related as τ = ατ 
⋅F2(SST), where ατ is an introduced parameter that rep-
resents the relative coupling intensity between the ocean 
and atmosphere. When taking ατ = 0.87 and αTe = 1.0 as 
a standard model setting, the ICM can well depict ENSO 
evolution (Zhang et al. 2003). Furthermore, a four-dimen-
sional variation (4-D Var) data assimilation technique with 
the development of a adjoint component have recently been 
implemented in the ICM for ENSO modeling studies (Gao 
et al. 2016). It is shown herein that the 4-D Var method 
can improve ENSO simulation and prediction skill through 
optimal initializations of ocean initial conditions. In addi-
tion, the adjoint component involved in the 4-D Var data 
assimilation technique offers a way to calculate the gradient 
of a defined object function with respect to ICs and MPs. 
To improve theoretical understanding of ENSO predictabil-
ity in the ICM, it is desirable to combine these ICM-based 
modeling studies with the CNOP approach for ENSO pre-
dictability analyses.

2.2  The CNOP approach

Mu et al. (2003) formulated the conditional nonlinear opti-
mal perturbation (CNOP) approach, which is used to char-
acterize errors in ICs and MPs that can make the largest 
contributions to prediction biases (e.g., major error source 
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regions and error evolution features). Based on the ENSO 
model developed by Zebiak and Cane (1987), for example, 
this approach has been widely used to study ENSO predict-
ability and targeted observing system designs (Xu 2006; Mu 
et al. 2007, 2014; Duan et al. 2009, 2012). In an idealized 
model setting for the IOCAS ICM, Tao et al. (2017) more 
recently adopted the CNOP approach (Mu et al. 2003) and 
theoretically demonstrated that the characterized errors in 
ICs can have largest error growth in ENSO predictions. A 
brief description of the CNOP approach is presented below.

Given prediction model, the governing equations defin-
ing an initial-value problem can be symbolically written as 

where t is time, t0 is the initial time, X is a state variable 
(e.g., SST and ocean currents), p is a model parameter, X0 is 
an initial state of X, and F is a nonlinear evolution operator. 
For a given initial condition (X0) and model parameter (p), 
the predicted variable at time T (Xm) is obtained through 
the time integration of the model which can be written as 
Xm(T) = M(p)

(
X0

)
(T), in which M is a propagator function 

that represents the temporal evolution from the initial state to 
a future state at time T, which is constrained by the govern-
ing equation (i.e., the model dynamics). The state variable 
simulated by the model at time T is therefore a function of 
X0, p, and T. To measure the departure of the predicted evo-
lution relative to observed state variable, an object function 
can be defined as 

in which  t1 and  tn are the starting and ending months for the 
analyses, and Xo(t) is the observed SST anomalies. Origi-
nally, the CONP approach was used to determine initial state 
errors that can produce the largest growths in future evolu-
tions X′ or predictions (Mu et al. 2003). Alternatively, this 
approach can be extended to quantify errors in ICs and MPs 
that can be responsible for the largest prediction errors. For 
example, due to the existence of errors in X0 and p, the evo-
lution predicted by the model can depart from the observed 
evolution, leading to biases at the prediction end time and 
correspondingly causing increases in the object function 
(J). To reduce errors in the predictions (and reduce J), cor-
responding corrections to X0 and p can be introduced as X′ 
and p′, respectively. The object function is then 

(1)

⎧
⎪⎨⎪⎩

�X
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,
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(
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(
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)(
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‖‖‖
2

.

As such, the basic CNOP approach can be equivalently used 
to determine error corrections to ICs and MPs, by which 
least prediction biases can be produced when errors in the 
derived ICs and MPs are corrected when making predic-
tions. In other words, the smallest departure can be achieved 
between optimally corrected simulations and observations. 
Therefore, the original CNOP-related maximization problem 
can be converted into a minimization problem: X′ and p′ 
are estimated in an optimal way such that the object func-
tion (J) is minimized under the constraint of model dynam-
ics, and the analyzed state can be as close as possible to 
observations.

In practice, the X′ and p′ are estimated using the CNOP-
based technique, which requires the adjoint component of 
the original physical model (Gao et al. 2016). Because the 
corrected error terms (X′ and p′) cannot be too large, they 
should be constrained to satisfy prescribed conditions, which 
are symbolically expressed as 

(
X�
, p�

)
∈ C

�C
, in which  Cδc 

is a radius. Finally, the problem is to solve the following 
constrained minimization: 

in which X* and p* are the error correction terms to X0 and p 
and are determined optimally under a given constraint condi-
tion. To minimize the object function, the adjoint component 
of the 4-D Var assimilation technique equipped in the ICM 
is used to calculate its gradients with respect to X′ and p′. To 
obtain X* and p*, a nonmonotonic spectral projected gradient 
method (SPG2) is adopted to search for the optimal solu-
tion in the constrained problem, which, as input, needs the 
values of the object function and its gradient with respect to 
X′ and p′ and the specified constraint condition. Details on 
the SPG2 are given in Birgin et al. (2000). Practically, when 
optimally estimating X* and p* by minimizing the J, it is not 
necessary to modify the adjoint component in the CNOP-
based analysis procedure; instead, only a change to the form 
of the object function is needed. Taking X0 + X*and p + p* 
as a new corrected initial state and model parameter, the 
ICM is then used to perform simulations that are expected to 
produce the state evolutions that can be as close as possible 
to observations.

2.3  Simulation experiments and the optimal correction 
procedure

Figure 1 displays a schematic diagram using the ICM to 
show the CNOP-based analysis procedure and to demon-
strate an improved simulation of the 2015 El Niño event. 
Detailed implementations of the CNOP approach into the 
ICM are presented in Tao et al. (2017). Two types of simu-
lation experiments were performed. A standard hindcast 

(4)

J
(
X0 + X∗

, p + p∗
)
= min
(X�

, p�)∈C�C

J
(
X0 + X�

, p + p�
)
→ 0,
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experiment was conducted using a simple initialization 
procedure in which only the observed interannual SST 
anomaly data were used for the ENSO prediction (Zhang 
and Gao 2016b). Taking a prediction for 1 January 2015 
as an example, a temporal succession of daily SST fields 
was produced using a linear interpolation method from 
observed monthly SST data from 1980 through December 
2014 and the weekly SST data in the first week of January 
2015; the observed SST data (Reynolds et al. 2002) are 
available online from the IRI data library. The interan-
nual anomalies of wind stress (τinter) were derived using 
an empirical model of the observed SST anomalies. The 
derived τinter fields up to early January 2015 were used to 
force the ocean model to produce an initial ocean state for 
the first day of each month (e.g., 1 January 2015), from 
which predictions were made with lead times of 12 months 
ahead. In addition, as part of the initialization procedure, 
the observed SST anomalies were directly inserted into 
the ICM when making real-time predictions. Note that the 
ICM is an anomaly model in which interannual SST anom-
alies are directly produced. The model can well depict SST 

evolution. However, as shown below, the intensity of the 
2015 El Niño event predicted for late 2015 was signifi-
cantly underestimated when predictions were started from 
the initial state in late 2014 and early 2015.

The errors in the predictions can be attributed to the 
errors in the ICs and MPs. For example, previous studies 
indicate that two parameters (αTe and ατ) are important for 
adequately capturing the intensities of ENSO events (Gao 
and Zhang 2017). As detailed in the last section, the CNOP-
based approach is used to determine errors in ICs and the 
two MPs in the ICM, which are then corrected optimally in 
hindcasts. Specifically, the differences between the observed 
and simulated SSTAs from the ICM are defined as an object 
function, which is written as 

in which SSTAo(tk, i, j) is the monthly SSTAs observed 
in month tk at grid point (i, j), SSTAm(tk, i, j) is the corre-
sponding SSTAs simulated using the ICM, and ωi, j is an 
area-weighted function that accounts for the non-uniform 
horizontal grids. Because the ICM can have high skill in 
the central equatorial Pacific, the SST fields at grid points 
around the Niño3.4 region are considered in the calculation 
of the object function.

The constraint conditions for the error correction terms 
are defined as 

in which N is the total grid point number of the ICM in the 
tropical Pacific. In practice, error correction terms are esti-
mated in minimizing the object function with the following 
prescribed constraints: 

Using the CNOP-based technique, the optimal error cor-
rection terms (E∗

SST ,0
,E∗

SL,0
, p∗

�
, and p∗

Te
) can be obtained. 

Here, an adjoint component of the ICM is used to calculate 
the gradient of the object function with respect to SST, SL, 
ατ and αTe, and the SPG2 approach is used to obtain these 
correction terms so that the object function is optimally 
minimized. Then, an optimal simulation is performed by 
applying the error corrections (E∗

SST ,0
,E∗

SL,0
, p∗

�
, and p∗

Te
) to 

the SST, SL, ατ and αTe fields, respectively. Note that the 
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∑
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,
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�
, �Te ⩽ 10% × �Te.

Fig. 1  A schematic diagram showing the CNOP-based analysis pro-
cedure to demonstrate an improved simulation of the 2015 El Niño 
event using the ICM. Three steps were taken for the demonstration. 
First, a standard simulation experiment was performed in which 
a simple initialization procedure for ICs and standard values of the 
two model parameters (αTe and ατ) were adopted when making pre-
dictions using the ICM. Next, the CNOP-based approach was applied 
to the ICM to quantify errors in predictions attributed to those in the 
ICs and MPs. More specifically, an object function was defined as the 
differences between the observed and predicted SST anomalies (SST 
errors in the ICM prediction); its gradients with respect to two initial 
fields (SST and SL) and the two MPs (ατ and αTe) were calculated 
using the adjoint component of the original model. Using the CNOP 
approach-based optimization procedure, the corresponding correc-
tion terms to the errors in SST, SL, ατ and αTe were optimally derived 
through the minimization of the object function. Finally, an optimized 
simulation was conducted by collectively applying the error correc-
tions to the two initial fields (SST and SL) and the two MPs (αTe and 
ατ)
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errors in the ICs and MPs at each start month are computed 
simultaneously and corrected in the simulations.

We adopted seasonally varying corrections to 
E∗
SST ,0

,E∗
SL,0

, p∗
�
, and p∗

Te
 derived from the CNOP-based tech-

nique and conducted a series of 12-month simulations using 
the ICM during the period Jan. 2014–Dec. 2015. The simu-
lation experiments for a 12-month lead-time were started 
from each month during 2014–2015, and 12 × 24 simula-
tion results were obtained for 2014–202015. For example, 
when making the optimized simulations started in Jan. 
2015, the correction terms derived using the CNOP-based 
technique were superimposed onto the originally produced 
initial state obtained from the standard initialization proce-
dure, forming the corrected ICs X∗

SST ,0
= X

SST ,0
+ E∗

SST ,0
 and 

X∗
SL,0

= X
SL,0

+ E∗
SL,0

; similarly, the two MPs were corrected 
as �∗

�
= �

�
+ p∗

�
 and �∗

Te
= �Te + p∗

Te
, in which ατ and αTe are 

their standard values (ατ = 0.87, and αTe = 1.0). By apply-
ing those corrections to the corresponding ICs and MPs, the 
optimized simulations were performed.

As indicated in Eq. (5), the optimal analysis is performed 
by using observed SSTAs to form the object function which 
is to be minimized to obtain error corrections to ICs/MPs 
(the analysis period). Then, the corrected ICs/MPs are used 
to predict SST evolution (the prediction period). When the 
analysis period for minimizing the object function using 
observed SSTAs (e.g., 12 months) is taken the same as the 
prediction period, the answer (observed SSTAs) has already 
been put into the solution using the ICM (predicting SSTAs). 
In doing this, we can demonstrate the optimization proce-
dure through which the simulated SSTAs can be depicted as 
close as possible to observations when making optimal error 
corrections to ICs/MPs using the ICM.

3  Results

In 2015, an extremely strong El Niño event occurred in the 
tropical Pacific. Figure 2 presents the Niño3.4 SST anoma-
lies observed in 2014–2015 (black line). Figure 3 exhibits 
the zonal-time sections along the equator for the SST, zonal 
wind stress and SL anomalies, observed or reanalyzed from 
the atmospheric products, and Fig. 4 illustrates the corre-
sponding horizontal distributions for SST and surface wind 
stress at different stages of the onset and development of the 
2015 El Niño event.

A striking feature associated with that event was the slow 
evolution of a warm SST anomaly in the western tropical 
Pacific through 2014 and early 2015: a steady SST warm-
ing in the equatorial Pacific in 2014, a dip in February 2015 
(the 3-month running mean SST anomaly value was below 
0.5 °C), and a rapid warming in May that persisted through 
the summer and fall of 2015. A mature stage was reached in 
late 2015, with warm SST anomalies of 3 °C in the Niño3.4 

region in Dec. 2015. Note that the ocean and atmosphere 
were strongly coupled in spring 2015, upon which the warm 
SST anomalies amplified and developed rapidly into a warm 
event in the late spring of 2015. Herein, this latest 2015 El 
Niño event is used as a test bed to demonstrate the feasibil-
ity and effectiveness of using the CNOP-based technique to 
improve its simulations by performing optimal corrections 
to errors in ICs and the two MPs. Two experiments were 
designed using the ICM, with a 12-month simulation being 
conducted for each month during the periods from Jan. 2014 
to Dec. 2015.

3.1  A standard simulation

Figure 2 displays the Niño3.4 SST anomalies predicted 
using the ICM started from different initial times during the 
periods 2014–2015 (colored lines). For this standard simula-
tion experiment, a simple initialization scheme was adopted 
(Zhang and Gao 2016b) in which observed interannual SST 
anomalies were used to derive an interannual wind stress (τ) 
field that was used to force the ocean model to yield initial 
ocean conditions, and the two MPs were taken as their stand-
ard values (αTe = 1.0 and ατ = 0.87). Although the ICM can 
depict the general warming tendency in 2014–2015, obvious 
discrepancies existed between the observed and predicted 
SST anomalies. In particular, the predicted intensity of the 
2015 El Niño event was significantly underestimated when 
predictions were started from early 2015. As with the so-
called spring predictability barrier phenomenon, the model 
predictions indicated poor performance when predictions 
were made through spring 2015. In addition, the model had 

Fig. 2  The observed (black line) and predicted (colored lines) 
Niño3.4 SST indexes during 2014–2015 [averaged over the region 
(5°S–5°N; 170°W–120°W)] from the IOCAS ICM with the origi-
nal initialization scheme for the ICs and the standard values of the 
two MPs (αTe and ατ). Each colored line indicates a trajectory of a 
12-month prediction made from different initial conditions
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(a) (b) (c)(c)

Fig. 3  Zonal-time sections along the equator for a SST, b zonal wind 
stress, and c SL anomalies. The SST fields are observed from Reyn-
olds and Smith (1994); the wind stress fields are from the NCEP/
NCAR reanalysis (Kalnay et al. 1996); the gridded sea level anoma-

lies are from the Ssalto/Duacs multimission altimeter products dis-
tributed by Aviso with support from Cnes, which are available online 
at http://www.aviso.oceanobs.com/duacs/. The contour intervals are 
0.5 °C for SST, 0.1 dyn cm−2 for wind stress and 4 cm for SL

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4  Horizontal distributions of SST anomalies (contours) and 
wind stress anomalies (vectors): a Feb. 2015, b Apr. 2015, c Jun. 
2015, d Aug. 2015, e Oct. 2015, and f Dec. 2015. The SST fields are 

from Reynolds and Smith (1994) and the wind stress data are from 
the NCEP/NCAR reanalysis (Kalnay et al. 1996). The contour inter-
vals are 0.5 °C for SST

http://www.aviso.oceanobs.com/duacs/
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difficulty predicting the rapid warming during the summer 
and fall of 2015 when the predictions were initialized in 
early 2015. As a result, the warming intensity for the 2015 
El Niño event was underestimated in the summer and fall of 
2015. Nevertheless, starting from the late summer of 2015, 
the model was able to adequately capture the warm condi-
tions in late 2015 (Zhang and Gao 2016b).

To illustrate the space–time evolution in more detail, 
Fig. 5 exhibits the zonal-time sections along the equator 
for the SST, zonal wind stress and SL anomalies predicted 
from the initial conditions on 1 Jan. 2015. In addition, snap-
shots of the corresponding horizontal distributions for SST 
and surface wind stress at different stages of the onset and 
development are illustrated in Fig. 6; these maps start with 
the El Niño onset in Jan. 2015 and peak El Niño conditions 
in late 2015.

The model indicates obvious discrepancies in predicting 
the 2015 El Niño event. For example, the model had dif-
ficulty depicting the onset and development of the 2015 El 
Niño event when initialized in late 2014. The model also 
had difficulty in predicting the rapid warming that occurred 
in the late spring and summer of 2015. In particular, the 
predicted SSTA exhibited a decreased warming tendency 
when the predictions were started in early 2015. As a result, 
the warming intensity in the summer and fall of 2015 was 
significantly underestimated. This indicates that the model 
has problems in adequately capturing the coupling intensity 
between the ocean and atmosphere, which can be related to 
the two key model parameters.

Other coupled models used to make real-time ENSO 
predictions have produced similar discrepancies in predic-
tions of the 2015 El Niño event (Zhang and Gao 2016b). For 

example, many coupled models experienced obvious prob-
lems in adequately predicting the onset in the spring of 2015 
and the rapid warming during the late spring and summer 
of 2015 when predictions were initialized in early 2015 (see 
the IRI website at http://iri.columbia.edu/climate/ENSO/
currentinfo/update.html). In addition, most of the coupled 
models tended to underestimate the warming intensity dur-
ing the summer and fall of 2015. Additionally, the predicted 
intensity of the 2015 El Niño event exhibited a wide range 
across various coupled models.

3.2  An optimal simulation

As detailed above, the CNOP-based technique was used to 
characterize errors in the ICs and MPs, which were then opti-
mally corrected. Another optimal simulation experiment was 
therefore performed such that at the start time of the simu-
lations, optimal corrections derived using the CNOP tech-
nique were applied to the errors in E∗

SST ,0
,E∗

SL,0
, p∗

�
, and p∗

Te
. 

Twelve-month simulations were then performed for each 
month during the periods 2014–2015. We pursued the fol-
lowing questions. How well can the defined object function 
be minimized when performing error corrections to the ICs 
and MPs in the ICM? To what extent can the 2015 El Niño 
event simulation be improved using the CNOP-based opti-
mal corrections to the errors in the ICs and MPs?

As defined in Sect. 3, the object function represents the 
departures between the predicted and observed SST anoma-
lies. The adjoint component of the 4-D Var data assimilation 
method implemented in the ICM was used to calculate its 
gradient with respect to the two initial states (SST and SL) 
and the two MPs (αTe and ατ) for minimizing the object 

(a) (b) (c)

Fig. 5  Zonal-time sections along the equator for a SST, b zonal wind stress, and c SL anomalies, which were predicted from the initial condi-
tion on 1 Jan. 2015 for the standard hindcast. The contour intervals are 0.5 °C for SST, 0.1 dyn cm−2 for wind stress and 4 cm for SL

http://iri.columbia.edu/climate/ENSO/currentinfo/update.html
http://iri.columbia.edu/climate/ENSO/currentinfo/update.html
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function. The errors in the ICs and MPs that could cause the 
largest prediction biases were quantified and then optimally 
corrected when performing the simulation. Figure 7 displays 
the spatial distributions of the correction terms to the errors 
in SST, SL, αTe and ατ, which were derived for simulations 
started from Jan. 2015. The regions with large corrections 
to the errors in the ICs were consistent with the sensitive 
regions derived using the CNOP-based approach, where the 
errors in ICs can cause the largest prediction errors (Tao 
et al. 2017). In addition, notable corrections were seen for 
the two parameters, indicating that they should be taken 
as spatially varying. As a measure of the success in mini-
mizing the discrepancies between the model solutions and 
observations, Fig. 8 further illustrates the time series of the 
object function estimated as a function of start time when 
performing the simulations. A reduction was clearly seen 
in the object function when performing the CNOP-based 
analyses, indicating that the misfit between simulated and 
observed SST anomalies was decreasing when the minimi-
zation was executed.

Figure 9 illustrates the Niño3.4 SST anomalies produced 
from the optimized simulations. When those errors in the 

ICs and MPs were optimally corrected, the simulated SST 
anomalies closely followed those observed. Even starting 
in Jan. 2015, the model was able to accurately depict the 
sustained warming, which peaked in fall 2015 and devel-
oped into a mature phase in late 2015. Quantitatively, the 
produced Niño3.4 SST index was increased from 1.5 °C in 
the standard simulation case to 2.8 °C in the optimally cor-
rected case.

Detailed comparisons can be made between the optimized 
simulations (Figs. 9, 10, 11) and the standard simulations 
(Figs. 2, 5, 6). The performances of the model simula-
tions are shown during various stages-onset, development 
and mature-of the 2015 El Niño event. When the corrected 
ICs and two MPs derived from the CNOP-based technique 
were used to perform simulations in the ICM, the model 
ably captured the SST evolution when the simulations were 
started from early 2015 (Figs. 9, 10, 11) when compared 
with the results of the standard simulations (Figs. 2, 5, 6). 
The obvious discrepancies seen in the standard simulations 
disappeared in the optimal simulations. For example, the 
warming intensity in the summer and fall of 2015 was ade-
quately captured when the simulations were started from 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6  Horizontal distributions of SST anomalies (contours) and 
wind stress anomalies (vectors) for the standard hindcast made from 
the initial conditions on 1 Jan. 2015: a Feb. 2015, b Apr. 2015, c Jun. 

2015, d Aug. 2015, e Oct. 2015, and f Dec. 2015. The contour inter-
vals are 0.5 °C for SST
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(a)

(c)

(b)

(d)

Fig. 7  Spatial distributions of the correction terms to errors in a SST, b SL, c ατ and d αTe, which were derived using the CNOP approach-based 
technique for simulations started from Jan. 2015

Fig. 8  Time series of the object function estimated as a function of 
target time when performing simulations from Jan. 2015. The adjoint 
component of the 4-D Var data assimilation method implemented in 
the ICM was used to calculate the gradient of the object function with 
respect to the two initial states (SST and SL) and the two MPs (αTe 
and ατ)

Fig. 9  The same as in Fig. 2 but for the optimized simulation (i.e., 
optimal corrections were performed to the errors in SST, SL, ατ and 
αTe which were quantified using the CNOP approach-based tech-
nique)
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early 2015 (Fig. 9). The rapid amplification in late spring 
was adequately captured when the optimal corrections were 
made to the errors in the ICs and MPs. Subsequently, the 

warm SST anomalies amplified and developed rapidly into 
a strong warm event in summer 2015.

It is straightforward to explain the improvements seen in 
the optimized simulations (Figs. 9, 10, 11) compared with 

(a) (b) (c)

Fig. 10  The same as in Fig. 5 but for the optimized simulation

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11  The same as in Fig. 6 but for the optimized simulation
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the standard simulations (Figs. 2, 5, 6). Theoretically, the 
CNOP approach allowed the errors to be quantified in the 
ICs and MPs that could cause the largest error growth in 
the ENSO prediction. The errors in the ICs and MPs were 
then optimally corrected, and the related error growths were 
effectively inhibited. It is not surprising that simulation 
biases can be reduced. In addition, those two parameters 
represent the Bjerknes feedback (Bjerknes 1969), which 
involves the couplings among the surface winds, SSTs and 
thermocline fluctuations that are important to ENSO devel-
opment. The corrections to the errors in the two MPs led to 
an optimal representation of the two processes involved: the 
thermocline effect on SST and the relative coupling between 
the ocean and atmosphere. For example, αTe is part of the 
Bjerknes feedback that is related to the thermocline’s role 
in ENSO evolution; its value represents the intensity of the 
direct thermocline effect on SST. When the intensities of 
these processes are represented in an optimal way, it is there-
fore expected that simulations can be adequately improved. 
As numerically justified above, optimized error corrections 
to the ICs and two MPs led to the improved simulations of 
SST evolution in 2015. As such, a best possible model simu-
lation can be obtained in the sense that error corrections to 
ICs and MPs derived from the CNOP approach-based tech-
nique are required for the ICM to give rise to the smallest 
departures between simulated and observed SSTAs.

4  Conclusion and discussion

The tropical Pacific experienced a sustained warming con-
dition during 2014–2015. In particular, following the warm 
SSTs throughout 2014, a strong El Niño event developed in 
2015. Its onset occurred in early 2015, a rapid amplification 
of the warm SST anomalies occurred in late spring and sum-
mer, and a mature stage was reached in late 2015 (Zhang and 
Gao 2017). Various state-of-the-art coupled models have 
been routinely used to make ENSO predictions, but system-
atic biases exist in those real-time predictions which were 
widely spread across the various coupled models. In particu-
lar, the intensity of the 2015 El Niño event was significantly 
underestimated when predictions were started from early 
2015. It is critically important to identify error characteris-
tics so that predictions can be adequately improved. These 
prediction biases can be attributed to many factors, includ-
ing errors in ICs and MPs. The previously developed CNOP 
approach can be used to quantify errors in ICs/MPs and their 
relationships with prediction biases. Naturally, if errors in 
ICs and MPs are derived using the CNOP approach and are 
then optimally corrected, it is expected that prediction biases 
can be reduced with the achieved improvements. These ideas 
have been tested in a real case for the 2015 El Niño event.

Such a reduction in model biases is demonstrated by per-
forming two types of simulations using the IOCAS ICM. In 
a standard simulation, the model is initiated using a simple 
initialization procedure. The model can predict the 2015 El 
Niño event to some extent, but the intensity of the event 
is significantly underestimated when predictions are started 
from early 2015 through spring 2015. An optimized simula-
tion was then conducted in which errors in the ICs and MPs 
derived from the CNOP-based technique were corrected 
when performing simulations. These results indicate that 
the CNOP approach can be effectively used to improve simu-
lations due to its ability to quantify errors in ICs and MPs, 
which can then be optimally corrected. The simulations were 
significantly improved, including the intensity of the 2015 
El Niño event in late 2015 when the simulations were per-
formed in early 2015. Herein, a modeling framework was 
presented to clearly demonstrate the feasibility and effective-
ness of using the CNOP-based approach to optimally correct 
errors in ICs and MPs to improve ENSO simulations. The 
idea is tested as a case study and attempted to improve the 
2015 El Niño simulation skill in the ICM.

This study adopted the basic idea of the CNOP approach 
to optimally quantify the error corrections to ICs and MPs. 
Theoretically, the CNOPs represent a kind of perturbations 
to ICs/MPs which can have the largest error growth in model 
prediction. Mathematically, an object function is defined 
as the departures between SST anomalies predicted and 
observed, and its minimization is solved through the CNOP 
approach-based optimization procedure, in which optimal 
error corrections to ICs and MPs are quantified using the 
adjoint component of the original model. Then, making 
error corrections to ICs/MPs can give rise to the smallest 
errors in prediction (i.e., simulated SSTAs can be as close 
as possible to observations). Note that the optimization of 
the ICs, as well as the MPs can also be accomplished using 
a standard 4-D Var data assimilation alone (Gao et al. 2016). 
As described above, the minimization of the object function 
using the CNOP approach-based technique is more or less 
similar to what the 4-D Var data assimilation does. Here, 
we adopt the CNOP-based technique to form a constrained 
minimization problem of an object function for quantifying 
optimal error corrections (Mu et al. 2003) and at the same 
time use the adjoint component of the original model to 
calculate the gradients of the object function with respect 
to ICs/MPs (Gao et al. 2016). Being distinguished from the 
standard 4-D Var data assimilation, one role played by the 
CNOP approach-based technique is the constraint condi-
tions imposed on ICs/MPs when forming the minimization 
problem of the object function for finding an optimal solu-
tion. Then, the nonmonotonic spectral projected gradient 
method (SPG2) is adopted to search for the optimal solution 
in the constrained problem (Birgin et al. 2000). This is the 
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main value which is added in this procedure when the CNOP 
approach-based technique is adopted here.

In this study, the analysis window with which observed 
SSTAs are used to define the object function in the CNOP 
approach-based optimization is taken as 12 months, the 
same period as the hindcast is made. In so doing, the 
answer (the observed SSTAs) has already provided to the 
solution (predicting SSTAs using the model). Taking the 
same analysis period as the prediction period means that 
the CNOP-based analysis only has diagnostic value, but 
not useful in the prediction sense. Note that if the analysis 
period (say taking 6 months) is chosen to be shorter than 
that the prediction period (say taking 12 months), predic-
tions for some months ahead can be made beyond the anal-
ysis period so that the optimized ICs/MPs can have predic-
tive values. Modeling experiments will be performed to 
demonstrate this in the future.

Also, in this paper, we only present a case study for 
the 2015 El Niño event. When the procedure is applied to 
the 2015 El Niño event, good results are obtained, but the 
simulation could be over-tuned for the model to make a 
big El Niño. The procedure can be easily applied to other 
events. Actually, we have also examined the effectiveness 
of these error corrections to other El Niño events with 
similar success. Additionally, it is desirable to examine the 
extent to which the optimized model parameters derived 
from 2015 are useful for the prediction of other cases (e.g., 
the 1997–1998 event). Further tests and applications in 
these lines are underway and will be presented elsewhere.
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