Skip to main content

Advertisement

Log in

Winds: intensity and power density simulated by RegCM4 over South America in present and future climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Since wind is an important source of renewable energy, it has attracted attention worldwide. Several studies have been developed in order to know favorable areas where wind farms can be implemented. Therefore, the purpose of this study is to project changes in wind intensity and in wind power density (PD), at 100 m high, over South America and adjacent oceans, by downscaling and ensemble techniques. Regional climate model version 4 (RegCM4) was nested in the output of three global climate models, considering the RCP8.5 scenario. RegCM4 ensemble in the present climate (1979–2005) was validated through comparisons with ERA-Interim reanalysis. The ensemble represents well the spatial pattern of the winds, but there are some differences in relation to the wind intensity registered by ERA-Interim, mainly in center-east Brazil and Patagonia. The comparison between the future climate (2020–2050 and 2070–2098) and the present one shows that there is an increase in wind intensity and PD on the north of SA, center-east Brazil (except in summer) and latitudes higher than 50°S. Such increase is more intense in the period 2070–2098.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amarante OAC, Brower M, Zack J, Sá AL (2001) Atlas do Potencial Eólico Brasileiro. Ministério de Minas e Energia—ELETROBRÁS Publishing Physics Wevb. Brasília. http://www.cresesb.cepel.br/index.php?section=publicacoes&task=livro&cid=1.Accessed 20 Jan 2017

  • Archer CL, Jacobson MZ (2005) Evaluation of global wind power. J Geophys Res Atmos. doi:10.1029/2004JD005462

    Google Scholar 

  • Barstad I, Sorteberg A, Mesquita MDS (2012) Present and future offshore wind power potential in northern Europe based on downscaled global climate runs with adjusted SST and sea ice cover. Renew Energy 44:398–405

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Article  Google Scholar 

  • Bloom A, Kotroni V, Lagouvardos K (2008) Climate change impact of wind energy availability in the Eastern Mediterranean using the regional climate model PRECIS. Nat Hazards Earth Syst Sci 8:1249–1257

    Article  Google Scholar 

  • Brands S, Herrera S, Fernández J, Gutiérrez JM (2013) How well do CMIP5 earth system models simulate present climate conditions in Europe and Africa? Clim Dyn 41(3–4):803–817

    Google Scholar 

  • Brower MC, Barton MS, Lledó L, Dubois J (2013) A study of wind speed variability using global reanalysis data. AWS Truepower, New York. https://www.awstruepower.com/knowledge-center/item/a-study-of-wind-speed-variability-using-global-reanalysis-data/. Accessed 11 Mar 2017

  • Carvalho D, Rocha A, Gómez-Gesteira M, Santos CS (2017) Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew Energy 101:29–40

    Article  Google Scholar 

  • Catto JL (2016) Extratropical cyclone classification and its use in climate studies. Rev Geophys. doi:10.1002/2016RG000519

    Google Scholar 

  • Chadee XT, Clarke RM (2014) Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data. Renew Sustain Energy Rev 30:45–58

    Article  Google Scholar 

  • Climate Change (2017) https://windeurope.org/policy/topics/climate-change/. Accessed 10 Apr 2017

  • Coelho CAS, Oliveira CP, Ambrizzi T, Reboita MS, Carpenedo CB, Campos JLPS, Tomaziello CAN, Pampuch LA, Custódio MS, Dutra LMM, da Rocha RP, Rehbein A (2015) The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Clim Dyn. doi:10.1007/s00382-015-2800-1

    Google Scholar 

  • Culture Change (2017) http://www.culturechange.org/wind.htm. Accessed 10 Apr 2017

  • Custódio RS (2009) Energia Eólica para a Produção de Energia Elétrica. Eletrobrás, Rio de Janeiro

    Google Scholar 

  • da Rocha RP, Reboita MS, Dutra LMM, Llopart M, Coppola E (2014) Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain. Clim Change 125:95–109

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally¨ AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community model. NCAR Tech. Note NCAR/TN-3871STR, p 72

  • Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PCD, Philipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2012) GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665

    Article  Google Scholar 

  • Elguindi N, Bi X, Giorgi F, Nagarajan B, Pal J, Solmon F, Rausher S, Zakey A, O’Brien T, Nogherotto R, Giuliani G (2014) Regional climate model RegCM user manual version 4.4. The Abdus Salam International Centre for Theoretical Physics. https://gforge.ictp.it/gf/download/docmanfileversion/71/1223/ReferenceMan.pdf. Accessed 12 Mar 2015

  • Emanuel KA, Živković-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56(11):1766–1782

    Article  Google Scholar 

  • Emei S (2013) Wind energy meteorology: atmospheric physics for wind power generation. Springer, London

    Book  Google Scholar 

  • Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92(9):1181–1192

    Article  Google Scholar 

  • Fyfe JC (2003) Extratropical Southern Hemisphere cyclone. Harbingers of climate change? J Clim 16:2802–2805

    Article  Google Scholar 

  • Garreaud R, Falvey M (2009) The coastal winds off western subtropical South America in future climate scenarios. Int J Climatol 29:543–554

    Article  Google Scholar 

  • Gettelman A, Rood RB (2016) Demystifying climate models: a user guide to earth system models. SpringerOpen. http://www.springer.com/us/book/9783662489574. Accessed 15 Feb 2017

  • Giorgetta M, Jungclaus J, Reick C, Legutke S, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, HaakH, Hollweg H-D, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Müller W, Notz D, Raddatz T, Rast S, Roeckner E, Salzmann M, Schmidt H, Schnur R, Segschneider J, Six K, Stockhause M, Wegner J, Widmann H, Wieners K-H, Claussen M, Marotzke J, Stevens B (2012) CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-LR model: the rcp85 experiment, served by ESGF. World Data Cent Clim. doi:10.1594/WDCC/CMIP5.MXELr8

  • Giorgi F (2010) Uncertainties in climate change predictions, from the global to the regional scale. EPJ Web Conf 9:115–129

    Article  Google Scholar 

  • Giorgi F (2014) Introduction to the special issue: the phase I CORDEX RegCM4 hyper-matrix (CREMA)experiment. Clim Change 125:1–5

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res Atmos 104:6335–6352

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncogl UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Gonçalves-Ageitos M, Barrera-Escoda A, Baldasano JM, Cunillera J (2015) Modelling wind resources in climate change scenarios in complex terrains. Renew Energy 76:670–678

    Article  Google Scholar 

  • Greene S, Morrissey M, Johnson SE (2010) Wind climatology, climate change, and wind energy. Geo Compass 4:1592–1605

    Article  Google Scholar 

  • Greene JS, Chatelain M, Morrissey M, Stadler S (2012) Projected future wind speed and wind power density trends over the Western US high plains. Atmos Clim Sci. doi:10.4236/acs.2012.21005

    Google Scholar 

  • Hastenrath S (1991) Climate dynamics of the tropics. Springer, The Netherlands

    Book  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107

    Article  Google Scholar 

  • Holtslag A, de Bruijn E, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Hueging H, Haas R, Born K, Jacob D, Pinto JG (2013) Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J Appl Meteorol Clim 52:903–917

    Article  Google Scholar 

  • IPCC (2013) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In: Core Writing Team, Pachauri RK, Meyer LA (eds) IPCC, Geneva

    Google Scholar 

  • IRENA (2016) Renewable energy market analysis Latin America. http://www.irena.org/DocumentDownloads/Publications/IRENA_Market_Analysis_Latin_America_2016.pdf. Accessed 9 Apr 2017

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo K-O, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque J-F, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chini L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. doi:10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Kaiser-Weiss AK, Kaspar F, Heene V, Borsche M, Tan DGH, Poli P et al (2015) Comparison of regional and global reanalysis near-surface winds with station observations over Germany. Adv Sci Res 12:187–198

    Article  Google Scholar 

  • Krüger LF, da Rocha RP, Reboita MS, Ambrizzi T (2012) RegCM3 nested in HadAM3 scenarios A2 and B2: projected changes in extratropical cyclogenesis,temperature and precipitation over the South Atlantic Ocean. Clim Change 113:599–621

    Article  Google Scholar 

  • Latif M (2011) Uncertainty in climate change projections. J Geochem Explor 110:1–7

    Article  Google Scholar 

  • Llopart M, Coppola E, Giorgi F, da Rocha RP, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim Change 125:111–125

    Article  Google Scholar 

  • Manwell JF, McGowan JG, Rogers AL (2010) Wind energy explained: theory, design and application, 2nd edn. Wiley

  • Marengo JA, Ambrizzi T, da Rocha RP et al (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35(6):1073–1097

    Article  Google Scholar 

  • Marengo JA, Chou SC, Kay G et al (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38(9–10):1829–1848

    Article  Google Scholar 

  • Medeiros LE, Magnago RO, Fisch G, Marciotto ER (2013) Observational study of the surface layer at an ocean–land transition region. J Aerosp Technol Manag São José dos Campos 5(4):449–458

    Article  Google Scholar 

  • Meehl GA, Bony S (2011) Introduction to CMIP5. Clivar Exch 56(16–2):4–5

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JF, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Grubler A et al (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0. Accessed 27 July 2016

  • Nuñez MN, Solman AS, Cabré MF (2009) Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Clim Dyn 32(7–8):1081–1095

    Article  Google Scholar 

  • Pereira EB, Martins FR, Pes MP, da Cruz Segundo EI, Lyra AL (2013) The impacts of global climate changes on the wind power density in Brazil. Renew Energy 49:107–110

    Article  Google Scholar 

  • Pimenta FM, Assireu AT (2015) Simulating reservoir storage for a wind-hydro hybrid system. Renew Energy 76:757–767

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ (2010) Climate change impacts on wind energy: a review. Renew Sustain Energy Rev 14(1):430–437

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Ambrizzi T, Caetano E (2010) An assessment of the latent and sensible heat flux on the simulated regional climate over southwestern South Atlantic Ocean. Clim Dyn 34:873–889. doi:10.1007/s00382-009-0681-x

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Ambrizzi T (2012) Dynamic and climatological features of cyclonic developments over southwestern South Atlantic Ocean. Horizons in earth science research, vol 6. Nova Science Publishers, 135–160

  • Reboita MS, da Rocha RP, Dias CG, Ynoue RY (2014) Climate projections for South America: RegCM3 driven by HadCM3 and ECHAM5. Adv Meteorol 2014:1–17

    Article  Google Scholar 

  • Reboita MS, Dutra LMM, Dias CG (2016) Diurnal cycle of precipitation simulated by RegCM4 over South America: present and future scenarios. Clim Res 70:39–55. doi:10.3354/cr01416

    Article  Google Scholar 

  • Reboita MS, Souza MR, da Rocha RP, Llopart M (2017) Extratropical cyclones over the southwestern AtlanticOcean: RegCM4 projection. Int J Climatol

  • Reyes M, Pinto JG, Moemken J (2015) Statistical-dynamical downscaling for wind energy potentials: evaluation and applications to decadal hindcasts and climate change projections. Int J Climatol 35:229–244

    Article  Google Scholar 

  • Rummukainen M (2016) Added value in regional climate modeling. WIREs Clim Change 7:145–159. doi:10.1002/wcc.378

    Article  Google Scholar 

  • Seth A, Rojas M, Rauscher SA (2010) CMIP3 projected changes in the annual cycle of the South American monsoon. Clim Change 98(3):331–357

    Article  Google Scholar 

  • Silva AR, Pimenta FM, Assireu AT, Spyrides MHC (2016) Complementarity of Brazil’s hydro and offshore wind power. Renew Sustain Energy Rev 56:413–427

    Article  Google Scholar 

  • Stüker E, Schuster CH, Schuster JJ et al (2016) Comparação entre os dados de vento das reanálises meteorológicas ERA-Interim e CFSR com os dados das estações automáticas do INMET no Rio Grande do Sul. Ciência e Natura v.38 Ed. Especial IX Workshop Brasileiro de Micrometeorologia, Rev Centro de Ciências Nat e Exatas—UFSM, pp 284–290. doi:10.5902/2179460X20233

  • Sugahara S, Rocha RP, Rodrigues ML (1994) Condições atmosféricas de grande escala associadas a jato de baixos níveis na América do Sul. Cong Bras Meteorol 8:573–577

    Google Scholar 

  • Sweeney CP, Lynch P, Nolan P (2011) Reducing errors of wind speed forecasts by an optimal combination of post-processing methods. Meteorol Appl. doi:10.1002/met.294

    Google Scholar 

  • Tabata Y, Hashiguchi H, Yamamoto MK, Yamamoto M, Yamanaka MD, Mori S, Syamsudin F, Manik T (2011) Lower tropospheric horizontal wind over Indonesia: a comparison of wind profiler network observations with global reanalyses. J Atmos Sol Terr Phys 73:986–995

    Article  Google Scholar 

  • Tawfik AB, Steiner AL (2011) The role of soil ice in land–atmosphere coupling over the United States: a soil moisture–precipitation winter feedback mechanism. J Geophys Res 116:D02113. doi:10.1029/2010JD014333

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc Lond A Mat Phys Eng Sci 365(1857):2053–2075

    Google Scholar 

  • The Wind Power (2016) Wind farm locations. http://thewindpower.net. Accessed 9 Apr 2017

  • Tobin I, Jerez S, Vautard R et al (2016) Climate change impacts on the power generation potential of a European mid-century wind farms scenario. Environ Res Lett 11:034013

    Article  Google Scholar 

  • Ulbrich U, Leckebush GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117–131

    Article  Google Scholar 

  • vanVuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Google Scholar 

  • Wallace JM, Hobbs PV (2006) Atmospheric science: an introductory survey, 2 edn. Academic Press

  • Wharton S, Lundquist JK (2012) Atmospheric stability affects wind turbine power collection. Environ Res Lett. doi:10.1088/1748-9326/7/1/014005

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; SANSAO Project) for their financial support. Besides, the authors are grateful to the European Center for Medium Range Weather Forecasting (ECMWF) for providing the ERA-Interim reanalysis and the Abdus Salam International Centre for Theoretical Physics (ICTP) for RegCM4 and Marta Llopart for carrying out the simulations in ICTP in the scope of the CORDEX project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Simões Reboita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reboita, M.S., Amaro, T.R. & de Souza, M.R. Winds: intensity and power density simulated by RegCM4 over South America in present and future climate. Clim Dyn 51, 187–205 (2018). https://doi.org/10.1007/s00382-017-3913-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3913-5

Keywords

Navigation