ERRATUM ## Erratum to: Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon L. Resplandy 1 \odot · R. F. Keeling 1 · B. B. Stephens 2 · J. D. Bent 2 · A. Jacobson 3 · C. Rödenbeck 4 · S. Khatiwala 5 Published online: 19 August 2017 © Springer-Verlag GmbH Germany 2017 Erratum to: Clim Dyn (2016) 47:3335–3357 DOI:10.1007/s00382-016-3029-3 The original article has been published online with 2 errors. The errors have been corrected as below: The definition of pre-industrial oceanic potential oxygen (OPO_{pi}) given in Eq. (7) reads: $$OPO_{pi} = O_2^* + 1.1 \times C_{pi}^*$$ but should appear as: $$OPO_{pi} = O_2^* + 1.1 \times C_{pi}^* - (1/X_{N_2}) \times N_2$$ where ${\rm O_2}^*$ and ${\rm C_{pi}}^*$ are the quasi-conservative ocean tracer concentrations tracking air–sea exchanges of ${\rm O_2}$ and pre-industrial ${\rm CO_2}$, ${\rm N_2}$ is the dissolved ${\rm N_2}$ ocean concentration and ${\rm X_{N_2}}$ is the atmospheric mole fraction of ${\rm N_2}$ (${\rm X_{N_2}}=0.7808$). The online version of the original article can be found under doi:10.1007/s00382-016-3029-3. - L. Resplandy lresplandy@ucsd.edu - Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA - National Center for Atmospheric Research, Boulder, Colorado, USA - ³ Earth System Research Laboratory, NOAA, Boulder, Colorado, USA - ⁴ Max Planck Institute for Biogeochemistry, Jena, Germany - Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK This definition of OPO_{pi} and the OPO_{pi} data shown on Fig. 1 therefore include the changes in OPO due to air–sea fluxes of O_2 and pre-industrial CO_2 but also due to the thermally driven air–sea fluxes of N_2 , which are important for understanding changes in pre-industrial atmospheric potential oxygen (APO_{pi}) . Including the N_2 contribution makes OPO_{pi} a mirror tracer of APO_{pi} across the air–sea interface, i.e. with equivalent air–sea fluxes. The data based OPO_{pi} to potential temperature ratio derived from Fig. 1 includes the N_2 contribution and is equal to -3.9 nmol/J. Note that without the N_2 contribution, this ratio would equal -4.4 nmol/J. 2. In Table 1, the isopycnal defining the base of the thermocline reads $\sigma_{\theta} = 24.7$ and should read $\sigma_{\theta} = 27.4$. **Acknowledgements** We thank Gregory de Souza for identifying the typo in Table 1 of Resplandy et al. (2016). ## Reference Resplandy L, Keeling RF, Stephens BB, Bent JD, Jacobson A, Rödenbeck C, Khatiwala S (2016) Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon. Clim Dyn. doi:10.1007/s00382-016-3029-3