## **ERRATUM**



## Erratum to: Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon

L. Resplandy $^1$   $\odot$  · R. F. Keeling $^1$  · B. B. Stephens $^2$  · J. D. Bent $^2$  · A. Jacobson $^3$  · C. Rödenbeck $^4$  · S. Khatiwala $^5$ 

Published online: 19 August 2017 © Springer-Verlag GmbH Germany 2017

Erratum to: Clim Dyn (2016) 47:3335–3357 DOI:10.1007/s00382-016-3029-3

The original article has been published online with 2 errors. The errors have been corrected as below:

The definition of pre-industrial oceanic potential oxygen (OPO<sub>pi</sub>) given in Eq. (7) reads:

$$OPO_{pi} = O_2^* + 1.1 \times C_{pi}^*$$

but should appear as:

$$OPO_{pi} = O_2^* + 1.1 \times C_{pi}^* - (1/X_{N_2}) \times N_2$$

where  ${\rm O_2}^*$  and  ${\rm C_{pi}}^*$  are the quasi-conservative ocean tracer concentrations tracking air–sea exchanges of  ${\rm O_2}$  and pre-industrial  ${\rm CO_2}$ ,  ${\rm N_2}$  is the dissolved  ${\rm N_2}$  ocean concentration and  ${\rm X_{N_2}}$  is the atmospheric mole fraction of  ${\rm N_2}$  ( ${\rm X_{N_2}}=0.7808$ ).

The online version of the original article can be found under doi:10.1007/s00382-016-3029-3.

- L. Resplandy lresplandy@ucsd.edu
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
- National Center for Atmospheric Research, Boulder, Colorado, USA
- <sup>3</sup> Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- <sup>4</sup> Max Planck Institute for Biogeochemistry, Jena, Germany
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK

This definition of  $OPO_{pi}$  and the  $OPO_{pi}$  data shown on Fig. 1 therefore include the changes in OPO due to air–sea fluxes of  $O_2$  and pre-industrial  $CO_2$  but also due to the thermally driven air–sea fluxes of  $N_2$ , which are important for understanding changes in pre-industrial atmospheric potential oxygen  $(APO_{pi})$ . Including the  $N_2$  contribution makes  $OPO_{pi}$  a mirror tracer of  $APO_{pi}$  across the air–sea interface, i.e. with equivalent air–sea fluxes. The data based  $OPO_{pi}$  to potential temperature ratio derived from Fig. 1 includes the  $N_2$  contribution and is equal to -3.9 nmol/J. Note that without the  $N_2$  contribution, this ratio would equal -4.4 nmol/J.

2. In Table 1, the isopycnal defining the base of the thermocline reads  $\sigma_{\theta} = 24.7$  and should read  $\sigma_{\theta} = 27.4$ .

**Acknowledgements** We thank Gregory de Souza for identifying the typo in Table 1 of Resplandy et al. (2016).

## Reference

Resplandy L, Keeling RF, Stephens BB, Bent JD, Jacobson A, Rödenbeck C, Khatiwala S (2016) Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon. Clim Dyn. doi:10.1007/s00382-016-3029-3

