Skip to main content

Advertisement

Log in

On the range of future Sahel precipitation projections and the selection of a sub-sample of CMIP5 models for impact studies

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The future evolution of the West African Monsoon is studied by analyzing 32 CMIP5 models under the rcp8.5 emission scenario. A hierarchical clustering method based on the simulated pattern of precipitation changes is used to classify the models. Four groups, which do not agree on the simple sign of future Sahel precipitation change, are obtained. We find that the inter-group differences are mainly associated with the large spread in (1) temperature increase over the Sahara and North Atlantic and in (2) the strengthening of low and mid-level winds. A wetter Sahel is associated with a strong increase in temperature over the Sahara (>6 °C), a northward shift of the monsoon system and a weakening of the African Easterly jet. A dryer Sahel is associated with subsidence anomalies, a strengthening of the 600 hPa wind speed, and a weaker warming over the Northern Hemisphere. Moreover, the western (central) Sahel is projected to become dryer (wetter) during the first months (last months) of the rainy season in a majority of models. We propose several methods to select a sub-sample of models that captures both the ensemble mean pattern and/or the spread of precipitation changes from the full ensemble. This methodology is useful in all the situations for which it is not possible to deal with a large ensemble of models, and in particular most impact studies. We show that no relationship exists between the climatological mean biases in precipitation and temperature and the future changes in the monsoon intensity. This indicates that the mean bias is therefore not a reliable metric for the model selection. For this reason, we propose several methodologies, based on the projected precipitation changes: The “diversity” method, which consists in the selection of one model from each group is the most appropriate to capture the spread in precipitation change. The “pattern selection” method, which consists in the selection of models in a single group allows to select models for the study of a specific pattern of precipitation change, for example the one that is the most representative of the full ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdussalam AF et al (2014) The impact of climate change on meningitis in Northwest Nigeria: an assessment using CMIP5 climate model simulations. Weather Clim Soc 6:371–379

    Article  Google Scholar 

  • Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Bader J, Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30(22):2169. doi:10.1029/2003GL018426

    Article  Google Scholar 

  • Barros V, et al. (2015) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Biasutti M (2013) Forced Sahel rainfall trends in the CMIP5 archive. J Geophys Res Atmos 118:1613–1623. doi:10.1002/jgrd.50206

    Article  Google Scholar 

  • Biasutti M, Sobel AH (2009) Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophys Res Lett 36:L23707. doi:10.1029/2009gl041303

    Article  Google Scholar 

  • Buontempo C, Mathison C, Jones R, Williams K, Wang C, McSweeney C (2015) An ensemble climate projection for Africa. Clim Dyn 44:2097–2118. doi:10.1007/s00382-014-2286-2

    Article  Google Scholar 

  • Caminade C et al (2014) Impact of climate change on global malaria distribution. Proc Natl Acad Sci 111:3286–3291

    Article  Google Scholar 

  • Cook KH (1999) Generation of the African easterly jet and its role in determining west African precipitation. J Clim 12:1165–1184. doi:10.1175/1520-0442(1999)012<1165:gotaej>2.0.co;2

    Article  Google Scholar 

  • Crétat J, Vizy E, Cook K (2014) How well are daily intense rainfall events captured by current climate models over Africa? Clim Dyn 42:2691–2711. doi:10.1007/s00382-013-1796-7

    Article  Google Scholar 

  • Dai A, Lamb PJ, Trenberth KE, Hulme M, Jones PD, Xie P (2004) The recent Sahel drought is real. Int J Climatol 24:1323–1331

    Article  Google Scholar 

  • Dee D et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dong B, Sutton R (2015) Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat Clim Change 5:757–760. doi:10.1038/nclimate2664

    Article  Google Scholar 

  • Druyan LM (2011) Studies of 21st-century precipitation trends over West Africa. Int J Climatol 31:1415–1424

    Article  Google Scholar 

  • Dwyer JG, Biasutti M, Sobel AH (2014) The effect of greenhouse gas-induced changes in SST on the annual cycle of zonal mean tropical precipitation. J Clim 27:4544–4565

    Article  Google Scholar 

  • Fontaine B et al (2010) Impacts of warm and cold situations in the Mediterranean basins on the West African monsoon: observed connection patterns (1979–2006) and climate simulations. Clim Dyn 35:95–114. doi:10.1007/s00382-009-0599-3

    Article  Google Scholar 

  • Fontaine B, Gaetani M, Ullmann A, Roucou P (2011a) Time evolution of observed July–September sea surface temperature-Sahel climate teleconnection with removed quasi-global effect (1900–2008). J Geophys Res Atmos. doi:10.1029/2010jd014843

    Google Scholar 

  • Fontaine B, Roucou P, Monerie P-A (2011b) Changes in the African monsoon region at medium-term time horizon using 12 AR4 coupled models under the A1b emissions scenario. Atmos Sci Lett 12:83–88. doi:10.1002/asl.321

    Article  Google Scholar 

  • Gaetani M, Mohino E (2013) Decadal prediction of the Sahelian precipitation in CMIP5 simulations. J Clim 26:7708–7719

    Article  Google Scholar 

  • Gaetani M, Fontaine B, Roucou P, Baldi M (2010) Influence of the Mediterranean Sea on the West African monsoon: intraseasonal variability in numerical simulations. J Geophys Res 115:D24115. doi:10.1029/2010jd014436

    Article  Google Scholar 

  • Giannini A (2010) Mechanisms of climate change in the semiarid African sahel: the local view. J Clim 23:743–756. doi:10.1175/2009jcli3123.1

    Article  Google Scholar 

  • Grist JP, Nicholson SE (2001) A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J Clim 14:1337–1359

    Article  Google Scholar 

  • Guan K, Sultan B, Biasutti M, Baron C, Lobell DB (2015) What aspects of future rainfall changes matter for crop yields in West Africa? Geophys Res Lett. doi:10.1002/2015gl063877

    Google Scholar 

  • Haarsma RJ, Selten FM, Weber SL, Kliphuis M (2005) Sahel rainfall variability and response to greenhouse warming. Geophys Res Lett 32:L17702. doi:10.1029/2005gl023232

    Article  Google Scholar 

  • Hoerling M, Hurrell J, Eischeid J, Phillips A (2006) Detection and Attribution of Twentieth-Century Northern and Southern African Rainfall Change. J Clim 19:3989–4008. doi:10.1175/jcli3842.1

    Article  Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM computing surveys (CSUR) 31:264–323

    Article  Google Scholar 

  • James R, Washington R (2013) Changes in African temperature and precipitation associated with degrees of global warming. Clim Change 117:859–872

    Article  Google Scholar 

  • James R, Washington R, Jones R (2015) Process-based assessment of an ensemble of climate projections for West Africa. J Geophys Res Atmos. doi:10.1002/2014JD022513

    Google Scholar 

  • Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IFA, Goswami P, Zhou T (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res Atmos 118:3053–3065. doi:10.1002/jgrd.50258

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706. doi:10.1029/2006gl026242

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758. doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40:1194–1199

    Article  Google Scholar 

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140

    Article  Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990-2007). J Hydrol 375:52–64. doi:10.1016/j.jhydrol.2008.11.030

    Article  Google Scholar 

  • Lee J-Y, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119. doi:10.1007/s00382-012-1564-0

    Article  Google Scholar 

  • L’Hote Y, Mahé G, Somé B, Triboulet JP (2002) Analysis of a Sahelian annual rainfall index from 1896 to 2000; the drought continues. Hydrol Sci J 47:563–572

    Article  Google Scholar 

  • L’Hote Y, Mahe G, Some B (2003) The 1990s rainfall in the Sahel: the third driest decade since the beginning of the century. Hydrol Sci J 48:493–496

    Article  Google Scholar 

  • Li F, Collins WD, Wehner MF, Williamson DL, Olson JG (2011) Response of precipitation extremes to idealized global warming in an aqua-planet climate model: towards a robust projection across different horizontal resolutions. Tellus A 63:876–883

    Article  Google Scholar 

  • Li F, Rosa D, Collins WD, Wehner MF (2012) “Super-parameterization”: a better way to simulate regional extreme precipitation? J Adv Model Earth Syst. doi:10.1029/2011ms000106

    Google Scholar 

  • Li L, Diallo I, Xu C-Y, Stordal F (2015) Hydrological projections under climate change in the near future by RegCM4 in Southern Africa using a large-scale hydrological model. J Hydrol 528:1–16

    Article  Google Scholar 

  • Martin ER, Thorncroft C, Booth BB (2014) The multidecadal Atlantic SST—Sahel rainfall teleconnection in CMIP5 simulations. J Clim 27:784–806

    Article  Google Scholar 

  • Masson D, Knutti R (2011) Climate model genealogy. Geophysical Research Letters 38

  • Maynard KM, Royer JFR, Chauvin FC (2002) Impact of greenhouse warming on the West African summer monsoon. Clim Dyn 19:499–514. doi:10.1007/s00382-002-0242-z

    Article  Google Scholar 

  • McSweeney CF, Jones RG, Booth BB (2012) Selecting ensemble members to provide regional climate change information. J Clim 25:7100–7121

    Article  Google Scholar 

  • McSweeney C, Jones R, Lee R, Rowell D (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44:3237–3260

    Article  Google Scholar 

  • Meinshausen M et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi:10.1007/s10584-011-0156-z

    Article  Google Scholar 

  • Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37:419–440

    Article  Google Scholar 

  • Monerie P-A, Fontaine B, Roucou P (2012) Expected future changes in the African monsoon between 2030 and 2070 using some CMIP3 and CMIP5 models under a medium-low RCP scenario. J Geophys Res Atmos (1984–2012) 117:D16111. doi:10.1029/2012JD017510

    Google Scholar 

  • Monerie P-A, Roucou P, Fontaine B (2013) Mid-century effects of Climate Change on African monsoon dynamics using the A1B emission scenario. Int J Climatol 33:881–896. doi:10.1002/joc.3476

    Article  Google Scholar 

  • Monerie P-A, Biasutti M, Roucou P (2016) On the projected increase of Sahel rainfall during the late rainy season. Int J Climatol. doi:10.1002/joc.4638

    Google Scholar 

  • Nicholson SE (2005) On the question of the “recovery” of the rains in the West African Sahel. J Arid Environ 63:615–641. doi:10.1016/j.jaridenv.2005.03.004

    Article  Google Scholar 

  • Nicholson SE (2008) The intensity, location and structure of the tropical rainbelt over west Africa as factors in interannual variability. Int J Climatol 28:1775–1785

    Article  Google Scholar 

  • Nicholson SE (2013) The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorology 2013

  • Nicholson SE, Dezfuli AK, Klotter D (2012a) A two-century precipitation dataset for the continent of Africa. Bull Am Meteorol Soc 93:1219–1231

    Article  Google Scholar 

  • Nicholson SE, Klotter D, Dezfuli AK (2012b) Spatial reconstruction of semi-quantitative precipitation fields over Africa during the nineteenth century from documentary evidence and gauge data. Quatern Res 78:13–23

    Article  Google Scholar 

  • Okumura YM, Ohba M, Deser C, Ueda H (2011) A proposed mechanism for the asymmetric duration of El Niño and La Niña. J Clim 24:3822–3829

    Article  Google Scholar 

  • Ozer P, Erpicum M, DemarÉE G, Vandiepenbeeck M (2003) The Sahelian drought may have ended during the 1990s. Hydrol Sci J 48:489–492. doi:10.1623/hysj.48.3.489.45285

    Article  Google Scholar 

  • Park J-Y, Bader J, Matei D (2015) Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nat Commun. doi:10.1038/ncomms6985

    Google Scholar 

  • Patricola CM, Cook KH (2008) Atmosphere/vegetation feedbacks: a mechanism for abrupt climate change over northern Africa. J Geophys Res Atmos. doi:10.1029/2007jd009608

    Google Scholar 

  • Pennell C, Reichler T (2011) On the effective number of climate models. J Clim 24:2358–2367. doi:10.1175/2010JCLI3814.1

    Article  Google Scholar 

  • Polo I, Ullmann A, Roucou P, Fontaine B (2011) Weather regimes in the Euro-Atlantic and Mediterranean sector, and relationship with West African rainfall over the 1989–2008 period from a self-organizing maps approach. J Clim 24:3423–3432

    Article  Google Scholar 

  • Richter I, Xie S-P (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31:587–598. doi:10.1007/s00382-008-0364-z

    Article  Google Scholar 

  • Richter I, Xie S-P, Wittenberg AT, Masumoto Y (2012) Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Clim Dyn 38:985–1001

    Article  Google Scholar 

  • Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger JL (2013) The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim 26(17):6471–6505

    Article  Google Scholar 

  • Rowell DP (2003) The Impact of Mediterranean SSTs on the Sahelian Rainfall Season. J Clim 16:849–862. doi:10.1175/1520-0442(2003)016<0849:tiomso>2.0.co;2

    Article  Google Scholar 

  • Saini R, Wang G, Yu M, Kim J (2015) Comparison of RCM and GCM projections of boreal summer precipitation over Africa. J Geophys Res Atmos 120:3679–3699. doi:10.1002/2014jd022599

    Article  Google Scholar 

  • Sanogo S, Fink AH, Omotosho JA, Ba A, Redl R, Ermert V (2015) Spatio-temporal characteristics of the recent rainfall recovery in West Africa. Int J Climatol. doi:10.1002/joc.4309

    Google Scholar 

  • Seth A, Rauscher SA, Biasutti M, Giannini A, Camargo SJ, Rojas M (2013) CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J Clim 26:7328–7351. doi:10.1175/JCLI-D-12-00726.1

    Article  Google Scholar 

  • Skinner CB, Ashfaq M, Diffenbaugh NS (2012) Influence of twenty-first-century atmospheric and sea surface temperature forcing on West African climate. J Clim 25:527–542

    Article  Google Scholar 

  • Solomon S (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press, Cambridge

    Google Scholar 

  • Sultan B et al (2014) Robust features of future climate change impacts on sorghum yields in West Africa. Environ Res Lett 9:104006

    Article  Google Scholar 

  • Sylla MB, Giorgi F, Pal JS, Gibba P, Kebe I, Nikiema M (2015) Projected changes in the annual cycle of high-intensity precipitation events over West Africa for the late twenty-first century. J Clim 28:6475–6488. doi:10.1175/JCLI-D-14-00854.1

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Thorncroft C, Blackburn M (1999) Maintenance of the African easterly jet. Q J R Meteorol Soc 125:763–786

    Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century sst trends in the north atlantic. J Clim 22:1469–1481

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newslett 115:12–18

    Google Scholar 

  • Vizy EK, Cook KH (2012) Mid-twenty-first-century changes in extreme events over northern and tropical Africa. J Clim 25:5748–5767. doi:10.1175/jcli-d-11-00693.1

    Article  Google Scholar 

  • Wang G, Alo CA (2012) Changes in precipitation seasonality in West Africa predicted by RegCM3 and the impact of dynamic vegetation feedback. Int J Geophys. doi:10.1155/2012/597205

    Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Wehner MF, Smith RL, Bala G, Duffy P (2010) The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Clim Dyn 34:241–247

    Article  Google Scholar 

  • Xue Y, Boone A, Taylor CM (2012) Review of recent developments and the future prospective in west African atmosphere/land interaction studies. Int J Geophys 2012:12. doi:10.1155/2012/748921

    Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett. doi:10.1029/2006gl026267

    Google Scholar 

Download references

Acknowledgments

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Calculations were performed using HPC resources from DSI-CCUB (Université de Bourgogne). This work was supported by the EU-funded PREFACE (grant agreement 603521) project. We also thank the two anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Arthur Monerie.

Additional information

Paul-Arthur Monerie: Previously at Centre de Recherches en Climatologie, UMR6282, CNRS/University of Burgundy, Dijon, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monerie, PA., Sanchez-Gomez, E. & Boé, J. On the range of future Sahel precipitation projections and the selection of a sub-sample of CMIP5 models for impact studies. Clim Dyn 48, 2751–2770 (2017). https://doi.org/10.1007/s00382-016-3236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3236-y

Keywords

Navigation