Skip to main content
Log in

Precipitation over urban areas in the western Maritime Continent using a convection-permitting model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the effects of urban areas on precipitation in the western Maritime Continent using a convection-permitting regional atmospheric model. The Weather Research and Forecasting model was used to simulate the atmosphere at a range of spatial resolutions using a multiple nesting approach. Two experiments (with and without urban areas) were completed over a 5-year period (2008–2012) each to estimate the contribution of cities to changes in local circulation. At first, the model is evaluated against two satellite-derived precipitation products and the benefit of using a very high-resolution model (2-km grid spacing) over a region where rainfall is dominated by convective processes is demonstrated, particularly in terms of its diurnal cycle phase and amplitude. The influence of cities on precipitation characteristics is quantified for two major urban nuclei in the region (Jakarta and Kuala Lumpur) and results indicate that their presence locally enhances precipitation by over 30 %. This increase is mainly due to an intensification of the diurnal cycle. We analyse the impact on temperature, humidity and wind to put forward physical mechanisms that explain such changes. Cities increase near surface temperature, generating instability. They also make land-sea temperature contrasts stronger, which enhances sea breeze circulations. Together, they increase near-surface moisture flux convergence and favour convective processes leading to an overall increase of precipitation over urban areas. The diurnal cycle of these effects is reflected in the atmospheric footprint of cities on variables such as humidity and cloud mixing ratio and accompanies changes in precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ackerman B, Changnon SA Jr, Dzurisin G et al (1978) Summary of METROMEX, volume 2: causes of precipitation anomalies. Bulletin 63. Illinois State Water Survey, Urbana

  • Argüeso D, Evans JP, Fita L, Bormann KJ (2014) Temperature response to future urbanization and climate change. Clim Dyn 42:2183–2199. doi:10.1007/s00382-013-1789-6

    Article  Google Scholar 

  • Argüeso D, Evans JP, Pitman AJ, Di Luca A (2015) Effects of city expansion on heat stress under climate change conditions. PLoS ONE 10:e0117066. doi:10.1371/journal.pone.0117066

    Article  Google Scholar 

  • Atkinson BW (1971) The effect of an urban area on the precipitation from a moving thunderstorm. J Appl Meteorol 10:47–55

    Article  Google Scholar 

  • Banacos PC, Schultz DM (2005) The use of moisture flux convergence in forecasting convective initiation: historical and operational perspectives. Weather Forecast 20:351–366. doi:10.1175/WAF858.1

    Article  Google Scholar 

  • Bluestein HB (1992) Synoptic-dynamic meteorology in midlatitudes. Oxford University Press, Oxford

    Google Scholar 

  • Changnon SA Jr (1968) The La Porte weather anomaly—fact or fiction? Bull Am Meteorol Soc 49:4–11

    Google Scholar 

  • Chen F, Kusaka H, Bornstein R et al (2011) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int J Climatol 31:273–288. doi:10.1002/joc.2158

    Article  Google Scholar 

  • Childs PP, Raman S (2005) Observations and numerical simulations of urban heat island and sea breeze circulations over New York City. Pure appl Geophys 162:1955–1980. doi:10.1007/s00024-005-2700-0

    Article  Google Scholar 

  • Cleugh H, Grimmond CSB (2011) Chapter 3—urban climates and global climate change, 2nd edition. The future of the world’s climate, pp 47–76. doi:10.1016/B978-0-12-386917-3.00003-8

  • Comarazamy DE, González JE, Luvall JC et al (2010) A land-atmospheric interaction study in the coastal tropical city of San Juan, Puerto Rico. Earth Interact 14:1–24. doi:10.1175/2010EI309.1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Di Luca A, de Elía R, Laprise R (2015) Challenges in the quest for added value of regional climate dynamical downscaling. Curr Clim Change Rep 1(1):10–21. doi:10.1007/s40641-015-0003-9

    Article  Google Scholar 

  • Ebert EE, Janowiak JE, Kidd C (2007) Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull Am Meteorol Soc 88:47–64. doi:10.1175/BAMS-88-1-47

    Article  Google Scholar 

  • Evans JP, Bormann K, Katzfey J, Dean S, Arritt RW (2015) Regional climate model projections of the South Pacific Convergence Zone. Clim Dyn. doi:10.1007/s00382-015-2873-x

  • Ganeshan M, Murtugudde R, Imhoff ML (2013) A multi-city analysis of the UHI-influence on warm season rainfall. Urban Clim. doi:10.1016/j.uclim.2013.09.004

    Google Scholar 

  • Gianotti RL, Zhang D, Eltahir EAB (2012) Assessment of the regional climate model version 3 over the Maritime Continent using different cumulus parameterization and land surface schemes. J Clim 25:638–656. doi:10.1175/JCLI-D-11-00025.1

    Article  Google Scholar 

  • Han J-Y, Baik J-J, Lee H (2014) Urban impacts on precipitation. Asia Pacific J Atmos Sci 50:17–30. doi:10.1007/s13143-014-0016-7

    Article  Google Scholar 

  • Haylock M, McBride J (2001) Spatial coherence and predictability of Indonesian wet season rainfall. J Clim 14:3882–3887

    Article  Google Scholar 

  • Hirpa FA, Gebremichael M, Hopson T (2010) Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J Appl Meteorol Climatol 49:1044–1051. doi:10.1175/2009JAMC2298.1

    Article  Google Scholar 

  • Holloway CE, Woolnough SJ, Lister GMS (2012) Precipitation distributions for explicit versus parametrized convection in a large-domain high-resolution tropical case study. QJR Meteorol Soc 138:1692–1708. doi:10.1002/qj.1903

    Article  Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. doi:10.1175/MWR3199.1

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Janowiak JE, Kousky VE, Joyce RJ (2005) Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses. J Geophys Res 110:D23105–D23118. doi:10.1029/2005JD006156

    Article  Google Scholar 

  • Jauregui E, Romales E (1996) Urban effects on convective precipitation in Mexico city. Atmos Environ 30:3383–3389. doi:10.1016/1352-2310(96)00041-6

    Article  Google Scholar 

  • Jourdain NC, Marchesiello P, Menkes CE et al (2011) Mesoscale simulation of tropical cyclones in the South Pacific: climatology and interannual variability. J Clim 24:3–25. doi:10.1175/2010JCLI3559.1

    Article  Google Scholar 

  • Joyce RJ, Janowiak JE, Arkin PA (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503. doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2

    Article  Google Scholar 

  • Jullien S (2013) Ocean response and feedback to tropical cyclones in the South Pacific: processes and climatology, pp 1–229

  • Kidd C, Ferraro R, Levizzani V (2010) The fourth international precipitation working group workshop. Bull Am Meteorol Soc 91:1095–1099. doi:10.1175/2009BAMS2871.1

    Article  Google Scholar 

  • Kusaka H, Kimura F (2004) Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case. J Meteorol Soc Jpn 82:67–80

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound-Layer Meteorol 101:329–358

    Article  Google Scholar 

  • Kusaka H, Nawata K, Suzuki-Parker A et al (2014) Mechanism of precipitation increase with urbanization in Tokyo as revealed by ensemble climate simulations. J Appl Meteorol Climatol 53:824–839. doi:10.1175/JAMC-D-13-065.1

    Article  Google Scholar 

  • Kwan MS, Tangang FT, Juneng L (2013) Present-day regional climate simulation over Malaysia and western Maritime Continent region using PRECIS forced with ERA40 reanalysis. Theor Appl Climatol 115:1–14. doi:10.1007/s00704-013-0873-5

    Article  Google Scholar 

  • Love BS, Matthews AJ, Lister GMS (2011) The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. QJR Meteorol Soc 137:934–947. doi:10.1002/qj.809

    Article  Google Scholar 

  • Mesinger F (2008) An essay on the eta cumulus convection (BMJ) scheme, pp 1–7

  • Mishra V, Ganguly AR, Nijssen B, Lettenmaier DP (2015) Changes in observed climate extremes in global urban areas. Environ Res Lett 10:1–10. doi:10.1088/1748-9326/10/2/024005

    Google Scholar 

  • Neale R, Slingo J (2003) The Maritime Continent and its role in the global climate: a GCM study. J Clim 16:834–848. doi:10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2

    Article  Google Scholar 

  • Oke TR (1988) The urban energy balance. Progress Phys Geogr 12:471–508. doi:10.1177/030913338801200401

  • Prein AF, Langhans W, Fosser G et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys. doi:10.1002/(ISSN)1944-9208

    Google Scholar 

  • Qian J-H, Robertson AW, Moron V (2010) Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. J Atmos Sci 67:3509–3524. doi:10.1175/2010JAS3348.1

    Article  Google Scholar 

  • Schmid PE, Niyogi D (2013) Impact of city size on precipitation-modifying potential. Geophys Res Lett 40:5263–5267. doi:10.1002/grl.50656

    Article  Google Scholar 

  • Shepherd JM (2005) A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact 9:1–27

    Article  Google Scholar 

  • Shepherd JM, Burian SJ (2003) Detection of urban-induced rainfall anomalies in a Major Coastal City. Earth Interact 7:1–17

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J et al (2009) A description of the advanced research WRF version 3. NCAR/TN-475 + STR NCAR technical note 125

  • Tan M, Ibrahim A, Duan Z et al (2015) Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens 7:1504–1528. doi:10.3390/rs70201504

    Article  Google Scholar 

  • Teo C-K, Koh T-Y, Chun-Fung Lo J, Chandra Bhatt B (2011) Principal component analysis of observed and modeled diurnal rainfall in the Maritime Continent. J Clim 24:4662–4675. doi:10.1175/2011JCLI4047.1

    Article  Google Scholar 

  • Turk FJ, Xian P (2013) An assessment of satellite-based high resolution precipitation datasets for atmospheric composition studies in the Maritime Continent. Atmos Res 122:579–598. doi:10.1016/j.atmosres.2012.02.017

    Article  Google Scholar 

  • Ulate M, Dudhia J, Zhang C (2014) Sensitivity of the water cycle over the Indian Ocean and Maritime Continent to parameterized physics in a regional model. J Adv Model Earth Syst 6:1095–1120. doi:10.1002/2014MS000313

    Article  Google Scholar 

  • Vernimmen RRE, Hooijer A, Mamenun et al (2012) Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia. Hydrol Earth Syst Sci 16:133–146. doi:10.5194/hess-16-133-2012

    Article  Google Scholar 

  • Wang Y, Zhou L, Hamilton K (2007) Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle*. Mon Weather Rev 135:567–585. doi:10.1175/MWR3308.1

    Article  Google Scholar 

  • Wang Y, Long CN, Leung LR et al (2009) Evaluating regional cloud-permitting simulations of the WRF model for the tropical warm pool international cloud experiment (TWP-ICE), Darwin, 2006. J Geophys Res 114:D21203–D21221. doi:10.1029/2009JD012729

    Article  Google Scholar 

  • Wang X, Liao J, Zhang J et al (2014) A numeric study of regional climate change induced by urban expansion in the Pearl River Delta, China. J Appl Meteorol Climatol 53:346–362. doi:10.1175/JAMC-D-13-054.1

    Article  Google Scholar 

  • Yang GY, Slingo J (2001) The diurnal cycle in the tropics. Mon Weather Rev 129:784–801. doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by funding from the Australian Research Council (ARC) as part of the Centre of Excellence for Climate System Science (CE110001028), as well as the NSW Office of Environment and Heritage. Jason Evans was supported by the Australian Research Council Future Fellowship FT110100576. This work was supported by an award under the Merit Allocation Scheme on the NCI National Facility at the ANU. We are thankful to the European Centre for Medium-Range Weather Forecasts for providing ERA-Interim data. We also thank Dr. Thomas Chubb from Monash University (Australia) for making the Skew-T code publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Argüeso.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argüeso, D., Di Luca, A. & Evans, J.P. Precipitation over urban areas in the western Maritime Continent using a convection-permitting model. Clim Dyn 47, 1143–1159 (2016). https://doi.org/10.1007/s00382-015-2893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2893-6

Keywords

Navigation