
        
    
        
            
            
                
            

            
        
    

        
    
        
            
            
                
            

            
        
    


        
    




        

        
    Skip to main content

    
    
        
            
                Advertisement

                
                    
                        
                            [image: Advertisement]
                        
                    

                

            

        

    



    
    
        
            
                
                    
                        [image: SpringerLink]
                    
                
            
        


        
            
                
    
        Log in
    


            
        
    


    
        
            
                
                    
                        
                            
                        Menu
                    
                


                
                    
                        
                            Find a journal
                        
                    
                        
                            Publish with us
                        
                    
                        
                            Track your research
                        
                    
                


                
                    
                        
                            
                                
                                    
                                Search
                            
                        

                    
                    
                        
 
  
   
  Cart
 


                    
                

            

        
    




    
        
    
        
            
                
                    
    
        
            	
                        Home




	
                        Climate Dynamics

	
                        Article

AMOC response to global warming: dependence on the background climate and response timescale


                    	
                            Published: 14 May 2014
                        


                    	
                            Volume 44, pages 3449–3468, (2015)
                        
	
                            Cite this article
                        



                    
                        
                        
                    

                
                
                    
                        
                            
                            
                                
                                [image: ]
                            
                            Climate Dynamics
                        
                        
                            
                                Aims and scope
                                
                            
                        
                        
                            
                                Submit manuscript
                                
                            
                        
                    
                

            
        
    


        
            
                

                

                
                    
                        	Jiang Zhu1, 
	Zhengyu Liu1,2, 
	Jiaxu Zhang1 & 
	…
	Wei Liu3 

Show authors
                        
    

                        
                            	
            
                
            2898 Accesses

        
	
            
                
            28 Citations

        
	
                
                    
                15 Altmetric

            
	
            
                
            2 Mentions

        
	
            Explore all metrics 
                
            

        


                        

                        
    
    

    
    


                        
                    
                


                
                    Abstract

This paper investigates the response of the Atlantic meridional overturning circulation (AMOC) to a sudden doubling of atmospheric CO2 in the National Center for Atmospheric Research Community Climate System Model version 3, with a focus on differences under different background climates. The findings reveal that the evolution of the AMOC differs significantly between the modern climate and the last glacial maximum (LGM). In the modern climate, the AMOC decreases (by 25 %, 4 Sv) in the first 100 years and then recovers slowly (by 6 %, 1 Sv) by the end of the 1,500-year simulation. At the LGM, the AMOC also weakens (by 8 %, 1 Sv) in the initial 90 years, but then recovers, first rapidly (by 30 %, 4 Sv) over the following 300 years, and then slowly (by 13 %, 1.6 Sv) during the remainder of the integration. These results suggest that the responses of the AMOC under both climates have a similar initial rapid weakening period of ~100 years and a final slow strengthening period over 1,000 years long. However, additional intermediate period of ~300 years does occur for the LGM, with rapid intensification in the AMOC. Analyses suggest that the rapid intensification is triggered and sustained primarily by a coupled sea ice–ocean feedback: the reduction of meltwater flux in the northern North Atlantic—associated with the remarkable sea-ice retreat at the LGM—intensifies the AMOC and northward heat transport, which, in turn, causes further sea-ice retreat and more reduction of meltwater. These processes are insignificant under modern conditions.
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Appendices
Appendix 1: A detailed heat and freshwater budget
To quantitatively evaluate the importance of different processes and feedbacks in changing the AMOC in doubling CO2 experiments, we analyse the heat/freshwater budget for both the northern and southern box in the upper Atlantic Ocean. The time-varying equation for the volume-integrated heat/freshwater budget is
$$\frac{{dM_{\text{S}} }}{dt} = M_{\text{F}} - {\text{div}}M_{\text{T}} + R$$

                    (3)
                

where \(M_{\text{S}}\) is the heat/freshwater storage, \(M_{\text{F}}\) the area-integrated surface flux, \({\text{div}}M_{\text{T}}\) divergence of the transport between the northern and southern boundary of the box, and \(R\) is the residual, including diffusion and convection with the lower ocean. The transport across certain latitude \(M_{\text{T}}\) can be further separated into the meridional part (\(M_{\text{MOC}}\)) and the azonal part (\(M_{\text{az}}\)). Take the freshwater transport as an example,
$$M_{\text{MOC}} = - \frac{1}{{S_{0} }}\int {\overline{v} (z) \cdot \left( {\left\langle {\overline{S} } \right\rangle - S_{0} } \right) \cdot {\text{d}}z}$$

                    (4)
                


                  $$M_{\text{az}} = - \frac{1}{{S_{0} }}\int {\overline{{v(z)^{{\prime }} \cdot S^{{\prime }} }} \cdot {\text{d}}z}$$

                    (5)
                

where the reference salinity S
                  0 is the averaged salinity of the Atlantic Ocean, 34.7 and 36.5 for the present day and the LGM, respectively. \(\overline{v} \left( z \right)\) and \(\left\langle {\overline{S} } \right\rangle\) denote the zonally integrated northward velocity and averaged salinity, and \(v\left( z \right)^{{\prime }}\) and \(S^{{\prime }}\) represent the deviations from their zonal means.
The changes in heat storage, surface flux and convergence of transport in the northern and southern box during each stage are listed in Table 3. For both the MOD-2CO2 and LGM-2CO2, the increase of heat storage (0.04 PW) in the northern box during the initial weakening stage is mainly attributable to the increase of surface heat flux (0.10–0.13 PW). The convergence of heat transport is negative (−0.08 to −0.11 PW), indicating a negative feedback between the strength of the AMOC and heat transport. It works as follows: a weakening of the AMOC reduces the northward heat transport, leads to a cooling, and promotes the deep convection. It is interesting to note that during the intermediate strengthening stage in LGM-2CO2, the convergence of heat transport is positive (0.06 PW) because of the enhanced AMOC, and simultaneously the surface heat flux decreases significantly (−0.05 PW) due to the reduction of the sea-ice insulating effect and the increase of ocean temperature. The former, again, suggests a negative feedback between the AMOC and heat transport, while the latter indicates a positive feedback between the AMOC and the surface heat flux. This positive feedback can act through two different loops: Firstly, intensification in the AMOC transports more heat northward, leads to a warming and enhanced heat loss to the atmosphere. Secondly, a strengthening of the AMOC and heat transport can cause more sea-ice retreat and enhanced heat loss through the sea-ice insulating effect.
Table 3 Changes in the heat storage, surface flux and convergence of transport (units: 10−1 PW) in the northern (35°N–65°N) and southern box (0°N–30°N) in the upper North Atlantic Ocean in the doubling CO2 experimentsFull size table


                The changes in freshwater storage, surface flux and convergence of transport in the northern and southern box during each stage are listed in Table 4. The most important process is the decrease of surface freshwater flux in the northern box (−0.06 Sv for the intermediate stage) caused by the reduction of meltwater flux (Fig. 11b). It could form a positive sea ice–ocean coupled feedback to intensify the AMOC. At the intermediate stage, the meridional part of freshwater transport (−0.12 Sv) acts to increase salinity in the northern box and stabilize the AMOC (a positive feedback) in LGM-2CO2; however, its role is overwhelmed by the azonal transport (0.15 Sv). The decrease of surface freshwater flux (−0.03 to −0.04 PW) in the southern box due to the enhanced evaporation in both climates during the initial weakening stage is another positive feedback, although overpowered by the negative feedback between the AMOC and surface heat flux.
Table 4 Changes in the freshwater storage, surface flux and convergence of transport (10−1 Sv) in the northern (35°N–65°N) and southern box (0°N–30°N) in the upper North Atlantic Ocean in the doubling CO2 experimentsFull size table


                Appendix 2: Confirmation from the EOF analysis
In order to confirm the crucial role of salinity changes in enhancing the N–S density contrast and, in turn, the intensification of the AMOC in LGM-2CO2, we use the empirical orthogonal function (EOF) analysis to detect the major modes of changes in zonal mean density, temperature and salinity in the doubling CO2 experiments (Fig. 13). In MOD-2CO2, the EOF1 of zonal mean density (Fig. 13a) resembles the EOF1 of zonal mean temperature (Fig. 13d) very well with an N–S symmetric decrease of density, except for the northern polar region. This quasi-symmetric change of density agrees with insignificant changes in the AMOC at long timescales in MOD-2CO2. In sharp contrast, in LGM-2CO2, the evolution of the zonal mean density in the Atlantic Ocean is dominated by an N–S asymmetric mode (EOF1) with a significant increase of density in the upper 2,000 m and 40°S northward Atlantic Ocean and a comparable decrease in the deep and Southern Ocean (Fig. 13b). EOF1 can explain 92 % of the total variance and the corresponding PC1 (Fig. 13c) suggests that this mode has timescale longer than 1,000 years. This asymmetric mode can produce a stronger NADW and a weaker AABW through the increase of the N–S density contrast and the decrease of vertical stratification in the Atlantic Ocean, which is consistent with the strengthening of AMOC after the initial weakening in LGM-2CO2 (also shown in the initial stage of PC1). In order to find out, the relative contribution of the changes in temperature and salinity, we carry out the same EOF analysis for the zonal mean temperature and salinity in the Atlantic Ocean (Fig. 13e, h). The first EOF of temperature, which can explain 84 % of the total variance, shows the signal of global warming due to the doubling of CO2. The warming in the upper and mid Atlantic Ocean is larger, which suggests the temperature change makes a negative contribution to the N–S density contrast. The first EOF of salinity, explaining 94 % of the total variance, resembles the asymmetric mode very well, indicating that the change of zonal mean salinity dominates the asymmetric change of zonal mean density in the Atlantic Ocean in LGM-2CO2.
Fig. 13[image: figure 13]
First EOF of the Atlantic zonal mean potential density in the doubling CO2 experiments for the modern climate (a) and LGM (b). The corresponding PCs for modern climate (red) and LGM (blue) are shown in c,
                          d, e and f are the same, but for the zonal mean temperature, g, h and i are for the zonal mean salinity. All the EOFs are normalized, such that the magnitude is unit. The variance explained by the first EOF of the potential density, temperature and salinity are 74, 89 and 25 % for the modern climate, and 92, 84 and 94 % for LGM, respectively


Full size image


                The EOF analysis is coherent with the diagnosing of the trend of zonal mean potential density (Sects. 5.1–5.3) and confirms that the contribution from salinity changes plays the dominant role in increasing the N–S density contrast and strengthening the AMOC in LGM-2CO2 at centennial-millennial timescales. Therefore, we can exclude the role of Atlantic surface heat flux. Combining with the diagnose of the freshwater budget for the North Atlantic in Sect. 5.4, we could find, once again, that the reorganization of the Atlantic surface freshwater flux is of essential importance in strengthening the AMOC in LGM-2CO2. EOF analysis (Fig. 13h) also demonstrates that the increase of salinity in the north could be coupled with a decrease of salinity in the south at millennial timescale.
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