Skip to main content

Advertisement

Log in

Impact of a realistic river routing in coupled ocean–atmosphere simulations of the Last Glacial Maximum climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The presence of large ice sheets over North America and North Europe at the Last Glacial Maximum (LGM) strongly impacted Northern hemisphere river pathways. Despite the fact that such changes may significantly alter the freshwater input to the ocean, modified surface hydrology has never been accounted for in coupled ocean–atmosphere general circulation model simulations of the LGM climate. To reconstruct the LGM river routing, we use the ICE-5G LGM topography. Because of the uncertainties in the extent of the Fennoscandian ice sheet in the Eastern part of the Kara Sea, we consider two more realistic river routing scenarios. The first scenario is characterised by the presence of an ice dammed lake south of the Fennoscandian ice sheet, and corresponds to the ICE-5G topography. This lake is fed by the Ob and Yenisei rivers. In the second scenario, both these rivers flow directly into the Arctic Ocean, which is more consistent with the latest QUEEN ice sheet margin reconstructions. We study the impact of these changes on the LGM climate as simulated by the IPSL_CM4 model and focus on the overturning thermohaline circulation. A comparison with a classical LGM simulation performed using the same model and modern river basins as designed in the PMIP2 exercise leads to the following conclusions: (1) The discharge into the North Atlantic Ocean is increased by 2,000 m3/s between 38° and 54°N in both simulations that contain LGM river routing, compared to the classical LGM experiment. (2) The ice dammed lake is shown to have a weak impact, relative to the classical simulation, both in terms of climate and ocean circulation. (3) In contrast, the North Atlantic deep convection and meridional overturning are weaker than during the classical LGM run if the Ob and Yenisei rivers flow directly into the Arctic Ocean. The total discharge into the Arctic Ocean is increased by 31,000 m3/s, relative to the classical LGM simulation. Consequentially, northward ocean heat transport is weaker, and sea ice more extensive, in better agreement with existing proxy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adkins JF, McIntyre K, Schrag DP (2002) The salinity, temperature, and δ18O of the Glacial Deep Ocean. Science 298(5599):1769–1773

    Article  Google Scholar 

  • Alkama R, Kageyama M, Ramstein G (2006) Freshwater discharges in a simulation of the Last Glacial Maximum climate using improved river routing. Geophys Res Lett 33:L21709. doi: 101029/2006GL027746

    Article  Google Scholar 

  • Boyle EA, Keigwin LD (1987) North Atlantic thermohaline circulation during the past 20,000 years linked to height latitude surface temperature. Nature 330:35–40

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3:261–277. http://www.clim-past.net/3/261/2007/http://www.clim-past.net/3/261/2007/

    Google Scholar 

  • Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33:L01702. doi: 10.1029/2005GL024546

    Article  Google Scholar 

  • Broecker WS (1994) Massive iceberg discharges as triggers for global climate change. Nature 372:421–424

    Article  Google Scholar 

  • CLIMAP Project Members (1981), Seasonal reconstruction of the Earth’s surface at the Last Glacial Maximum. Geological society of America Map, Chart Series, C-36

  • Dallenbach A, Blunier T, Fluckiger J, Stauffer B, Chappellaz J, Raynaud D (2000) Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene. Geophys Res Lett 27(7):1005–1008

    Article  Google Scholar 

  • Duplessy JC, Moyes J, Pujol C (1980) Deep water formation in the North Atlantic Ocean during the last ice age. Nature 286:479–482

    Article  Google Scholar 

  • Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646

    Article  Google Scholar 

  • Fluckiger J, Dallenbach A, Blunier T, Stauffer B, Stocker F, Raynaud D, Barnola JM (1999) Variations in atmospheric N2O concentration during abrupt climatic changes. Science 285(5425):227–230

    Article  Google Scholar 

  • Forman SL et al (1999) Late Quaternary stratigraphy of western Yamal Peninsula, Russia: new constraints on the configuration of the Eurasian ice sheet. Geology 27:807–810

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–159

    Article  Google Scholar 

  • Gataullin V, Mangerud J, Svendsen JI (2001) The extent of the Late Weichselian ice sheet in the southeastern Barents Sea. Glob Planet Change 31:453–474

    Article  Google Scholar 

  • Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703. doi: 10.1029/2005GL023209

    Article  Google Scholar 

  • Grosswald MG (1998) Late-Weichselian ice sheets in Arctic and Pacific Siberia. Quat Int 45:3–18

    Article  Google Scholar 

  • Grosswald MG, Hughes TJ (2002) The Russian component of an Arctic ice sheet during the Last Glacial Maximum. Quat Sci Rev 21:121–146

    Article  Google Scholar 

  • Hemming SR (2004) Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev Geophys 42:RG1005

    Article  Google Scholar 

  • Hewitt CD, Broccoli AJ, Mitchell JFB, Stouffer RJ (2001) A coupled model study of the last glacial maximum: was part of the North Atlantic relatively warm? Geophys Res Lett 28(8):1571–1574

    Article  Google Scholar 

  • Hewitt CD, Stouffer RJ, Broccoli AJ, Mitchell JFB, Valdes PJ (2003) The effect of ocean dynamics in a coupled GCM simulation of the Last Glacial Maximum. Clim Dyn 20(2–3):203–218

    Google Scholar 

  • Joussaume S, Taylor KE (2000) The Paleoclimate Modeling Intercomparison Project, in Paleoclimate Modelling Intercomparison Project (PMIP). In: Braconnot P (eds) Proceedings of the 3rd PMIP workshop. WCRP, La Huardière, pp 9–25

  • Kageyama M, Laîné A, Abe-Ouchi A, Braconnot P, Cortijo E, Crucifix M, de Vernal A, Guiot J, Hewitt CD, Kitoh A, Kucera M, Marti O, Ohgaito R, Otto-Bliesner B, Peltier WR, Rosell-Melé A, Vettoretti G, Weber SL, Yu Y, MARGO Project members (2006) Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions. Quat Sci Rev 25:2082–2102

    Article  Google Scholar 

  • Kim SJ (2004) A coupled model simulation of ocean thermohaline properties of the last glacial maximum. Atmosphere-Ocean 42(3):213–220

    Article  Google Scholar 

  • Kim SJ, Flato GM, Boer GJ, McFarlane NA (2002) A coupled climate model simulation of the Last Glacial Maximum, part 1: transient multi-decadal response. Clim Dyn 19(5–6):515–537

    Google Scholar 

  • Kim SJ, Flato GM, Boer GJ (2003) A coupled climate model simulation of the last glacial maximum, Part 2: approach to equilibrium. Clim Dyn 20(6):635–661

    Google Scholar 

  • Kitoh A, Murakami S (2002) Tropical Pacific climate at the mid-Holocene and the Last Glacial Maximum simulated by a coupled ocean-atmosphere general circulation model. Paleoceanography 17(3):1047

    Article  Google Scholar 

  • Kitoh A, Murakami S, Koide HA (2001) Simulation of the last glacial maximum with a coupled atmosphere-ocean GCM. Geophys Res Lett 28(11):2221–2224

    Article  Google Scholar 

  • Kohfeld KE Harrison SP (2000). How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quat Sci Rev 19:321–346

    Article  Google Scholar 

  • Kucera M, Rosell-Mele A, Schneider R, Waelbroeck C, Weinelt M (2005) Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat Sci Rev 24(7–9):813–819

    Article  Google Scholar 

  • Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45 No. RG2001

  • Krinner G, Mangerud J, Jakobson M, Crucifix M, Ritz C, Svendsen JI (2004) Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature l427:429–432

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem Cycles 19:1015–1029

    Article  Google Scholar 

  • Lambeck K, Yokoyama Y, Purcell T (2002). Into and out of the Last Glacial Maximum: sea-level change during oxygen isotope Stages 3 and 2. Quat Sci Rev 21:343–360

    Article  Google Scholar 

  • Li ZX (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001

    Article  Google Scholar 

  • Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR, Herguera JC, Hirschi JJ-M, Elena, Ivanova V, Kissel C, Marchal O, Marchitto TM, McCave IN, McManus JF, Mulitza S, Ninnemann U, Peeters F, Yu E-F, Zahn R (2007) Atlantic Meridional overturning circulation during the Last Glacial Maximum. Science 316:66–69

    Article  Google Scholar 

  • McManus JF, Francois R, Gherardi J-M, Keigwin LD, Brown-Leger (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, et Lévy C (1998) OPA 8.1 ocean general circulation model reference manual. Rapp Int, LODYC, France, 200pp

  • Manabe S, Stouffer RJ (1995) Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378:165–167

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (2000) Study of abrupt climate change by a coupled ocean–atmosphere model. Quat Sci Rev 19:285–299

    Article  Google Scholar 

  • Mangerud J, Jakobsson M, Alexanderson H, Astakhov V, Clarke G, Henriksen M, Hjort C, Krinner G, Lunkka J-P, Möller P, Murray A, Nikolskaya O, Saarnisto M, Svendsen JI (2004) Ice-dammed lakes and rerouting of the drainage of Northern Eurasia during the last glaciation. Quat Sci Rev 23:1313–1332

    Article  Google Scholar 

  • Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne J-L, Fairhead L, Filiberti M-A, Foujols M-A, Fichefet T, Friedlingstein P, Gosse H, Grandpeix J-Y, Hourdin F, Krinner G, Lévy C, Madec G, Musat I, de Noblet N, Polcher J and Talandier C (2006) The new IPSL climate system model: IPSL-CM4, Note du Pôle de Modélisation no. 26, ISSN 1288–1619, 84pages, http://www.ipsl.jussieu.fr/poles/Modelisation/NotesScience/note26.pdf

  • Ménot G, Bard E, Rostek F, Weijers J-W-H, Hopmans E-C, Schouten S, Damsté J-S (2006) Early reactivation of European rivers during the last deglaciation. Science 313:1623–1625

    Article  Google Scholar 

  • Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114

    Article  Google Scholar 

  • Ngo-Duc T, Laval K, Ramillien G, Polcher J, Cazenave A (2007) Validation of the land water storage simulated by organising carbon and hydrology in dynamic ecosystems (ORCHIDEE) with gravity recovery and climate experiment (GRACE) Data, Water Resources Research, 43: W04427. doi: 10.1029/2006WR004941

  • Otto-Bliesner BL, Brady CE, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last Glacial Maximum and holocene climate in CCSM3. J Clim 19:2526–2544

    Article  Google Scholar 

  • Peltier WR (2004) Global Glacial Isostasy and the surface of the ice age earth: The ICE-5G (VM2) model and GRACE Annu Rev Earth Planet Sci 32:111–161

    Article  Google Scholar 

  • Peltier WR, Fairbanks FG (2006) Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat Sci Rev 25:3322–3337

    Article  Google Scholar 

  • Peltier W, Solheim L (2004) The climate of the Earth at Last Glacial Maximum: statistical equilibrium state and a mode of internal variability. Quat Sci Rev 23:335–357

    Article  Google Scholar 

  • Piotrowski AM, Goldstein SL, Hemming SR, Fairbanks RG (2005) Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science 307:1933–1938

    Article  Google Scholar 

  • Shin S-I, Liu Z, Otto B-Bliesner, Brady EC, Kutzbach JE, Harrison SP (2003) A Simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Clim Dyn 20:127–151. doi: 10.1007/s00382-002-0260-x

    Google Scholar 

  • Stouffer RJ, Seidov D, Haupt BJ (2007) Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J Clim 20(3):436–448

    Article  Google Scholar 

  • Svendsen JI, Astakhov VI, Bolshiyanov DY, Demidov I, Dowdeswell JA, Gataullin V, Hjort C, Hubberten HW, Larsen E, Mangerud J, Melles M, Moller P, Saarnisto M, Siegert MJ (1999) Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28:234–242

    Article  Google Scholar 

  • Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, M. Houmark-Nielsen, Hubberten HW, Ingólfsson O, Jakobsson M, Kjær KH, Larsen E, Lokrantz H, Lunkka JP, Lyså A, Mangerud J, Matiouchkov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) The late Quaternary ice sheet history of Nortern Eurasia, Quaternary Science Reviews special QUEEN volume. Quat Sci Rev 23:1229–1271

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic Meridional Overturning Circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33:L07711. doi: 10.1029/2006GL025765

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28:291–305

    Article  Google Scholar 

  • Tarasov, Peltier WR (2005) Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435:662–665

    Article  Google Scholar 

  • Tarasov L, Peltier WR (2006) A calibrated deglacial drainage chronology for the North American continent: evidence of an Arctic trigger for the Younger Dryas. Quat Sci Rev 25: 659–688

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14(16):3433–3443

    Article  Google Scholar 

  • Valcke S, Declat D, Redler R, Ritzdorf H, Schoenemeyer T, Vogelsang R (2004) The PRISM coupling and I/O system. In: VECPAR’04, Proceedings of the 6th international meeting, vol 1. High performance computing for computational science, Universidad Politecnica de Valencia, Valencia

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267

    Article  Google Scholar 

  • Weaver AJ, Eby M, Fanning AF, Wiebe EC (1998) Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum. Nature 394:847–853

    Article  Google Scholar 

  • Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Clim Past 3:51–64

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank LSCE colleagues, especially Jean-Yves Peterschmitt for technical support and Alessandro Tagliabue for proof reading. We also thank anonymous reviewers and Dr. Lev Tarasov for their helpful review. This research has been supported by the MOTIF European Project EVK2-CT-2002-00153 and the IDEGLACE ANR Project JC05-4311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramdane Alkama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkama, R., Kageyama, M., Ramstein, G. et al. Impact of a realistic river routing in coupled ocean–atmosphere simulations of the Last Glacial Maximum climate. Clim Dyn 30, 855–869 (2008). https://doi.org/10.1007/s00382-007-0330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0330-1

Keywords

Navigation