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ABSTRACT

Owing to  the  persisting  hype  in  pushing  toward  global  carbon neutrality,  the  study  scope  of  atmospheric  science  is
rapidly expanding. Among numerous trending topics,  energy meteorology has been attracting the most attention hitherto.
One  essential  skill  of  solar  energy  meteorologists  is  solar  power  curve  modeling,  which  seeks  to  map  irradiance  and
auxiliary weather variables to solar power, by statistical and/or physical means. In this regard, this tutorial review aims to
deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.
Solar power curves can be modeled in two primary ways, one of regression and the other of model chain. Both classes of
modeling approaches,  alongside  their  hybridization and probabilistic  extensions,  which allow accuracy improvement  and
uncertainty quantification, are scrutinized and contrasted thoroughly in this review.
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Article Highlights:

•  A complete tutorial of solar power curve modeling is presented.
•  Solar power curves are constructed via regression and model chain.
•  The latest advances in hybrid and probabilistic solar power curves are reviewed.

 

 
 

 

1.    Introduction

Tackling anthropogenic climate change is a long-lasting
research  hotspot,  and  the  morphing  of  the  global  energy
mix,  from  one  that  is  predominated  by  fossil  fuels  to  one
where renewable energy contributes the most, is widely per-
ceived as one of the most important enablers of the pathway
towards  carbon  neutrality.  Because  the  two  most  abundant
forms of renewable energy, that is, solar and wind, are both
weather dependent, it is known a priori that the multi-disci-
plinary  domain  of  study  called “energy  meteorology” is
going to play a cardinal role in advancing the utilization of
renewable energy. Insofar as solar energy meteorology is con-
cerned,  it  encompasses  two  key  topics,  namely,  solar

resource  assessment  and  solar  forecasting,  both  of  which
have been reviewed recently, in a way that is easily compre-
hensible  by  the  atmospheric  science  community  (Yang  et
al., 2022b). In short, the central aim of solar resource assess-
ment is to estimate the long-term power generation potential
of  a  (prospective)  solar  farm  of  interest,  whereas  that  of
solar  forecasting  is  to  predict  the  power  generation  of  a
solar farm in the near future. Both investigations depend for
their  success  upon  the  granularity  and  precision  of  the
omnichannel  information  pertaining  to  irradiance  condi-
tions.

Irradiance information can be acquired through ground-
based measurement, remote sensing retrieval, and numerical
weather  modeling.  These  three  complementary  approaches
have  concerned those  who are  now known as  solar  energy
meteorologists since the 1960s, and the body of literature is
notoriously  gigantic.  Whereas  the  acquisition  of  irradiance
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data  is  one  aspect,  the  optimal  utilization  of  solar  energy
also relies on the ability to convert the irradiance information
to  power  output  information.  Stated  differently,  it  is  the
power output of a solar energy system, such as a photovoltaic
(PV) plant or a concentrating solar power (CSP) plant, that
is of eventual interest to most solar engineering endeavors.
Indeed,  most  atmospheric  scientists  are  well  acquainted
with irradiance, but the irradiance-to-power conversion has
hitherto  been  handled  by  solar  engineers.  Examining  the
numerous  recent  studies  on  the  impacts  of  climate  change
on solar power generation [e.g., Jerez et al. (2015); Gernaat
et al. (2021); Liu et al. (2023)] or vice versa [e.g., Hu et al.
(2016); Creutzig et al. (2017)], a common trait is the overly
simplistic  modeling approaches for  solar  power production
used to derive the conclusions, which can be misleading due
to the uncertainty introduced during modeling. To that end,
it  is  thought  beneficial  to  briefly  outline  the  scientific  and
engineering  principles  regarding  the  conversion  to  atmo-
spheric scientists, such that a more holistic understanding of
the  status  quo  of  solar  energy  meteorology  can  be  estab-
lished.

P
V P = 0.5CpρπR2V3 Cp ρ

R

The  need  for  converting  meteorological  variables  to
power output is not unique to solar applications; another obvi-
ous case is wind, insofar as wind speed needs to beconverted
to  the  power  output  of  a  turbine  through  a wind  power
curve.  The  theoretical  power  that  can  be  extracted  from
the wind at speed  is , where , , and

 are the power coefficient of the turbine, air density, and tur-
bine  rotor  radius,  respectively.  However,  because  there
would  be  various  uncertainty  factors  and  loss  mechanisms
affecting the actual operation of a wind turbine, the theoretical
wind  power  curve  rarely  has  real-life  appeal,  and  much
effort  has  been  pouring  into  developing  more  appropriate
mathematical  relationships  that  can  explain  the  mapping
from wind speed to wind power [see Wang et al. (2019) for
a review]. To give perspective on the challenges confronting
such curve fitting tasks, Fig. 1 shows a typical relationship
between wind speed and wind power, with data taken from
an actual wind farm; the relationship is evidently non-injec-
tive. Indeed, although wind speed is the most influential factor
affecting  wind  power,  other  meteorological  variables,  such

as wind direction, air density, or humidity, could all have an
impact on wind power generation, and thus should be consid-
ered jointly during the wind power curve modeling (Lee et
al.,  2015).  In  this  regard,  the  term “wind  power  curve”  is
almost always used in the broad sense—instead of restricting
its meaning to a one-dimensional curve, when multiple predic-
tors are involved, it suggests a power response surface.

In  contrast  to  the  ubiquitously  accepted  phrase “wind
power  curve,” the  term “solar  power  curve,” which should
be  analogously  used  to  denote  the  mapping  function  from
solar  irradiance  to  solar  power,  is  somewhat  less  popular.
There are two reasons for this.  First,  there is an alternative
and  more  descriptive  terminology  for  the  irradiance-to-
power  conversion  framework,  that  is,  the model  chain,
which cascades a series of energy meteorology models to con-
vert irradiance into PV power in a step-by-step fashion. The
second reason is  that  the irradiance-to-power conversion is
even  more  intricate  than  the  wind-speed-to-power  conver-
sion,  such  that  a  one-dimensional  curve  would  be  grossly
insufficient  to  narrate  the  mapping.  Be  that  as  it  may,  this
review should use the phrase “solar power curve” through-
out, to denote the mapping from irradiance (and auxiliary vari-
ables)  to  PV  power.  (The  conversion  from  irradiance  to
CSP  power  is  not  considered  in  this  review.) Figure  2
depicts the relationship between the global horizontal irradi-
ance  (GHI)  and  the  power  output  of  an  actual  PV  farm.
Unlike  the  s-shaped  wind-speed-to-power  relationship,  the
scatter  shown  in Fig.  2 does  not  seem  to  be  linked  to  the
shape  of  any  well-known  mathematical  functions.  There-
fore, the remaining part of this tutorial should elucidate how
such a relationship between GHI and PV power can be nar-
rated through modeling means. 

2.    Two classes of approaches for solar power
curve modeling

After half a century of research, the basic scientific and
engineering principles governing electricity generation from
PV are now known very well and very widely. However, it

 

Fig. 1. A typical scatter between 100-m hub-height wind speed
and  wind  power;  data  is  obtained  from  a  real  wind  power
plant. Brighter colors denote more points in the neighborhood.

 

Fig. 2. A typical scatter between GHI and PV power; data are
obtained  from  a  real  PV  plant.  Brighter  colors  denote  more
points in the neighborhood. (The normalized solar power does
not  reach  1  because  the  standard  test  condition,  under  which
the nominal power is determined, is almost impossible to meet
during operation.)
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is also true that such principles do not belong to a single sub-
ject of study. For instance, the principle governing the transpo-
sition of horizontal irradiance components onto a tilted sur-
face is one of physics; governing the composition and deposi-
tion of particulate matter on the PV panel surface is one of
chemistry; and governing the DC/AC power inversion effi-
ciency is one of electrical engineering. If all information rele-
vant to operating those principles is known to a high exacti-
tude, one may in theory calculate the PV power in a determin-
istic fashion with an exceptional quantitative precision. Unfor-
tunately, this most delicate form of irradiance-to-power con-
version  faces  two  practical  challenges:  (1)  the  information
needed to conform to all those principles is, more often than
not,  unknown,  due  to  a  lack  of  appropriate  equipment  and
monitoring  skill;  and  (2)  the  principles  themselves  may be
incomplete or imperfect, which necessarily leads to conver-
sion error. On this point, irradiance-to-power conversion via
a solar power curve becomes relevant. There are two distinct
classes of approaches with which one may construct a solar
power curve, first of regression and second of model chain.
Some  authors  also  make  a  distinction  between  these  two
classes  of  techniques  through  the  words “statistical” and
“physical,” or  through “single-stage” and “multiple-stage,”
for  obvious  literal  reasons  (Yang and  van  der  Meer,  2021;
Markovics and Mayer, 2022).

The regression approach to solar power curve modeling
should be straightforward to comprehend, as it establishes a
regressive  relationship  between  the  weather  variables  and
PV power through statistical and machine-learning models.

Because fitting a  regression is  a  one-step procedure,  it  is  a
direct way of constructing a solar power curve. In contrast,
model  chain,  as  mentioned  in  the  introduction,  arranges  a
bag  of  energy  meteorology  models  in  cascade,  each  being
responsible for a single conversion stage/mechanism within
the  whole  process. Figure  3 visualizes  a  typical  model
chain, which takes as input time and location, GHI, ground
albedo, ambient temperature, and wind speed,a and issues as
output  the  AC power.  For  instance,  with  time and location
information,  one  may  compute  the  solar  zenith  angle  and
the  extraterrestrial  irradiance  via  solar  positioning;  with
GHI and its extraterrestrial counterpart, one could split GHI
into a diffuse component and a beam component through a
separation model; and with the DC power estimated by the
PV model and the solar position information, the power loss
due  to  row-to-row  shading  may  be  calculated.  Generally,
Fig. 3 clearly suggests that the output of a preceding model
is used as input for a succeeding model, and the entire proce-
dure resembles a chain-like assembly, which leads to the coin-
ing of the term “model chain.” Model chain signifies an indi-
rect way of constructing a solar power curve.

Comparing  the  utilities  of  these  two  classes  of
approaches, neither strictly dominates the other. In terms of
complexity,  model  chain  most  certainly  requires  more
domain  knowledge  to  execute.  If  we  are  to  assume  an
increase in energy meteorology knowledge is  accompanied
by  an  increase  in  wisdom,  model  chain  should  result  in
higher  irradiance-to-power  conversion  accuracy.  The  diffi-
culty  nevertheless  is  that  model  chain  requires  the  design

 

 

Fig. 3. Schematic of irradiance-to-power conversion via a typical model chain. A model chain takes GHI as the main input
and outputs PV power. An arrow going into a block indicates a required input, whereas an arrow leaving a block indicates
the output.

 

 

a It should be noted that some of the latest component models may require additional weather inputs, such as cloud or aerosol informa-
tion, but the main inputs are just the ones indicated in the figure.
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information and operating conditions of the PV plant,  such
as the panel wiring schematics, row spacing, inverter manu-
facturer  and  model,  or  the  soiling  condition,  to  be  known,
which is not always the case, especially for smaller distributed
PV systems managed by individuals. In such situations, the
straightforward option is to leverage the regression alterna-
tive. However, in most of the stages of a model chain, there
are general model options that can be used without detailed
design  data,  which  makes  it  possible  to  rely  on  model
chains  even  if  the  design  information  on  the  PV  plants  of
interest  is  limited.  The  effect  of  the  design  data  on  the
model  chain  accuracy  was  investigated  by Mayer (2021),
who compared five different scenarios of design-information
availability, based on data collected at 16 PV plants in Hun-
gary.  The  overarching  conclusion  of  that  study  is  that  the
full model chain encompassing all design parameters could
give  the  best  conversion  results,  but  the  most  critical  ones
are only the site location, module orientation, and nameplate
capacities.  On  the  other  hand,  it  must  be  highlighted  that
regression  fitting  demands  a  long-enough  dataset,  which
can only be gathered as time passes. Therefore, it is not possi-
ble to use regression-based solar power curves for prospective
or  newly  commissioned  plants.  Inasmuch  as  the  present
research  can  show,  the  two  classes  of  approaches  are  both
indispensable,  as  their  accuracies  are  situation-dependent
and are often comparable (Markovics and Mayer, 2022).

The rivalry between statistical and physical modeling nat-
urally  leads  to  a  third  option—hybrid  solar  power  curves.
The principle underpinning the hybridization is very simple:
One should use model chain up to a stage that the available
information can support, and then leave the remaining frac-
tion  of  the  conversion  process  to  regression.  For  example,
one may use solar positioning, separation, and transposition
models  to  obtain  the  global  tilted  irradiance  (GTI)—cf.
Fig.  3—and  then  apply  a  neural  network  of  some  sort  to
map GTI to the PV power output. This kind of hybrid solar
power curve has been investigated by Mayer (2022a). Earlier
works  on  model  chains  revealed  that  the  two  most  critical
stages are clearly the separation and transposition modeling
(Mayer, 2021; Mayer and Gróf, 2021). Logically, as long as
the GTI and nominal power of the PV plant are known, the
hybridized  conversion  would  not  be  dramatically  worse
than a full-information case (Mayer, 2022a). Another driver
for  hybrid  modeling  is  the  fact  that  not  even  the  most
detailed model chains are perfectly accurate, and thus combin-
ing them with a regression method can help to eliminate the
error patterns that can be identified from the historical data.
Moreover, as shown by Mayer (2022b), even a perfectly accu-
rate  model  chain  will  introduce  bias  in  the  PV  forecasts
depending on the plant design parameters due to the errors
in  the  input  GHI  forecasts,  which  again  calls  for  a  data-
driven  correction  step.  However,  since  hybrid  solar  power
curves  also  rely  on  a  certain  amount  of  historical  data  for
training the regression part of the conversion, it is constrained
by the same limitations as those limiting a regression-based
solar power curve.

As hybridization is a conspicuous extension of the solar
power  curve  modeling,  probabilistic  modeling  constitutes
another. Since both classes of approaches and their hybrids
provide  by  default  just  point  (i.e.,  deterministic)  estimates
of the PV power, it is attractive to inquire into ways to quantify
any uncertainty associated with solar power curve modeling;
this  leads  to  a  very  new  but  exceptionally  useful  concept
known as  the probabilistic  solar  power  curve.  The  idea  of
probabilistic  or  ensemble  modeling  should  be  well  under-
stood  by  atmospheric  scientists,  so  nor  is  there  a  need  to
explain  further.  However,  given  the  fact  that  the  notion  of
probability  can  be  introduced  in  all  too  many  ways  into
solar  power  curve  modeling,  with  many  being  redundant
and  inefficient,  the  relevance  of  probabilistic  modeling  of
solar power curves is in identifying the optimal strategy of
doing so. In the remaining pages of this tutorial, we provide
a thorough rundown on the two main classes of techniques
for solar power curve modeling in sections 3 and 4, respec-
tively. Then in sections 5 and 6, the hybridization and proba-
bilistic extensions of solar power curve modelings are thor-
oughly elaborated, before concluding the tutorial. 

3.    Regression-based solar power curves

i xi =
(
x(1)

i , x(2)
i , . . . , x(m)

i

)⊤
⊤ i = 1, . . . ,n

j = 1, . . . ,m m

The  setup  behind  regression-based  solar  power  curve
modeling is very simple, in that, one seeks to establish a math-
ematical  mapping  between  the  (normalized)  output  power
of  a  PV  system  and  a  set  of  predictor  variables  (such  as
GHI,  zenith  angle,  ambient  temperature,  or  wind  speed),
and once the mapping is fitted/trained using historical data,
one can estimate the (normalized) power output of the same
system for any new vector of predictor variables. Mathemati-
cally, denoting the vector of predictor variables correspond-

ing to  instance  as ,  where  symbol
“ ” denotes  the  transpose  of  a  vector/matrix, 
indexes  the  training  samples  that  may  or  may  not  be  time
ordered, and  indexes the elements in the -dimen-
sional  input  vector,  a  regression-based  solar  power  curve
can be written as: 

yi = f (xi;θ) , (1)

f θ
f yi ith

θ θ̂
xt t > n

t

where  is the mapping function to be established,  is the
vector of parameters of , and  is  (normalized) power
output value in the training set. Using the training set, the esti-
mated value of , as denoted by , can be found. Then, with
any new , i.e., , the predicted (normalized) power out-
put at that new instance  would be: 

ŷt = f
(
xt; θ̂

)
. (2)

f
Gh Z

To give perspective, suppose  is a linear function of GHI
( ) and solar zenith angle ( ), Eq. (2) would simply be: 

ŷt = β̂0+ β̂1Gh,t + β̂2Zt , (3)

θ = (β0,β1,β2)⊤where  are the linear regression coefficients.
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Certainly,  moving  beyond  the  simple  linear  model  of  Eq.
(3),  there  are  countless  variants  of  input  vector  and
choices of mapping function , which makes the regression-
based solar power curve modeling exceedingly versatile.

Regression-based  solar  power  curve  modeling  is  not  a
new  concept,  and  various  works  have  existed  before  2010
[e.g., Bacher et al. (2009); Huang et al. (2010)]. One of the
most  influential  initiatives  in  promoting  regression-based
solar power curves is the Global Energy Forecasting Competi-
tion  2014  (GEFCom  2014)  set  up  by Hong  et  al. (2016).
The  competition  endorsed  the  very  much  celebrated  two-
step solar forecasting procedure, first  of numerical weather
prediction (NWP), for coming up with the predictor variables
for the regression, and second of the solar power curve model-
ing, for converting the forecast weather variables to forecast
PV power. A total of 12 NWP forecast variables, including
GHI, 2-m temperature, and total cloud cover, from the Euro-
pean  Centre  for  Medium-range  Weather  Forecasts
(ECMWF), were disclosed to the contestants in a rolling man-
ner spanning several weeks, and the contestants were tasked
to  construct  a  solar  power  curve,  and  thus  forecast  the  PV
power  output  at  three  Australian  sites  based  on  newly
released NWP forecasts. GEFCom2014 brought to light sev-
eral strategies for enhancing the performance of regression-
based  solar  power  curve  modeling,  which,  also  in  view  of
other evidence from the literature, are thought to be quite gen-
eral.  They  are,  in  order  of  importance:  (1)  utilization  of
clear-sky information; (2) feature selection and engineering;
(3)  probabilistic  and  ensemble  modeling;  and  (4)  other
known  general  guidelines  for  regression  applications  in
solar  engineering,  such  as  opting  for  nonparametric  and/or
tree-based  methods  [e.g.,  see  conclusions  of Yagli  et  al.
(2019); Yang (2019a); Yang and Gueymard (2021a, b)].

The clear-sky  condition refers  to  a  cloud-free  atmo-
sphere—one should  not  confuse  that  with  an “atmosphere-
less” condition. Stated differently, perfectly modeled clear-
sky  irradiance  would  account  for  all  transmittances  except
for  that  of  clouds.  The  reason  that  the  utilization  of  clear-
sky  information  is  ranked  with  the  highest  importance  in
solar power curve modeling is this: The winning team of GEF-
Com2014 (Huang and Perry,  2016) was the only team that
integrated  clear-sky  information  into  its  modeling  process,
which explains to a large extent the substantial leading margin
between forecast performance of the winning team and that
of the other teams. In fact, clear-sky irradiance/PV power is
the best way to describe the seasonal and diurnal variable in
irradiance/PV  power,  which  has  been  recognized  as  such
since  at  least  the  1980s  (Chowdhury  and  Rahman,  1987).
The second most important aspect of solar power curve mod-
eling is feature selection and engineering, which is evidenced
by the fact that such strategies in one form or another were
adopted by all top-five teams in GEFCom2014. The impor-
tance of feature selection and engineering has also been con-
firmed by Markovics and Mayer (2022), who compared 24
machine-learning-based  solar  power  curves  and  concluded
that  feature  selection  and  engineering  have  an  even  higher

effect on accuracy than the function forms of the curves them-
selves. Stated differently, proper feature selection and engi-
neering  outweigh  the  choice  of  regression  method.  On  the
third order of importance is probabilistic and ensemble model-
ing of PV power output, which serves as an uncertainty quan-
tification  tool.  As  the  GEFCom2014  requested  the  PV
power forecasts to be submitted in the form of quantiles, all
top-five  teams  chose  nonparametric  approaches,  among
which variants of quantile regression and gradient boosting
were  most  popular.  These  strategies  of  different  orders  of
importance  are  elaborated  further  in  the  next  few  subsec-
tions. 

3.1.    Integrating  clear-sky  information  during  solar
power curve modeling

In a purely regressive setting, clear-sky information can
be represented in either irradiance terms or power terms. A
very large amount of effort has been devoted to clear-sky irra-
diance  modeling.  About  100  clear-sky  irradiance  models
have been proposed to date, ranging from simple empirical
models to those physical ones that explicitly consider broad-
band  radiative  transfer  using  effective  parameterizations.
The  performance  of  clear-sky  irradiance  models,  just  like
that  of  any  other  family  of  energy  meteorology  models,
varies  across  geographical  locations  and time periods.  In  a
recent  pair  of  works, Sun et  al. (2021, 2019)  compared 75
models for global irradiance and 95 models for diffuse and
direct  irradiance,  which  are  by  far  the  most  inclusive  and
informative  documents  on  this  topic,  despite  the  existence
of  other  smaller  efforts  [e.g., Engerer  and  Mills (2015);
Ruiz-Arias and Gueymard (2018); Antonanzas-Torres et al.
(2019)].  The  overarching  conclusion  of Sun  et  al. (2021,
2019) is that physical models, with the REST2 model (Guey-
mard,  2008)  being  the  highest-performing  one,  have  clear
ascendancy over empirical models in terms of accuracy. How-
ever, as argued by Yang (2020), the benefits of the highest-
accuracy clear-sky irradiance models are not always quantifi-
able  when  such  models  are  used  in  solar  applications.  For
example, it has been shown that even REST2-modeled irradi-
ance  is  unable  to  result  in clear-sky  index—the  ratio
between GHI and its clear-sky counterpart—that is second-
order stationary, perhaps due to the lack of accurate informa-
tion on aerosols and water vapor (Yang, 2020). As such, the
choice of clear-sky models,  as being used in a solar power
curve modeling context, needs further discussion.

In what follows, we briefly discuss three clear-sky irradi-
ance  models  for  global  irradiance,  in  increasing  order  of
model performance, they are, the Ineichen–Perez model (Ine-
ichen and Perez, 2002), the McClear model (Lefèvre et al.,
2013; Gschwind et al., 2019), and the REST2 model (Guey-
mard, 2008). The Ineichen–Perez model relies only on calcu-
lable and climatology inputs,  which implies that  the model
is  static,  and  thus  can  be  computed  over  any  time  period.
This model is less elaborate in terms of formulation as com-
pared to the other two, and thus welcomes direct implementa-
tion. The entire model depends on just one exogenous variable
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pvlib
SolarData

to operate, namely, Linke turbidity. Because Linke turbidity
is not a commonly available variable, its monthly climatology
values  are  used.  Gridded  monthly  average  Linke  turbidity
can be downloaded from the SoDa websiteb in the format of
georeferenced  TIFF  maps.  These  maps  have  global  cover-
age, and the user just needs to read off the value for the loca-
tion of interest.  The model can be implemented with just a
few lines of code, and standard versions are available in the

 library  of  Python  (Holmgren  et  al.,  2018)  and  the
 package of R (Yang, 2018b, 2019b).

Ghc Dhc
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The  McClear  model  is  the  only  clear-sky  irradiance
model  that  is  not  open  source,  in  that,  it  can  only  be
accessed from the SoDa website via a web service. On a posi-
tive note, this web service allows browser-based downloading
of all three clear-sky irradiance components (global horizon-
tal  or ,  diffuse  horizontal  or ,  and  beam  normal  or

)  for  global  locations,  for  a  time  range  of  2004  to  two
days ago, in 1-min to 1-month resolutions. Knowing that sur-
face  radiation  is  marginally  affected  by  altitude,  McClear
applies an on-the-fly altitude correction to the radiation val-
ues.  Although  the  web  service  is  occasionally  unavailable
due to scheduled maintenance or server downtime, the service
is free of charge. In situations where the McClear irradiance
needs  to  be  integrated  with  other  computer  tasks,  one  can
also  access  McClear  via  a  programming  means,  with  the
help of the official R package  (Lundstrom, 2016).
The  obvious  drawback  of  McClear  lies  in  the  proprietary
nature  of  its  implementation,  which  paralyzes  other
researchers from modifying the model. For forecasting appli-
cations,  McClear  only  offers  forecast  clear-sky  irradiance
up to two days ahead, which is shorter than the typical day-
ahead  horizon  required  for  grid  integration;  this  is  another
major shortcoming of McClear.
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The highest-performance REST2 model, being a physi-
cal model, demands nine atmospheric parameters to operate:
extraterrestrial  beam  normal  irradiance  ( ),  zenith  angle
( ), ground albedo ( ), surface pressure ( ), aerosol optical
depth at 550 nm ( ), Ångström exponent ( ), total column
ozone ( ), total nitrogen dioxide amount ( ), and total
precipitable water vapor ( ). To that end, if REST2 is to
be used as a predictor of the solar power curve, all nine param-
eters have to be solicited in advance. The current recommen-
dation for using REST2 is to power it with reanalysis data,
such  as  the  Modern-Era  Retrospective  Analysis  for
Research and Applications, version 2 (MERRA-2) or Coperni-
cus  Atmosphere  Monitoring  Service  [CAMS; Fu  et  al.
(2022)]. Nonetheless, as reanalyses are not real-time, using
MERRA-2  or  CAMS  limits  the  REST2  model  to  resource
assessment  applications,  whereas  for  forecasting  applica-
tions,  alternative  sources  of  input  parameters  need  to  be
sought. Among the nine inputs to REST2,  and  can be
calculated  via  solar  positioning,  whereas , ,  and 
are  common  output  fields  of  NWP  models.  Information
related  to  aerosol  (i.e.,  and )  and  other  chemical
species (e.g.,  and ), however, is usually not available

irradpy

in  regular  NWP  models,  but  in  atmospheric  composition
models.  Indeed,  neither  ECMWF’s  High  Resolution
(HRES) model nor the National Centers for Environmental
Prediction’s  (NCEP’s)  North  American  Mesoscale  (NAM)
model  offers  forecasts  of  aerosol  and  other  chemical
species.  One  possible  source  of  acquiring  the  forecast
aerosol,  ozone,  and  nitrogen  dioxide  is  the  CAMS  Global
Atmospheric  Composition  Forecasts  from ECMWF,  which
produces forecasts twice daily at an approximately 40-km spa-
tial  grid  on  137  vertical  levels,  and  has  been  operational
since  July  2015.  Implementation-wise,  REST2 is  complex,
and only a handful of researchers other than the inventor him-
self  have  attempted  doing  so  [e.g., Engerer  and  Mills
(2015); Zhong  and  Kleissl (2015); Sun  et  al. (2019)].
Among these implementations, the only reproducible one is
offered  by Sun  et  al. (2019),  who  made  the  R  code  open
source, which has subsequently attracted much pragmatism.
Other  initiatives,  such  as  the  MERRA-2  downloading
Python library  (Bright et al.,  2020), have followed.
To visualize  the  clear-sky GHI modeled by REST2, Fig.  4
provides  an  example,  in  which  the  REST2  GHI  at  Table
Mountain, United States, over September 2018, is displayed
alongside the  satellite-derived irradiance from the National
Solar Radiation Database (NSRDB) and ground-based mea-
surements  from  the  Surface  Radiation  Budget  Network
(SURFRAD). Worth noting is that REST2 is able to compute
the  clear-sky  expectations  for  all  three  irradiance  compo-
nents;  nevertheless,  its  clear-sky  beam  normal  irradiance
(BNI)  estimates  are  extremely sensitive  to  aerosol  loading,
as  evidenced  by Fig.  5.  Those “artifacts” are  caused  by
rapid  changes  in  aerosol  (Yang,  2021b),  the  ability  of
REST2 to capture such changes is therefore commendable.

Moving  beyond  acquiring  clear-sky  irradiance,  one
may  also  choose  to  obtain  the  clear-sky  PV power  output,
which can describe  the  bell-shaped diurnal  transient  of  PV
power  better  than  the  clear-sky  irradiance.  There  are  three
ways  to  obtain  clear-sky  PV  power.  The  most  intuitive
option is to pass, instead of the all-sky irradiance, the clear-
sky irradiance and other auxiliary variables through a model
chain [e.g., see Engerer and Mills (2014)]. However, due to
the involvement of a model chain, this approach should no
longer be considered as purely regressive,and so its discussion
is deferred to section 5, in which hybrid solar power curves
are reviewed. The second approach involves the identification
of clear-sky situations within a PV power time series. Once
clear-sky situations are identified, one may thence construct
a separate regression for those situations only. Notwithstand-
ing, the identification of clear-sky situations in terms of PV
power  is  not  as  straightforward  a  task  as  one  may  per-
ceive—the  reader  should  refer  to Peratikou  and  Charalam-
bides (2022) for an example of such methods. The last and
simplest option is to invoke statistical time series decomposi-
tion  methods,  to  retrieve  the  seasonal  components  of  the
time  series;  this  was  in  fact  the  approach  of Huang  and
Perry (2016), which is directly responsible for the team's suc-
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cess in GEFCom2014. In their approach, the seasonal compo-
nents were represented by Fourier terms with low-pass fre-
quency  components  determined  from  the  data.  Although

using  Fourier  and  other  time  series  decompositions  to
model  clear-sky instances can be dated back at  least  to the
early 2010s (Yang et al., 2012; Dong et al., 2013), they are
known to be inferior to proper clear-sky models. The reason
why Huang  and  Perry (2016)  chose  the  Fourier-based
method  is  that  the  site  locations  were  not  revealed  during
the competition, which is thought to be an oversight of the
organizers, so solar positioning was not possible. However,
in hindsight,  the choice must be deemed fruitful and hence
offers  some  penetrating  insights  into  circumstances  of  this
sort—the design parameters of PV plants are not always avail-
able, or may be too inhomogeneous for a model chain to be
effective (e.g., sites over complex terrain or mixed use of pan-
els and inverters).

The reason why clear-sky modeling is said to have abso-
lute importance to solar power curve modeling lies in its abil-
ity to de-seasonalize (i.e., remove both the seasonal and diur-
nal,  or “double-seasonal,” cycles)  the  GHI  and  PV  power
time  series.  It  has  been  known that  for  a  considerable  his-
tory,  during  the  modeling  of  time  series,  one  should  seek
the  best  way  to  stabilize  the  variance  of  the  time  series
being  modeled;  in  other  words,  de-seasonalizing  a  time
series  before  modeling  is  a  general  principle  that  can
enhance  a  model’s  predictive  performance  (Armstrong,
2001; Hyndman  and  Athanasopoulos,  2018).  The  seasonal

 

 

x

Fig. 4. Clear-sky GHI time series modeled using REST2, at Table Mountain (40.125° N, 105.237° W), United States, over
September 2018, alongside the satellite-derived irradiance from the National Solar Radiation Database (NSRDB) and ground-
based measurements from the Surface Radiation Budget Network (SURFRAD). The time on the -axis is local time.

 

Fig.  5. NSRDB’s  BNI  (powered  by  MERRA-2)  time  series
plot  for  six  selected  days  in  2018  and  2019,  at  Bondville
(40.052° N, 88.373° W), United States. This plot exemplifies
the  exceptional,  but  legitimate,  sudden  changes  in  clear-sky
BNI,  which  are  caused  by  surges  and  a  lack  of  temporal
interpolation of the hourly aerosol optical depth.
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components  of  GHI  and  PV power  are  both  multiplicative
rather than additive, which implies that the de-seasonalized
quantities should be acquired through division. More specifi-
cally, the clear-sky index (often denoted as ) is the ratio of
GHI and clear-sky GHI, which may be regarded as a normal-
ized  version  of  GHI,  for  its  value  usually  falls  between  0
and 1.2 (Pedro et al., 2019). Similarly, the clear-sky index of
PV (denoted  as  as  advocated  by Engerer  and  Mills,
2014) is the ratio of PV power and clear-sky PV power. In
regression-based  solar  power  curve  modeling,  the  predic-
tand, i.e., the quantity being regressed, ought to be , when-
ever its determination is possible. This is a rule-of-thumb prin-
ciple that must not be overlooked at times. Naturally, if the
predictand is , one should use  as a predictor instead of
GHI itself.
 

3.2.    Feature selection and engineering

The next important discussion to have about regression-
based  solar  power  curve  modeling  is  feature  selection  and
engineering.  First,  one  ought  to  acknowledge  the  fact  that
the weather system is complex in the sense that everything
is related to everything. However,  although a typical NWP
system issues  forecasts  of  hundreds  of  variables,  one  must
not expect all of those variables to be meaningful (i.e., statisti-
cally  significant)  predictors  for  PV  power.  Scanning
through the literature, statistical methods for feature selection
and dimension reduction are abundant and have been popu-
larly  applied  to  weather  variables,  to  identify  the  relevant
and appropriate ones that  can contribute to the explanatory
power of a regression [e.g., Juban et al. (2016); Nagy et al.
(2016); Persson et al. (2017)]. The strategy is so intuitive or
even trivial for anyone with basic literacy in data science to
see. In comparison, a relatively smaller amount of attention
is paid to feature engineering, especially to how meteorologi-
cal knowledge can be best integrated into the modeling and
forecasting of solar power. Indeed, most feature engineering
approaches  found  in  the  relevant  literature  have  hitherto
been limited to those general-purpose ones, such as deriving
lagged versions of predictors [e.g., Persson et al. (2017)], sta-
tistical aggregation and smoothing of predictors [e.g., Pedro
et al. (2019)], or automatic feature generation and extraction
via machine learning [e.g., Acikgoz (2022)]. Since there are
infinitely many ways of doing feature selection and engineer-
ing, it is not possible at any rate to conclude with high certainty
that  one  method  dominates  the  other,  especially  when  the
test  dataset  used  by  one  work  is  seldom  used  in  another.
Thus, instead of conducting any further the “who did what”
kind  of  monotonous  enumeration  of  references,  which  has
been done all too many times with high repetitiveness [e.g.,
Voyant  et  al. (2017); Sobri  et  al. (2018); Ahmed  et  al.
(2020)],  this  section  presents  in  the  most  concise  manner
those  features  that  are  thought  absolutely  essential  for  PV
power forecasting.

There are five classes of meteorological variables,  i.e.,
relevant  features  that  enter  a  regression-based  solar  power
curve, that are thought to be beneficial to PV power predic-
tion. The rationale for selecting each class is as follows:

κ kPV

● Irradiance: It must be universally accepted that GHI
is the most influential parameter determining the PV power
output. However, other shortwave and longwave irradiance
components  are  also  more  useful  than  not  in  solar  power
curve modeling. For instance, BNI and the diffuse horizontal
irradiance (DHI) contribute to irradiance on an inclined sur-
face by different mechanisms: Whereas the former simply fol-
lows  geometry,  the  latter  is  related  to  the  sky-view  factor
(see section 4.3 for information). This has been known since
at least the 1960s (Kamphuis et al., 2020). As for longwave
radiation, research has shown that its impact on the energy
budget  and  temperature  dynamics  of  PV  is  profound
(Heusinger  et  al.,  2020; Barry  et  al.,  2020; Yang  et  al.,
2021). Most importantly, as mentioned earlier, clear-sky irra-
diance (and to a certain extent, extraterrestrial irradiance) is
able to explain very well the multiplicative seasonal compo-
nents  in  GHI and PV power time series,  and thus ought  to
be  included  as  a  predictor.  One  should  take  special  note
that, even if the predictand is  or ,  including clear-sky
irradiance or extraterrestrial irradiance is still thought impor-
tant,  for the de-seasonalized series could still  contain some
small-scale cyclic component due to the deficiency in clear-
sky modeling (Yang, 2020).

● Temperature: Besides irradiance, the second most influ-
ential class of variables to PV power is temperature, which
primarily  includes  ambient  temperature,  module  tempera-
ture, and cell temperature, among which the latter two may
be derived from the first (see section 4.5 for detail). It is cus-
tomary  to  account  for  the  effect  of  temperature  on  PV
power output through temperature coefficients. An increase
in  temperature  reduces  the  bandgap  of  a  semiconductor,
which correspondingly increases the energy of the electrons
in the material. Solar cells under higher temperatures have a
slightly  elevated  short-circuit  current  but  a  much  lower
open-circuit  voltage,  which  translates  to  an  overall
0.2–0.45% °C−1 decrease in cell efficiency, and thus an even-
tual drop in PV power.

● Wind: Near-surface wind speed and to a lesser extent
wind  direction,  which  are  commonly  output  at  a  height  of
10 m by NWP models,c have a noticeable effect on the module
temperature. Because temperature directly affects the module
and cell  temperature, the cooling effect enabled by wind is
but  secondary  in  affecting  PV  power.  Heat  removal  from
PV panels through convection has been studied thoroughly
[e.g., Wu et al. (2017); Ceylan et al. (2019)], and in-depth sci-
entific  details,  such  as  how  10-m  wind  translates  to  rear-
side  wind  or  how  the  convection  Nusselt  number  varies
with tilt angle, wind direction and velocity, have been under-
stood to a great extent. Notwithstanding, to what degree the

 

 

c Translating the 10-m wind to module level is not so important, as using 10-m wind is already much better than not using wind information
at all.
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complex heat transfer process can be captured by regression
models  remains  largely  unclear.  Additionally,  the  mapping
between the 10-m wind information and that flowing across
a flat  inclined surface is  impossible to be modeled without
complex fluid mechanics simulation.

● Albedo:  For  the  purpose  of  maximizing  the  total
annual  direct  radiation,  PV  panels  are  installed  on  an
inclined surface with a tilt comparable to the site’s latitude.
Due  to  this  inclination,  the  portion  of  GHI  due  to  ground
reflection is not to be neglected. The surface albedo, which
determines the fraction of global upwelling and downwelling
irradiance  (Gueymard  et  al.,  2019),  is  thus  identified  as
another important variable for solar power curve modeling.
Whereas the irradiance due to ground reflection may be calcu-
lated with a simple formulation without losing too much accu-
racy,  albedo  is  also  responsible  for  another  mechanism
called  backscattering.  When  backscattering  is  strong,  the
GTI is further boosted, of which the phenomenon is known
as albedo enhancement (Gueymard, 2017a, b). During solar
power  curve  modeling  of  conventional  PV,  the  broadband
albedo  is  usually  sufficient,  and  it  can  be  acquired  by
remote sensing means.

● Cloud: It has been argued that a good clear-sky irradi-
ance  model  should  account  for  all  sources  of  variability  in
solar irradiance except for that of clouds, and the a priori car-
dinal importance of cloud information goes without saying.
Cloud cover,  for instance, is  a main statistic describing the
clouds and has been deemed useful in time series forecasting
(Yang et al., 2012, 2015). As such, both the GEFCom2014
dataset (Hong et al., 2016) and the ECMWF HRES dataset
for  solar  forecasting  research  (Yang  et  al.,  2022a)  include
cloud  cover  as  a  variable.  In  another  case,  since  in  NWP,
the cloud radiative effect is dominantly determined by the liq-
uid  (ice)  water  path  and  effective  radius,  one  may  directly
employ  those  variables  instead  of  cloud  cover,  which  is
more statistical than physical. NWP models and remote-sens-
ing techniques provide a wide range of variables related to
clouds,  such as the cloud optical  depth or cloud phase.  All
of those are thought useful for regression-based solar power
curve  modeling,  although  their  degree  of  usefulness  may
vary.

kPV

In selecting the meteorological features for solar power
curve modeling, the domain knowledge of energy meteorol-
ogy surely plays a part. This is also true for feature engineer-
ing.  For  instance,  if  the  predictand  is  PV  power,  one  may
choose  to  simply  multiply  cloud  cover  with  the  clear-sky
PV power, to arrive at a more meaningful feature; if the pre-
dictand  is ,  one  may  choose  to  map  the  cloud  cover,
which represents a form of cloud index, to clearness or clear-
sky index, through some predefined function [the concept is
similar to the mapping function used in the Heliosat family
of methods for radiation retrieval from satellites, see Passias
and  Källbäck (1984); Cano  et  al. (1986); Rigollier  et  al.
(2004)].  Similarly,  for  ambient  temperature,  instead  of
using it directly, one may convert it to a percentage represent-
ing  the  reduction  in  PV  power,  through,  e.g.,  the  well-

1−γPmpp(Tcell−25)known expression “ ,” which is more dis-
cussed  in  section  4.6.1.  For  wind,  according  to  the  Sandia
Array Performance Model [SAPM; King et al. (2004)], the
rare-side module temperature relates to wind speed through
scaled  exponents;  hence,  linearly  scaling  the  wind  speed
and then taking the exponential is likely to be more effective
than letting the regression to figure out such relationship on
its own. At this stage, one should notice from these examples
the fact that the kind of feature engineering that we have con-
sidered is closely coupled with energy meteorology models,
in  that,  the  feature-engineered  regression  could  be  viewed
as a hybrid solar power curve, for it integrates the regression
concept  with  some  of  the  component  models  of  a  model
chain.  Section  5  elaborates  such  possibilities  further.
Another highly effective feature engineering tactic is to con-
sider spatial information. Although spatio-temporal informa-
tion  is  already  embedded  in  irradiance  forecasts  from
physics-based methods, it has been reported that using fore-
casts  from  pixels  or  lattice  points  neighboring  to  the  focal
location are able to drive the forecast accuracy even higher
(Mazorra Aguiar et al., 2016; Pedro et al., 2019; Yagli et al.,
2022).
 

3.3.    Other  considerations  for  regression-based  solar
power curve modeling

Insofar  as  the  regression  methodology  is  concerned,
solar power curve modeling is conceptually identical to post-
processing  of  weather  forecasts;  it  is  just  that  the  predic-
tand,  instead of  being the measured/remote-sensed weather
parameter,  is  now  (normalized)  PV  power.  On  this  point,
the vast majority of knowledge and insights derived and gath-
ered  from  forecast  post-processing  investigations  can  be
directly  transferred  to  regression-based  solar  power  curve
modeling.  Because  forecasts  can  be  either  deterministic  or
probabilistic, of which the latter can be sub-categorized into
interval,  quantile,  ensemble  and  distributional  forecasts,
post-processing can be summarized into four mutually exclu-
sive  but  collectively  exhaustive  types:  (1)  deterministic-
to-deterministic  (D2D),  (2)  probabilistic-to-deterministic
(P2D), (3) deterministic-to-probabilistic (D2P), and (4) proba-
bilistic-to-probabilistic (P2P) post-processing. This typology
originally  proposed  by Yang  and  van  der  Meer (2021)  is
thought readily applicable to the current task.

D2D solar  power  curve  modeling  is  possibly  the  most
abundant  and  definitely  the  most  fundamental  case  in  the
present literature. Early demonstrations of D2D solar power
curves focused on using weather variables as a supplement
to  extrapolative  time  series  methods  (Bacher  et  al.,  2009;
Huang  et  al.,  2010; Kardakos  et  al.,  2013).  Stated  differ-
ently, the time series methods themselves are able to project
PV power into the future, but weather variables are thought
to offer additional information for that projection. With the
lapse of time, solar forecasters have expanded the boundary
of  modeling  in  several  directions,  in  that,  the  methods  are
now more numerous, procedures more tortuous, and compar-
isons  more  thorough.  For  example,  11  regression-based
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solar power curves were compared by Visser et al. (2022) to
a model chain, on data from 152 PV systems in the Nether-
lands,  in  a  setting  dealing  with  day-ahead  marketd (DAM)
operations.  With  a  total  of  17  variables  from the  ECMWF
HRES and site-related information, the study concluded that
ensemble learning and deep learning are more advantageous
than simple linear regression and support vector regression,
which is kind of expected. An interesting note, however, is
that although ensemble learning and deep learning methods
were able to outperform model chain in terms of mean abso-
lute  error,  from  an  economic  perspective,  which  considers
both the initial revenues made on the DAM and the net imbal-
ance  costs  due  to  the  observed  forecast  error,  the  model
chain was found to be superior.

P2D solar power curve modeling requires more consider-
ation. When probabilistic weather variables, e.g., the outcome
of ensemble forecasting, are available, there are two alterna-
tive  ways  with  which  they  can  be  mapped to  deterministic
PV power. One of those is to first summarize the ensembles
into  a  deterministic  set  of  weather  variables,  and  proceed
with a D2D conversion procedure. The other is to apply the
D2D conversion  procedure  to  each  ensemble  member,  and
then summarize the ensemble PV power into a deterministic
one. Ensemble, as a very general strategy, has been widely
shown  to  be  able  to  reduce  the  uncertainty  in  the  data,
model, and parameters; the reader is referred to Mayer and
Yang (2022), Yang and Gueymard (2021b), Yang and Dong
(2018), and Wolff et al. (2016) for a few solar case studies,
while noting that searching the literature would result in hun-
dreds of similar works. In the case of solar power curve mod-
eling, Pierro et al. (2016) considered ECMWF and an original
and  a  post-processed  version  of  the  Weather  Research  and
Forecasting model (WRF) as three sources of NWP inputs,
which, when paired with four regression models, resulted in
numerous  combinations,  each  giving  a  distinct  set  of  PV
power predictions. Their conclusion suggests that the discrimi-
nation in the final forecast performance is mainly due to the
choice of NWP input, whereas various regressions with the
same NWP input yield highly similar forecasts. Paring ensem-
ble inputs with ensemble power curves is more discussed in
section 6.

Similar  to  P2D  solar  power  curve  modeling,  one  also
faces in D2P modeling the choice of whether the deterministic
set of weather variables should be processed into a probabilis-
tic  set  and  then  converted  to  probabilistic  PV  power  with
one power curve, or should be directly converted into a proba-
bilistic set of PV power via ensemble power curves. Again,
a  formal  discussion  is  deferred  to  section  6.  For  now,  one
should note that D2P solar power curve modeling is exempli-
fied  by  the  setup  of  GEFCom2014,  where  the  contestants
were tasked to convert the deterministic NWP forecasts into
quantiles (Hong et al., 2016). In regressing the weather vari-
ables into quantiles, one may simply adopt the quantile regres-

sion and its variants, with the predictand being the (normal-
ized) PV power. However, besides probabilistic regressions,
there  are  two  other  forms  of  D2P  solar  power  curves,
namely,  analog  ensemble  (AnEn)  and  method  of  dressing.
Whereas AnEn seeks to search for weather patterns in history
that are similar to the one at hand, and then uses the corre-
sponding historical  PV power measurements as predictions
for the current PV power, the method of dressing leverages
the  errors  of  historical  PV  power  predictions  and  dresses
them  onto  the  current  prediction.  The  reader  is  referred  to
Pierro  et  al. (2022)  for  an  AnEn-based  solar  power  curve,
but the literature seems to lack an example of the method of
dressing at the time of writing.

The last category of solar power curves is P2P. This cate-
gory of curves requires the input to be an ensemble representa-
tion of weather variables,  which can be produced either by
running the same weather model with perturbed initial condi-
tions or by assembling predictions from several weather mod-
els. Doubleday et al. (2021) presented the first PV power fore-
casting  application  using  Bayesian  model  averaging
(BMA), which is a form of dressing method that places a para-
metric  distribution  around  each  deterministic  forecast.  In
their approach, forecasts from a poor man’s ensemble with
four NWP models were individually converted to PV power
using a solar power curve similar to the regression used by
Ayompe et al. (2010). With those ensemble PV power fore-
casts, each member is dressed with a two-part density func-
tion,  which  is  a  discrete–continuous  mixture,  to  explicitly
model the effect of inverter clipping, which refers to the trim-
ming  of  the  power  output  when  the  maximum  capacity  of
the inverter is reached. The method has been thoroughly com-
pared to, and showed superiority over, the ensemble model
output  statistics  (EMOS),  which  is  another  P2P  method.
One drawback of their proposal may be the lack of compari-
son to nonparametric approaches.
 

4.    Model-chain-based solar power curves

PVSyst

The initial conceptualization and the subsequent uptake
of model chain predate the advent of modern solar forecast-
ing, in both academia and industry. This is because resource
assessment, as a long-standing procedure recognized as neces-
sary for any PV plant development and performance evalua-
tion,  also  requires  a  model  chain.  To  give  perspective,
Beyer  et  al. (2004)  had  already  employed  the  concept  of
model chain in their early work on PV system performance
evaluation, and the results were quite stimulating, for the scat-
ter  plots  between  the  measured  power  and  modeled  AC
power were tightly packed around the identity line, indicating
a  high  degree  of  correspondence  between  the  two.  Simi-
larly,  in  industry,  the  commercial  software  (Mer-
moud, 1994), which is still ubiquitously accepted for bankabil-
ity reports today, was already well developed back in 1992,

 

 

d A day-ahead market is one in which participants purchase and sell electricity at financially binding day-ahead prices for the following
day.
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and the capabilities of the software in terms of 3D shading
analysis, simulation of a stand-alone PV system, and pumping
PV  systems  were  already  quite  powerful.  Most  certainly,
with  the  development  and  popularization  of  the 
Python library (Holmgren et al., 2018), model chain has had
another wave of significant advances and uptakes. Given its
history, making a compendium on model chain would easily
fill a book; therefore, this tutorial is presented on a “need-to-
know” basis, and important references that lead to the current
discussions are carefully summarized for further reading. 

4.1.    Solar positioning

Z ϕs

The position of the sun relative to an observer on earth
can be fully described by two angles: the solar zenith angle
( )  and  the  azimuth  angle  ( ).  In  many  early  papers  and
introductory  textbooks  [e.g., Michalsky, (1988); Masters
(2013); Vignola et  al. (2020)],  the calculation formulas for
these two angles are given as 

sinα = cos Lcosδcos H+ sin Lsinδ , (4)
 

sinϕs =
−cosδsin H

cosα
, (5)

α = π/2−Z L
δ

H

ϕs

0◦

360◦

sinφs = sin(π−φs)

where  is the elevation angle,  is the latitude of
the location at which solar positioning is conducted,  is the
solar  declination,  and  is  the  hour  angle.  There  are  two
things to take note in using these formulas. One of those is
that these formulas give only approximations rather than rep-
resent the exact astronomical expressions, and more precise
alternatives  are  available  [e.g., Blanc  and  Wald (2012);
Grena (2012); Hoadley (2021)].  Secondly,  there  may  be
some  computation  issues  resulting  from  the  trigonometry
involved.  More  specifically,  in  Eq.  (5)  follows  a  zero-
north–east-positive convention, in that, its range is from 
to ,  whereas  in  many  solar  applications  a  zero-
south–east-positive–west-negative  convention  is  assumed.
In both cases, because the inverse sine function is ambigu-
ous,  i.e., ,  a  test  is  needed  to  determine
the correct solution [see pg. 17 of (Vignola et al., 2020), for
detail].

Z φs

θ

θ

Aside from  and , a third angle is needed for model
chain,  that  is,  the  incidence  angle  ( ),  which  is  the  angle
between  the  sun  and  the  normal  of  the  inclined  surface  on
which PV is installed. The formula of  is  (Masters,  2013;
Vignola et al., 2020) 

cosθ = cosS cosZ+ sinS sinZ cos(φs−φc) , (6)

S φc

φc

where  and  are  the  tilt  and  azimuth  angles  of  the
inclined  collector  surface,  and  again  follows  the  zero-
north–east-positive  convention.  Unlike  the  case  of  Eq.  (5),
no ambiguity emerges from the trigonometry in Eq. (6).

Existing  algorithms  for  solar  positioning  differ  from
one another in accuracy and computational complexity. The
most  insightful  reference  on  this  matter  is  the  one  by
Hoadley (2021),  who gave a  table  listing the  accuracy and

±0.0003◦

±0.01◦

pvlib
insol

computational  complexity  of  all  major  algorithms,  from
which the trade-off between the two properties is immediately
obvious. For instance, the solar position algorithm (SPA) of
Reda  and  Andreas (2008)  takes  13  623  steps  to  compute,
whereas  the  algorithm  of Michalsky (1988)  only  requires
530  steps.  Nevertheless,  the  difference  in  accuracy  is  also
quite  significant:  SPA  has  an  accuracy  of ,
whereas  that  of  Michalsky  is  accurate  only  up  to .
Given  that  computational  power  nowadays  is  no  longer  a
major  issue  as  compared  to  several  decades  ago,  it  is
advised to use whenever possible the highest-accuracy algo-
rithm,  that  is,  SPA,  which  is  available  in  both  of
Python  (Holmgren  et  al.,  2018)  and  of  R  (Corripio,
2021).

Solar  positioning  as  the  foremost  stage  of  the  model
chain  has  to  be  carried  out  very  carefully,  for  its  validity
will impact all subsequent stages. Owing to the different con-
ventions used in different software packages, it is necessary
to follow the documentation exactly. For instance, one com-
mon source of mistakes in the literature, to our experience,
is the time convention, where the choice between Coordinated
Universal Time (UTC) and local time could result in a shift
in zenith and azimuth angles. Therefore, performing a sanity
check is utterly essential. To do so, one can simply plot out
the  extraterrestrial  irradiance,  which  could  be  computed
with  just  the  zenith  angle,  versus  GHI,  and  the  two  bell-
shaped  curves  should  align  nicely  at  sunrise  and  sunset
times. Another common mistake is due to the time stamp con-
vention used in irradiance data logging. To represent the aver-
age irradiance over an hour, the time stamp could be either
ceilinged,  centered,  or  floored.  Without  careful  considera-
tion, the extraterrestrial  irradiance could still  shift  from the
GHI data by a small margin depending on the temporal resolu-
tion of the data. This time alignment problem is thoroughly
discussed in the validation paper by Yang (2018a). One can
never be too careful with solar positioning. 

4.2.    Separation modeling

Gh Dh

Bn

k = Dh/Gh

k

kt

E0

kt k

In attempting to split the GHI ( ) into DHI ( ) and
BNI  ( ),  scientists  have  proposed  more  strategies  but
achieved less success than any other stage of a model chain.
In  other  words,  separation  modeling  introduces  by  far  the
highest  error  among  all  stages  of  a  model  chain.  This  is
largely owing to the non-injective relationship between the
GHI and DHI/BNI, i.e., a single GHI value could correspond
to an infinite number of DHI–BNI combinations, and the pro-
portion  of  DHI  could  range  from  a  mere  10%  to  nearly
100%. In fact, the ratio between DHI and GHI is called the
“diffuse fraction” ( ), which is what separation mod-
els are essentially estimating. Since  is a normalized version
of  diffuse  radiation,  it  is  logical  if  GHI  is  also  normalized
before  modeling.  As  such,  a  corresponding  quantity  called
the clearness index ( ), which is the ratio between GHI and
extraterrestrial GHI ( ), is almost always the choice. Gener-
ally, separation modeling seeks to establish a –  relation-
ship.

kt kThe difficulty of using  as the sole predictor for  is
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tions worldwide, which is larger in size and wider in coverage
than  the  dataset  of Gueymard  and  Ruiz-Arias (2016).  The
Yang4  model  (Yang  and  Boland,  2019; Yang,  2021a)
became  the  chief  of  separation  models.  Formulation-wise,
Yang4 resumes from Engerer2, and adds a new form of vari-
ability index, namely, :
 

kYang4 =C+
1−C

1+ eβ0+β1kt+β2AST+β3Z+β4∆ktc+β6kEngerer2hourly

+β5kde .

(12)

kEngerer2hourly

kt

Here,  is  the  diffuse  fraction  predicted  by  the
Engerer2 model on hourly data. The inclusion of this predictor
is motivated by the BRL model, which uses the daily mean

 as a term representing the variability in global radiation.
Since  separation  modeling  deals  with  diffuse  radiation
rather  than  the  global  one,  the  hourly  diffuse  estimate  is
thought  to  be,  and  in  fact  is,  useful.  Empirically, Fig.  6d
depicts  the  prediction  outcome of  Yang4,  which  has  better
coverage  of  the  gray  scatter  than  Engerer2.  Recently,  a
regime-switching  version  of  Yang4,  namely,  Yang5 (Yang
et al.,  2024), was published, in that, it  fits a separate set of
model  coefficients  for  each  radiation  climatology  regime
and shows further performance improvements.

Before  we  close  this  subsection,  it  must  be  noted  that
the above-mentioned models are not readily available in vari-
ous model chain software packages. This is due to two rea-
sons: (1) the models were proposed very recently and the soft-
ware  packages  have yet  to  be  updated,  and (2)  the  bulk  of
model chain applications deal with hourly data, whereas the
models  are  most  suitable  for  1-min  data—some antiquated
hourly models such as the DISC model (Maxwell, 1987) are
still being used during the production of the latest irradiance
databases such as the NSRDB (Yu XIE, 2021, personal com-
munications).  Be  that  as  it  may,  since  the  hourly  models
become increasingly outdated for today’s solar energy meteo-
rology, it is advised to use the latest models whenever possible
to attain the best model chain performance. The possibility
of using machine learning for irradiance separation has also
been recently investigated (Chu et al., 2024), but the results
do not dominate the semi-empirical models. 

4.3.    Transposition modeling

There is a lot of content that should be devised for trans-
position modeling, as it comprises the third largest class of
models in a model chain, after separation modeling and cell
temperature modeling (see section 4.5 below). Nonetheless,
insofar  as  opinion  on  the  best  transposition  model  is  con-
cerned, the consensus is far stronger than that on separation
models.  Despite  that  there  being  a  tiny  fraction  of  people
objecting to this view, the 1990 version of the Perez model
(Perez et al., 1990) is widely recognized as the quasi-universal
transposition  modeling  choice.  Strong  empirical  evidence
has  been  provided  by Yang (2016),  who  conducted  by  far
the most comprehensive performance comparison of transpo-
sition  models  in  terms  of  the  number  of  models  compared
and the dimensionality of the dataset used; the Perez model
won that contest with flying colors. Therefore, unless there

are truly appealing reasons against its use—we shall see one
below—the Perez model ought to be prioritized.

Bc Dc

Dg

ρg Rr

Rd

In a nutshell, transposition modeling deals with convert-
ing  the  three  horizontal  or  normal  irradiance  components,
that  is,  GHI,  DHI,  and BNI,  into  those  on  an  inclined  sur-
face. As suggested by geometry, the GTI on an inclined sur-
face  is  composed  of  three  additive  components:  the  beam
tilted  irradiance  ( ),  diffuse  tilted  irradiance  (DTI, ),
and the ground-reflected irradiance ( ). Whereas the beam
component can be calculated by simple trigonometric projec-
tion, the ground-reflected component depends on GHI, sur-
face albedo ( ), and a ground-view factor ( , also known
as the transposition factor for ground reflection), which can
be assumed to be isotropic without too much loss of precision
(Gueymard, 2009). To that end, almost all transposition mod-
els  exclusively  model  DTI,  or  to  be  more  precise,  the sky-
view factor ( , also known as the diffuse transposition fac-
tor). Mathematically, the transposition equation is given by 

Gc =

Bc︷  ︸︸  ︷
Bn cosθ+

Dc︷︸︸︷
RdDh +

Dg︷  ︸︸  ︷
ρgRrGh ,

(13)

Rr 0.5(1− cosS )
Rd

where the isotropic  is given by . In what fol-
lows, we closely examine how  is modeled by Perez et al.
(1990).

ϑ φ

L(ϑ,φ)

The original Perez model was proposed in 1986 (Perez
et al., 1986), and it underwent several major changes/simplifi-
cations  after  that,  becoming  the  canonical  Perez  model
which has gained massive popularity today. One should be
aware  that  the  entire  modeling  philosophy  of  the  Perez
model is established upon integrating the radiance of the hemi-
spheric  sky.  The  sky  radiance  is  anisotropic  in  nature,  and
its  value  depends  on the  position  in  the  sky,  as  marked by
the polar angle ( ) and azimuthal angle ( ). Figure 7 shows
a differential solid angle and its representation in polar coordi-
nates.  Denoting  the  coordinate-dependent  radiance  with

,  one  may  integrate  it  over  the  hemispheric  solid
angle, and thus obtain DHI: 

Dh =

∫ 2π

0

∫ π/2

0
L(ϑ,φ)cosϑsinϑdϑdφ . (14)

Dh

L(ϑ,φ)
Clearly then,  to arrive at ,  we are interested in knowing
the analytic form of the radiance distribution of .

The radiance distribution is complex and dependent on
sky  conditions.  However,  there  are  two  phenomena  that,
once  considered,  could  give  a  fairly  good  approximation.
One of those is the forward scattering of beam radiation by
aerosols, which makes the sky in the vicinity of the sun—or
the circumsolar region—appear brighter than the regions of
the  sky  dome  far  from  the  sun.  The  other  is  that  the  blue
light  created  by  Rayleigh  scattering  is “diluted” by  the
white light created by Mie scattering, due to the larger airmass
at the horizon as compared to that at the zenith. Hence, on a
clear day, the horizon band appears white and bright. Building
upon these two phenomena, Perez et  al. (1986) proposed a
three-part geometrical framework, as shown in Fig. 8. In the
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α = 15◦

ξ = 6.5◦

L F1×L F2×L
F1 F2

original work, the circumsolar region was assumed to have
a radius , whereas the horizon band was assumed to
have  an  angular  thickness  of .  The  overarching
assumption of the original Perez model is that the radiances
originated from these three parts are different, but remain con-
stant within each part. In Fig. 8, the radiance from each part
is represented by , , and , respectively, where

 and  are  sky-condition-dependent  coefficients  to  be
modeled. Through integration, one obtains 

Dh =πL{1+2(1− cosα)(F1−1)χh(Z)cosZ′+

0.5(F2−1)(1− cos2ξ)} , (15)

χh(·) Z

Z′

where  is a function of , denoting the fraction of the cir-
cumsolar region above the horizon, which is wholly geometri-
cally obtainable, and  is the average zenith angle of the visi-
ble part of the circumsolar region; this is Eq. (1) of Perez et
al. (1986).

Whereas  Eq.  (15)  gives  an  expression  for  DHI  under
this  three-part  framework,  a  similar  expression  can  be
derived for DTI, following the geometry of Fig. 9, albeit the
integration  is  much  more  difficult  than  in  the  horizontal
case: 

Dc =πL{0.5(1+ cosS )+2(1− cosα)(F1−1)χc(θ)cosθ′+
2ξ sinξ′(F2−1)/π} , (16)

χc(·) θ

θ′

which  is  identical  to  Eq.  (2)  of Perez  et  al. (1986).  In  Eq.
(16),  is a function of , denoting the fraction of the cir-
cumsolar region seen by the collector plane,  is the average
incident angle of the visible part of the circumsolar region,
and 

ξ′ = S + ξ
(

1
2
− S
π

)
. (17)

Dc

Dh

Since the diffuse transposition factor is the ratio of  and
, one yields 

RPerez1986
d =

Dc

Dh
=

0.5(1+ cosS )+a(θ)(F1−1)+b(F2−1)
1+ c(Z)(F1−1)+d(F2−1)

,

(18)

where 

a(θ) = 2(1− cosα)χc(θ)cosθ′ , (19)
 

b = 2ξ sinξ′/π , (20)
 

c(Z) = 2(1− cosα)χh(Z)cosZ′ , (21)
 

d = 0.5(1− cos2ξ) . (22)

F1 = F2 = 1
Rd = 0.5(1+ cosS )

It is worth noting that when , Eq. (18) collapses
to ,  which  is  the  isotropic  transposition
model.

χh

χc

Despite  the  formulation,  to  this  day  the  original  Perez
model still has a series of unresolved issues, such as the dou-
ble-counting problem during radiance integration when the
circumsolar  region  overlaps  with  the  horizon  band  at  low-
sun conditions, or effects of the approximations used for 
and . However, the most challenging aspect is the complex-
ity of the model, which is not conducive to easy uptake and
prompted Perez  et  al. (1987)  to  make  four  major  changes

 

Fig.  7. Illustration  of  a  differential  solid  angle  and  its
representation in polar coordinates.

 

Fig.  8. Illustration  of  the  three-part  geometrical  framework
used in  the  original  Perez  model,  with  respect  to  a  horizontal
plane.

 

Fig.  9. Illustration  of  the  three-part  geometrical  framework
used in the original Perez model, with respect to a tilted plane.
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one year after the original model was proposed. These four
changes were: (1) a reparameterization of the model coeffi-
cients; (2) allowance for negative coefficients; (3) a simplified
geometric framework; and (4) a revised binning strategy for
differentiating  the  sky  conditions.  Whereas  the  reader  is
referred to Perez et al. (1987) for a more detailed explanation
of these four changes, it should just be noted here that the sim-
plified  geometric  framework  considers  two  physical  surro-
gates:  The  brightening  of  the  horizon  band  is  concentrated
at an infinitesimally thin line at the horizon, and the brighten-
ing  of  the  circumsolar  region  is  concentrated  at  a  point  at
the center of the disk.

The  diffuse  fraction  of  the  simplified  Perez  model  is
given by 

RPerez1990
d =

Isotropic background︷                ︸︸                ︷
(1−F′1)

1+ cosS
2

+

Circumsolar︷︸︸︷
F′1

a
c
+

Horizon band︷  ︸︸  ︷
F′2 sinS , (23)

where 

a =max(0,cosθ) , (24)
 

b =max(cos85◦,cosZ) , (25)

F′1 F′2

F1 F2

F′1 F′2
ε′ ∆

and ,  are new sets of sky-condition-dependent model
coefficients, which are not the same but analytically related
to  and  of the original model. In narrating the sky-condi-
tion dependence of  and , Perez et al. (1990) proposed
using  the  sky’s  clearness  ( )  and  sky’s  brightness  ( ),  in
that, 

F′1 =max
(
0,F′11(ε′)+∆F′12(ε′)+ZF′13(ε′)

)
, (26)

 

F′2 = F′21(ε′)+∆F′22(ε′)+ZF′23(ε′) , (27)

where 

ε′ =
(Dh+Bn)/Dh+1.041Z3

1+1.041Z3 , (28)
 

∆ =
Dhmr

E0n
≈ Dh

E0n cosZ
. (29)

Z E0n

mr ≈ cos−1 Z
F′11(ε′), . . . ,F′23(ε′)

F′11(ε′), . . . ,F′23(ε′)

The units for  in Eq. (28) are radians, and  in Eq. (29)
is the extraterrestrial BNI, whereas  is the relative
air  mass.  The  values  of  are  given  in
Table  6  of Perez  et  al. (1990),  which  were  trained  using
hourly  data  from  nine  locations  in  the  United  States  and
Europe.  (Unfortunately,  that  dataset  was lost  during a hard
disk crash that took place in the early 1990s.) This latest “offi-
cial” set of model coefficients is thought to have reached an
asymptotic  level  of  optimization  (Yang et  al.,  2014);  how-
ever, refitting needs may arise if the model is to be used for
higher-resolution applications that require minute data. The
fitting  procedure  for ,  which  is  a  least-

squares approach, can be found in the documents by Perez
et al. (1988) and Yang et al. (2014).

Much  effort  has  been  spent  on  introducing  the  Perez
model, due to its cardinal importance in transposition model-
ing. There are nevertheless other transposition models, each
following  certain  assumptions  and  modeling  philosophies,
that  are  much  simpler  but  do  not  perform  substantially
worse  than  the  Perez  model.  Typifying  such  a  trade-off
between  modeling  complexity  and  performance  is  the  Hay
model (Hay and Davies, 1980), which has the form 

RHay
d = (1−A)cos2

(S
2

)
+A

cosθ
cosZ

, (30)

A = Bn/E0n

A

Rd Rd

A = 1

A = 0
A

RHay
d

Rd

where  is the anisotropy index as termed by Hay
and Davies (1980); more generally,  should be referred to
as  the  direct  transmittance,  since  it  is  the  ratio  of  BNI and
extraterrestrial BNI. The formulation of Eq. (30) is intuitive,
in  that,  the  first  part  of  the  formulation  gives  the  isotopic

, whereas the second part gives an  that is purely direc-
tional.  Clearly  then,  if ,  the  atmosphere  is  scattering-
free, and all diffuse radiation is represented by the circumsolar
collimated component; if , the sky is overcast, and the
isotropic  diffuse  transposition  factor  results;  and  if  is
between 0 and 1,  some degree of  anisotropy is  assumed to
exist, and  is a convex combination of the isotropic and
purely  directional ’s.  Another  example  is  the  Bugler
model (Bugler, 1977), which assumes the brightening of the
circumsolar region is 5% of BNI, which leads to the following
model form: 

RBugler
d =

1+ cosS
2

+0.05
Bn cosθ

Dh
. (31)

pvlib

SolMod

The  Python library offers a good collection of trans-
position models, which should be sufficient for most model
chain applications. That said, a more complete code base for
transposition  models  is  the  R  package,  in  which
implementations of all 26 models as appeared in the review
of Yang (2016) are available. At this point, one may question
the need for having so many alternatives implemented when
the Perez model is  known to be quasi-universal.  One com-
pelling  reason  is  that  the  best-performing  transposition
model may not necessarily lead to the optimal model chain,
largely owing to the intricate and untraceable error propaga-
tion that takes place within the model chain. This is in fact
the  main  conclusion  of Mayer  and  Gróf (2021),  among
whom the lead author has since been advocating the viewpoint
that theconstruction of a model chain should be treated as a “sys-
tem” in its entirety, rather than assembling the best-perform-
ing  component  model  for  each  stage.  In  any  case,  what
comes  out  of  transposition  models  is  the  GTI.  Yet,  GTI  is
still  not  exactly  the  irradiance  reaching  the  solar  cells,  for
most PV modules are encapsulated by glass and other protec-
tive materials, which reflect and transmit the incoming irradi-
ance  differently,  depending  on  the  material  properties.  To
model the effective irradiance reaching the solar cells, reflec-
tion loss models are needed, which are explained next. 
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4.4.    Reflection loss modeling

τ

The  nominal  power  of  a  PV  module  is  determined
under the standard test condition (STC), which encompasses
an incident irradiance of 1000 W m−2,  a reference air mass
1.5 spectra, and a cell temperature of 25°C. On top of these,
STC also entails in geometry that the incident light is perpen-
dicular  to  the  module’s  surface.  Notwithstanding,  the  inci-
dence angle can vary between 0° to 90° in field conditions,
leading to a certain amount of reflection loss as compared to
the STC case. This amount of reflection loss ought not to be
regarded  as  negligible.  For  instance, Causi  et  al. (1995)
reported  that  reflection  may  cause  a  5%–10%  energy  loss
for beam radiation, whereas this is 11%–15% for diffuse radi-
ation.  In  another  work, Martin  and  Ruiz (2001)  noted  that
the pyranometer–PV disparity may lead to a 1.3%–14.8% dif-
ference  in  monthly  yield  estimation,  which  is  due  to  both
reflection loss and mismatch in the spectral response of pyra-
nometer and PV. On this point, it is advised not to pass GTI
directly onto the next stage of a model chain without account-
ing for the reflection loss, because that would lead to an over-
estimation in the PV power production.  Terminology-wise,
reflection  loss  models  are  also  known as  relative  transmit-
tance models (Xie et al., 2022) or angular loss models (Martin
and  Ruiz,  2001).  In  terms  of  model  output,  reflection  loss
models seek to estimate/compute a quantity known as the rela-
tive transmittance—herein denoted using —which is to be
further elaborated below.

n1

n2

When light strikes the interface between a medium with
refractive  index  and  another  medium  with  refractive
index ,  reflection and refraction occur (see Fig. 10).  The
physics that governs this process is explained by the Fresnel
equations. For a smooth surface, the reflection of unpolarized
radiation is 

r =
r⊥+ r∥

2
, (32)

where 

r⊥ =
sin2(θ′− θ)
sin2(θ′+ θ)

, (33)
 

r∥ =
tan2(θ′− θ)
tan2(θ′+ θ)

, (34)

θ θ′in  which  and  are  the  incident  and  refractive  angles,
respectively, which are linked to the indices of refraction by
Snell’s law, 

n1 sinθ = n2 sinθ′ . (35)

Bc Dc Dg

Bc

n1 n2

Recall Eq. (13) in which GTI is written as the sum of three
irradiance components, namely, , , and . As such, if
the Fresnel equations are to be applied to GTI, the three irradi-
ance components should be considered separately. Applying
the Fresnel equations to  is quite direct, especially when

 and  of  many  materials  are  already  well  known.  On

Dc Dg

the  other  hand,  owing  to  the  omni-directional  property  of
 and , deriving analytic expressions of the transmittance

of diffuse and reflected radiation must undergo some forms
of integration of the Fresnel equations, which are not straight-
forward. To that end, many early works resort to using empiri-
cal  approaches.  More  generally,  studies  on  reflection  loss
modeling can be divided into two kinds: those that consider
the Fresnel equations and those that do not—Table 1 of Xie
et  al. (2022) presents a good summary of available models
according to this division.

b d
g

τb τd τg

G′c

In what follows, we should use the subscripts , , and
 to  denote “beam,” “diffuse,” and “ground-reflected,” as

per the common convention. As such, , , and  should
then represent the relative transmittances of the beam compo-
nent,  diffuse  component,  and  ground-reflected  component
of GTI. It should be highlighted here that the term “relative
transmittance” is not a universally accepted one, as a variety
of  other  names  have  been  used,  such  as  the
transmittance–absorptance  product  (Duffie  and  Beckman,
2013), angle-of-incidence correction factor (Marion, 2017),
(one minus) angular loss factor (Martin and Ruiz, 2001), or
incident angle modifier [IAM; De Soto et al. (2006)]. These
aliases introduce confusion, but the way in which these rela-
tive  transmittances  affect  GTI  is  clear:  By  defining  the
absorbed radiation, , one may write 

G′c = τbBc+τdDc+τgDg . (36)

Bc = Bn cosθ
Dg = ρgGh(1− cosS )/2

Dc

In  this  equation,  follows  geometry,
 results from the assumption of Lam-

bertian foreground, and  can be obtained via any transposi-
tion model. In other words, once the GTI is obtained after irra-
diance  transposition,  if  the  relative  transmittances  are  esti-
mated next using relative transmittances models, one arrives
at the absorbed radiation, which, if spectral mismatch and soil-
ing are to be temporarily neglected, can be regarded as the
effective irradiance, a well-known term in PV performance
modeling. As mentioned earlier, there are two schools of mod-
eling  approaches  for  relative  transmittance:  one  empirical
and the other physical. While acknowledging that there are
more  options,  the  two  most  representative  and  technically

 

n1 n2

Fig.  10. Incidence  and  refraction  angles  in  media  with
refractive indices  and .
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refined models, one from each school, are elaborated next.

τb

θ ar

Representing the empirical modeling of relative transmit-
tances is the Martin model (Martin and Ruiz, 2001), which
is by far the most popular choice in the literature. For , Mar-
tin and Ruiz (2001) discovered that an exponential function
could  somewhat  suffice  in  describing  the  relationship
between  the  incidence  angle  ( )  and  the  angular  loss  ( )
fairly well: 

τMartin
b =

1− exp
(
−cosθ

ar

)
1− exp

(
− 1

ar

) . (37)

ar

τMartin
d τMartin

g

Here, ,  which  varies  for  different  PV  encapsulation
designs,  needs  to  be  empirically  determined.e On the  other
hand,  the  expressions  for  and  are  calculated
by integrating the contribution of each solid angle unit inci-
dent on the tilted surface, assuming isotropy: 

τMartin
d =1− exp

{
− 1

ar

[
c1

(
sinS +

π−S − sinS
1+ cosS

)
+

c2

(
sinS +

π−S − sinS
1+ cosS

)2
 , (38)

and 

τMartin
g = 1− exp

{
− 1

ar

[
c1

(
sinS +

S − sinS
1− cosS

)
+

c2

(
sinS +

S − sinS
1− cosS

)2
 . (39)

c1 = 4/(3π) ar

c2

ar = 0.173 c2 = −0.0675

ar c2

c2 = 0.5ar −0.154

Whereas ,  the  other  two  model  coefficients 
and  depend on the PV panel encapsulation configuration,
e.g.,  and  for an air–glass configura-
tion. As the original paper of Martin and Ruiz (2001) offers
a comprehensive list  of  values,  could be customarily
retrieved using the linear function , as speci-
fied  by  the  international  standard  BS  EN  IEC  61853-
3:2018.

exp(−KL/cosθ′)
K = 4 −1

L = 2
θ′

Whereas the Martin model is empirical, a full physical
account for the transmittance of a cover system ought to con-
sider  both  reflection  loss  at  the  interface  and  absorption
within the glazing. The attenuation of a light beam by an opti-
cally homogeneous medium is described by Bouguer’s law,
which  is  sometimes  referred  to  as  Beer’s  law,  or  the
Bouguer–Lambert law. Bouguer’s law, when applied to PV,
results  in —see  Eq.  (3.78)  of Duffie  and
Beckman (2013)—where  m  is the extinction coeffi-
cient of glass,  mm is the typical thickness of the glaz-
ing, and the refractive angle , following Snell’s law, is 

θ′ = sin−1
(

sinθ
nPV

)
, (40)

nPVwhere  is  the  refraction  index  of  the  PV module  cover

nPV = 1.526 nPV = 1.3material, as  for normal, and  for anti-
reflection coated glass (De Soto et al., 2006; Duffie and Beck-
man,  2013).  However,  because  absorption  has  a  negligible
effect compared to reflection, many have chosen to exclude
absorption in their modeling [e.g., Marion (2017); Xie et al.
(2022)].  Also  often  neglected  is  multiple  reflection,  which
is a prominent feature for flat-plate solar collectors, but not
for  PV. To that  end,  the physical  relative transmittance for
beam radiation is only based on Fresnel equations: 

τb =

1− 1
2

(
sin2(θ′− θ)
sin2(θ′+ θ)

+
tan2(θ′− θ)
tan2(θ′+ θ)

)
1−

(
nPV−1
nPV+1

)2 . (41)

τd τgAs for  and , their analytic expressions through integrat-
ing the Fresnel  equations have troubled physicists  over  the
past century or so. However, just very recently, the situation
was relieved by Xie et al. (2022), after discovering an alterna-
tive  form  of  the  Fresnel  equations  originally  proposed  by
Schlick (1994), through which the integration became feasi-
ble.  Whereas  readers  are  referred  to  the  publication of Xie
et  al. (2022)  for  details,  the  expressions  are  simply  listed
here. The relative transmittance for diffuse radiation is 

τXied =
2w

π(1+ cosS )

(
30
7
π− 160

21
S − 10

3
πcosS +

160
21

cosS sinS − 5
3
πcosS sin2 S +

20
7

cosS sin3 S−

5
16
πcosS sin4 S +

16
105

cosS sin5 S
)
, (42)

where 

w =
nPV(nT +1)2

nT (nPV+1)2

(
2.77526×10−9+3.74953nPV−5.18727n2

PV

+3.41186n3
PV−1.08794n4

PV+0.13606n5
PV

)
(43)

nT = 1.4585

is a weighting function, of which the value depends not only
on the refraction index of the PV module cover material, but
also  on  that  of  the  pyranometer  cover,  which  is  usually  a
fused silica dome with . As for the relative trans-
mittance for ground-reflected radiation, it is 

τXieg =
40w

21(1− cosS )
−τXied

1+ cosS
1− cosS

. (44)

τb τd τg

θ < 60◦

1/cosθ

To give perspective on how various reflection loss mod-
els can differ, Figs. 11 and 12 depict the , , and  mod-
eled by various options. Again, the modeling details of models
other than the ones by Martin and Ruiz (2001) and Xie et al.
(2022) are omitted for brevity, but the references are provided
in the caption for those who are interested. From Fig. 11 it
is observed that for , which roughly corresponds to a

 value  of  2,  all  models  behave  similarly.  However,
 

τb 

e The original work of Martin and Ruiz (2001) models the angular loss, which needs to be subtracted from 1 to arrive at .
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θ > 60◦

τg S
τd

τXied
nPV

the  model  output  transients  behave  very  differently  for
, suggesting the empirical models are highly sensitive

to  the  parameter  choice.  As  for Fig.  12,  it  is  evident  that,
except  for  the  Brandemuehl  model,  the  other  three  models
estimate  quite similarly over the entire valid range of .
Quite large deviations are seen, on the other hand, for the 
of the four models. It should be again noted here that  is
sensitive  to ,  as  evidenced  by Fig.  3b of Xie  et  al.
(2022).  Both  figures  reveal  that  careful  selection  of  model
parameters  is  essential.  At  the  moment,  there  is  not  any
study  that  compares  these  reflection  loss  models,  which
presents a major research gap in the existing literature.
 

4.5.    Cell temperature modeling

I V

I V y
Isc

x
Voc

Isc

Voc
Isc

Voc Isc

I V

As we shall see in a later subsection, the output power
of a PV module/cell is characterized by –  curves. While
more information is to be provided below, one should know
that the position where the –  curve cuts the -axis repre-
sents  the  short-circuit  current  ( ),  and  the  position  where
the curve cuts the -axis represents the open-circuit voltage
( ). It is widely known that when the irradiance reaching
the  module/cell  drops,  drops  quasi-linearly  with  it.  On
the other hand, when the operating temperature of the mod-
ule/cell  rises,  drops substantially with a  slight  increase
in . In the latter case, considering the scales of change hap-
pening  to  and ,  elevated  operating  temperature  is
accompanied by a net decrease in output power. The effect
of temperature on the power output is depicted in Fig. 13, in
which the –  curves of a Canadian Solar CS5P-220M mod-
ule  under  a  constant  irradiance  of 800 W m−2 but  varying
cell temperature are plotted. Clearly then, accurate modeling
of  the  cell  temperature  is  essential  to  model  chain.  In  fact,
the  ambient  temperature  may be  converted to  both  module
and cell temperatures, which makes it the second most impor-

tant meteorological variable, right next to GHI, in PV model-
ing.

Deriving  the  module  or  cell  temperature  wholly  from
physical  principles  is  known a  priori to  be  difficult;  for
instance, it depends upon the technical specifications of the
module, which include but are not limited to material, encap-
sulation, whether or not aluminum fins are installed as heat
sink,  as  well  as  the  habitat  of  installation  (e.g.,  mounting,
shading, ventilation). Even if these are all known, the deriva-
tion still requires immense knowledge of photonics and heat
transfer, which is in itself incomplete at the moment to fully
address the problem at hand. To that end, all cell temperature

 

τb

1/cosθ
0◦ ⩽ θ ⩽ 85◦ b0 = 0.05

β0 = 1
β1 = −2.438×10−3 β2 = 3.1003×10−4 β3 = −1.246×10−5

β4 = 2.11×10−7 β5 = −1.36×10−9

ar = 0.173

nPV = 1.3

Fig.  11. Relative  transmittances  for  beam  radiation  ( )
estimated using different models, as functions of , with

.  Model  parameters  are:  is  used  for  the
ASHRAE  model  (Duffie  and  Beckman,  2013); ,

,  , ,
,  are  used  for  the  King  model

(King et al., 2004); and  is used for the Martin model
(Martin and Ruiz, 2001). The physical model follows Eq. (41)
with .

 

τd

τg

S 0◦ ⩽ S ⩽ 90◦

ar = 0.173
nPV = 1.526 nT = 1.4585

Fig.  12. Relative transmittances for  diffuse radiation ( )  and
ground-reflected  radiation  ( )  estimated  using  different
models, as functions of module tilt angle , with .
Model parameters are:  is used for the Martin model
(Martin and Ruiz,  2001);  and  are used
for  the  Xie  model  (Xie  et  al.,  2022).  The  references  for  the
other two models appearing in this figure are Brandemuehl and
Beckman (1980) and Marion (2017).

 

I VFig.  13. The –  curves  of  a  Canadian  Solar  CS5P-220M
module,  under  the  incident  irradiance  of  800  W  m−2,  and
varying cell temperature (0°C–60°C).
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Gc G′c

W

models are empirical, insofar as their usage in model chain
construction  is  concerned.  Largely  owing  to  the  empirical
nature of this problem, a quick scan of the literature reveals
that  all  too  many  possibilities  have  been  proposed,  which
makes the cell temperature models the second most numerous
in count among all steps of model chain. However, most mod-
els  consider  a  basic  set  of  meteorological  variables  during
modeling, they are: the ambient temperature ( ), the inci-
dent  (or  effective)  irradiance  (  or ),  and  wind  speed
( ).

In an ideal scenario, cell temperature should be derived
under effective weather conditions. For instance, the effective
irradiance reaching the solar  cell,  which is  lower than GTI
due  to  reflection  loss,  should  be  used.  As  for  wind,  the
actual  wind  blowing  across  the  PV  array  may  be  altered,
due  to  the  structure  of  the  arrays,  from  where  wind  speed
and  direction  are  measured,  which  leads  to  heat  removal
effects that can be quite different. However, the difficulty is
that, in practice, these effective weather conditions are more
often than not inaccessible. In that, cell temperature models
are  almost  always  developed  based  on  what  is  measured,
e.g.,  GTI  and  wind  information  acquired  at  a  nearby
weather station. Usually, the advice is to check the condition
of  usage  before  applying  any  cell  temperature  model,  and
the  models  should  only  be  used  if  the  same kind  of  inputs
with which they were fitted are available.

A  review  on  temperature  modeling  was  conducted  by
Skoplaki and Palyvos (2009b), who classified the available
models into implicit ones and explicit ones. Implicit models
refer to those based on the heat transfer mechanisms and the
thermal properties of the modules. This kind of model consid-
ers the energy balance of the module, including the convection
loss, and the radiation loss to the sky and to the ground, to
estimate an overall  heat  loss  coefficient.  Nonetheless,  such
calculations necessarily assume the module to be in a steady
state,  which  is  rarely  achievable  during  operation  (Mora
Segado et al.,  2015). A workaround to the complex energy
balance calculation is thus to accompany the implicit models
with fitted coefficients and various assumptions; this greatly
defies the virtue of considering physics in the first place. In
comparison, explicit models directly map weather variables
to cell temperature, and a linear function is often thought suffi-
cient.  Tables  1  and 2 of Skoplaki  and Palyvos (2009b)  list
some of the cell  temperature models available at  that  time.
In this section, considering that the temperature only exerts
secondary  effects  on  PV  power  generation,  the  principles
according to which various temperature models are derived
are not reiterated herein; instead, only the results of selected
models are presented.

Tcell
Tamb Gc W

Linear  models  are  always  the  simplest.  In  the  present
case,  one  may write  the  cell  temperature  ( )  as  a  linear
function of , , and  (TamizhMani et al., 2003; Muza-
thik, 2014): 

Tcell = β0+β1Tamb+β2Gc+β3W , (45)

β0, . . . ,β3where  are model coefficients,  which change with

20◦

the  location,  material,  encapsulation  type,  and  mounting
type  of  the  module,  among  other  influencing  factors.
Clearly,  there  can  be  an  infinite  number  of  sets  of  coeffi-
cients,  and the best  set  should always be the one produced
based on the local context. One way to circumvent fitting dur-
ing such linear modeling is to introduce the notion of nominal
parameters,  so  long  as  the  PV  manufacturers  comply  with
the  standard  and  report  these  nominal  parameters.  On  this
point,  the  concept  of nominal  operating  cell  temperature
(NOCT)  has  been  used  by  solar  engineers  as  a  convenient
means to quantify the thermal design of a PV module and to
provide a reference temperature for rating power output. As
per the current standard,  NOCT is to be determined by the
module  manufacturers  at  a  standard  environment:  a  wind
speed at a PV module height of 1 m s−1, an ambient tempera-
ture of C, and an irradiance of 800 W m−2. With NOCT,
Ross (1982) rewrote Eq. (45) into an equivalent form: 

TRoss
cell = Tamb+

Gc

800
(NOCT−20) , (46)

β1 = 1 β2 = (NOCT−20)/800 Wm−2 β0 =

β3 = 0
where , ,  and 

.

pvlib

There is an interesting saying: If we are to divide real-
world systems and processes into linear and nonlinear ones,
it is as if we are classifying animals in a zoo into elephants
and non-elephants. There are also undoubtedly many nonlin-
ear cell temperature models, because the underlying process
is  nonlinear.  Typifying  the  refined  nonlinear  modeling  of
cell  temperature  is  the  model  by Fuentes (1987),  who
extended  the  concept  of  NOCT  to “installed” NOCT
(INOCT), which accounts for the deviation from NOCT due
to  the  mounting  configuration  and  wind  information.  The
Fuentes model is based upon energy balance: The PV module
is treated as a lump of solid material, which receives heat in
the form of irradiance, and loses heat in the form of convection
to  the  ambient  environment.  However,  some  have  argued
that  this  model  is  overly  complex,  and  a  much-simplified
model  would not  result  in  any intolerable  difference (King
et al., 2004). Fortunately, the Fuentes model is now available
in , which contributes much to its uptake. As for a sim-
pler model, King et al. (2004) proposed 

TKing
cell = TKing

mod +
Gc

1000
∆T , (47)

 

TKing
mod =Gc exp(a+bW)+Tamb , (48)

a b ∆T

a = −2.98 b = −0.0471 ∆T = 1
a = −3.56

b = −0.075 ∆T = 3

±5◦

where  the  model  coefficients , ,  and  depend  on  the
module  encapsulation  and  mounting.  For  instance,  if  a
glass/glass  sealed  module  is  mounted  on  a  closed  roof,

, ,  and ;  if  a  glass/polymer
sealed  module  is  mounted  on  an  open  rack, ,

, and . For other encapsulation and mount-
ing configurations, the reader is referred to Table 1 of King
et  al. (2004).  Accuracy-wise,  the  King  model  has  a C
uncertainty, which, though seemingly quite substantial, only
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results in a less than 3% difference in the final power esti-
mates.

Another  popular  nonlinear  cell  temperature  model  is
the Faiman model (Faiman, 2008): 

T Faiman
mod = Tamb+

Gc

u0+u1W
, (49)

u0 u1

u0 u1

PVSyst

PVsyst

ηmod α

where  and  are heat loss factor coefficients, which take
the values of 25 and 6.84, as per the experimental outcome
of Faiman (2008).  The  drawbacks  of  this  model  are  quite
exposed, in that, the values of  and  are situation-depen-
dent, and the model does not distinguish module temperature
from  cell  temperature.  Nevertheless,  the  software,
of which the analysis is acceptable by banks for loan applica-
tions, uses a variant of the Faiman model.  includes
two additional parameters, namely, the module external effi-
ciency ( ) and absorption coefficient ( ), as a means to
discount the incident irradiance to effective incident irradi-
ance: 

T PVsyst
cell = Tamb+

αGc(1−ηmod)
u0+u1W

. (50)

PVsyst

ηmod

The  implementation  also  resolves  the  ambiguity  in
the temperature of the original Faiman model. The rationale
behind  including  the  module  efficiency  is  that  the  electric
power  output  of  the  PV  module  also  contributes  to  the
energy balance; in other words, the part of the absorbed irradi-
ance  that  is  converted  to  electricity  does  not  contribute  to
the heating of the module. That said, Eq. (50) is associated
with a practical difficulty, which originates from the modeling
of : 

ηmod =
Pdc

AmodGc
, (51)

Amod Pdc
Gc

T PVsyst
cell Pdc

where  is  the  area  of  the  module,  and  is  the  DC
power output  by the  module  under  the  particular .  Inas-
much as model chain construction is concerned, cell tempera-
ture modeling precedes DC power modeling, and hence this
inter-dependency of  and  could lead to a chicken-
and-egg problem.

A solution to the inter-dependency of the cell temperature
and efficiency can be given by combining a PV module effi-
ciency  model  into  the  thermal  energy  balance  equation.  A
good example of this is the model proposed by Mattei et al.
(2006),  where  the  linear  temperature-dependent  PV  effi-
ciency model is integrated into the cell temperature calcula-
tion, resulting in the following formula 

TMattei
mod =

UPVTa+Gc[(τα)−ηmpp, ref(1−25γPmpp]

UPV +γPmppηmpp, refGc
, (52)

UPV = 26.6+2.3Wwhere  is  the  heat  exchange  coefficient

γPmpp
ηmpp, ref

(τα)

(τα)

as a function of the wind speed,  is the temperature coef-
ficient  of  the  maximum  power,  and  is  the  module
external efficiency at STC (i.e., the nameplate efficiency of
the  module),  which  can  be  obtained  from  the  module
datasheet. Finally,  is the transmittance–absorptance prod-
uct,f which expresses that the part of the incident irradiance
that is not absorbed by the module does not contribute to its
heating. Although the relative transmittances can be modeled
for  each  irradiance  component  in  a  time-varying  fashion,
such an approach could easily lead to a double-counting prob-
lem if the reflection losses are already accounted for in the
previous modeling step during the calculation of the effective
irradiance.  To avoid this,  the  term in cell  temperature
modeling is better reduced to a constant that stands for the
transmittance  under  nominal  conditions,  e.g.,  a  value  of
0.81 was recommended for the Mattei model by its authors.

PVsyst pvlib

The last cell temperature model that should be discussed
is the one employed by the System Advisory Model [SAM;
Gilman et al. (2018)], which is another popular PV modeling
software beside  and . The SAM model writes 

T SAM
cell =Tamb+

Gc

800
(
NOCT′−20

)
·
(
1−

ηmpp, ref

(τα)

)
9.5

5.7+3.8W ′
, (53)

NOCT′where  is the adjusted NOCT based on the mounting
stand-off, 

NOCT′ =

NOCT , building integrated or ground/rack mounted ,
NOCT+2 , 2.5 to 3.5 in ,
NOCT+6 , 1.5 to 2.5 in ,
NOCT+11 , 0.5 to 1.5 in ,
NOCT+18 , less than 0.5 in ;

(54)

W ′  is the wind speed adjusted for height above the ground,
that is, 

W ′ =

0.51W, one story or lower,
0.61W, two stories or higher;

(55)

(τα) pvlibwhile for the  in this model, both SAM and  use a
default value of 0.9. 

4.6.    DC power modeling

In  the  power  systems  literature,  the  DC  power  output
from PV is often abbreviated into one equation: 

PEvans
dc, mpp = Pdc, mpp, ref

G′c
1000 Wm−2

[
1+γPmpp(Tcell−25)

]
.

(56)

 

(τα)
(τα) , τα

 

f The term  should be thought of as a property of a cover–absorber combination rather than the product of two properties (transmittance
and absorptance), and .
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Pdc, mpp, ref γPmpp
Tcell

G′c

The  above  equation  is  known  as  the  Evans  model
(Evans  and  Florschuetz,  1977)  and  adopted  by  PVWatts
(Dobos,  2014),  which links  the  DC maximum power  point
(MPP)  output  of  a  PV  module  to  its  nameplate  power
( ),  the  MPP  temperature  coefficient ,  the
cell  temperature ,  and  the  effective  incident  irradiance
( ). Whereas various concepts such as MPP or temperature
coefficient  are  to  be  explained  shortly  after,  it  should  be
first  highlighted  that,  despite  the  popularity  of  Eq.  (56),
refined  DC  power  modeling  can  be  far  more  complex.  To
give  perspective, Fig.  14 shows  the  module  layout  and
single-line diagram of an actual roof-top PV system.

The  installed  capacity  of  the  roof-top  PV  system  is
103.04  kWp,  which  suggests  that  the  system  generates
103.04  kW of  power  under  STC.  The  PV module  selected
for  the  system  is  JA  Solar  JAM72S20-460/MR,  and  there
are  224  pieces  of  those,  each  having  a  nominal  power  of

I V
I V

460 W. From Fig. 14b, one can see that these 224 modules
are  arranged  into  15  strings,  which  are  respectively  tied  to
the  10  maximum  power  point  trackers  (MPPTs)  of  a
Huawei SUN2000-100KTL inverter. It is worth noting here
that the MPP denotes the position on an –  curve that maxi-
mizes the power output. As the –  changes with the irradi-
ance and temperature conditions, the function of the MPPT
is to ensure that the MPP is tracked in real-time. As for the
inverter, it converts DC power to AC power, and having mul-
tiple  MPPTs  makes  the  strings  operate  independently  of
each other, which is useful in situations where partial shading
takes place over some strings.

Clearly,  the  most  refined  way  to  model  a  PV  system
ought to proceed from the exact system design. When the lay-
out is fully specified, it is possible to calculate the output of
each string according to  the  weather  conditions,  as  well  as
other environmental factors such as shading. In fact, profes-

 

SCALE 1 :200
THIS FLOOR IS PROTECTED BY MANUAL FIRE ALARM SYSTEM
MEANS OF ESCAPE 240 PERSONS

 

Fig. 14. The design of an actual roof-top PV system with a total DC capacity of 103.04 kWp: (a) module layout and
(b) single-line diagram. Information courtesy of Licheng LIU, RENOVA, Inc., Singapore.
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PVsyst
sional/commercial  PV  system  design  software,  such  as

 or SAM, has long had such capabilities. However, it
should be noted the goal of this kind of software is designing
the  system,  which  requires  just  a  typical  meteorological
year (TMY) dataset, rather than conducting performance eval-
uation  or  forecasting,  which  requires  the  most  up-to-date
information in a rolling manner. Therefore, it is still of interest
to know the refined way in which DC power could be modeled
in a model chain, such that the software dependence can be
dismissed, thus broadening the range of applications concern-
ing model chain.

I V
I V

DC power models can be broadly categorized into two
groups:  empirical  and  diode  models.  Empirical  PV models
estimate the DC power (or sometimes, efficiency) of the PV
system at  the  MPP using surrogate  equations  or  regression
equations  with  coefficients  determined  based  on  measure-
ment  data.  Empirical  DC models  have the benefit  of  being
simple, but their validity is limited to the extent of operations
under MPP, which might not always be ensured in practice.
On  the  other  hand,  lumped-circuit  models  with  multiple
diodes (as shown in Fig. 15) have been broadly accepted as
they can accurately describe the –  characteristics of a PV
module/cell by tracing out the entire –  curve. In a sense,
because  the  diode-model-based  power  estimates  can  be
scaled up to the power of the entire system, this approach is
physical  in nature,  which is  more accurate and thus should
be preferred if system design information is available. System
design  information  refers  to  the  kind  of  design  document
such  as  the  one  shown  in Fig.  14,  which  encompasses  the
module  choice,  the  inverter  choice,  and  the  series–parallel
configuration.
 

4.6.1.    Empirical DC power models

Before the diode model is introduced, the empirical mod-
els are first reviewed. The Evans model depicted in Eq. (56)
appeared  in  many  works  including  those  of Fuentes  et  al.
(2007) and Marion (2002), but can be further traced to Oster-
wald (1986)  and Evans  and  Florschuetz (1977),  if  not  ear-
lier.  Despite  its  simple form, many have concluded that  its
accuracy  is  acceptable  [e.g., Rodríguez-Gallegos  et  al.
(2020); Haffaf et al. (2021)]. Such conclusions might be due
to the fact that the model allows some degree of fine-tuning
to its formulation. For example, it is possible to multiply the
DC power output estimated by the model with an efficiency
term or a correction factor, which can compensate to a certain

degree  the  over- or  under-predictions  resulting  from  using
Eq. (56) alone.

γPmpp

αIsc
βVoc

γPmpp
−0.3

γPmpp

γPmpp

However,  some  care  must  be  taken  when  using  the
Evans model. Firstly, the model requires as input the effective
irradiance, which is by formal definition the GTI subtracted
by the reflection loss, soiling loss, and spectral loss. Yet, in
PVWatts implementation, the latter two are not involved at
this  stage.  In  other  words,  to  be  fully  consistent  with
PVWatts,  only  the  reflection  loss  needs  to  be  subtracted
from the GTI. Secondly, the temperature coefficient is an arti-
ficial  conception  rather  than  a  physical  one,  which  implies
that  its  determination  is  empirical.  Besides ,  which
denotes  the  MPP  temperature  coefficient,  there  are  also
short-circuit current temperature coefficient  and open-cir-
cuit  voltage  temperature  coefficient ,  which  ought  not
to  be  mixed  up  in  usage.  The  common  range  for  is
from % °C−1 to −0.5% °C−1, which can be found in the
module's  datasheet.  Alternatively,  to  receive  a  better  accu-
racy, it is also common practice to refit a  value from
data,  i.e.,  via  outdoor  testing.  Also  important  is  that  when

 is  applied  to  Eq.  (56),  its  value  needs  to  be  first
divided by 100, to convert percentage to decimal.

ηmpp, ref
Amod

The Evans model as shown in Eq. (56) is expressed as a
function  of  the  nameplate  power.  Alternatively,  one  may
also  use  the  product  of  the  nameplate  efficiency  ( )
and module area ( ) to write the model equivalently as 

PEvans
dc, mpp = ηmpp, refAmodG′c

[
1+γPmpp(Tcell−25)

]
. (57)

Pdc, mpp, ref = 460
Amod = 2.23 2

ηmpp, ref = 0.206

For  example,  the  JA  Solar  JAM72S20-460/MR  module  as
used  in  the  system  in Fig.  14 has  W  and

 m . With these, one can calculate the nameplate
efficiency to be  or 20.6%. Because the con-
version  between  nameplate  power  and  efficiency  is  trivial,
the literature usually does not distinguish between modeling
the power and modeling the efficiency.

ηmpp, ref[1+γPmpp(Tcell−25)]

The  main  criticism  of  the  Evans  model  is  that  it  only
accounts for the temperature dependence of the PV module
efficiency,  i.e.,  the  part  of  Eq.
(57). But in reality, the efficiency also depends on the incident
irradiance.  Hence, Huld  et  al. (2011)  proposed  to  estimate
the efficiency as a function of both the cell temperature and
relative effective irradiance: 

ηHuldmpp =ηmpp, ref[1+ k1 lnG′rel+ k2(lnG′rel)
2+ k3T ′cell+

k4T ′cell lnG′rel+ k5T ′cell(lnG′rel)
2+ k6T ′cell

2] , (58)

G′rel =G′c/1000 T ′cell = Tcell−25

k1 = −0.017237 k2 = −0.040465 k3 = −0.004702
k4 = 0.000149 k5 = 0.000170 k6 = 0.000005

where  and .  The  Huld
model  has  been  developed  for,  and  is  used  in,  the  widely
known online PV simulation tool called PVGIS.g A conspicu-
ous shortcoming of this model is the compulsion of parameter
fitting.  For  crystalline  silicon  PV  modules,  one  may  use

, , ,
, , and .

 

Fig.  15. Equivalent  circuit  of  a  PV  module/cell—the  multi-
diode model  (see text  for  a  description of  the symbols  in  this
figure.

 

 

g https://re.jrc.ec.europa.eu/pvg_tools/en/
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Another  appealing  empirical  DC  power  model  is  the
one proposed by Beyer et al. (2004), where the temperature
and  irradiance  dependence  of  the  efficiency  are  separated
into two multiplicative terms: 

η
Beyer
mpp =ηmpp, ref[1+γPmpp(Tcell−25)]

[
a1+a2G′rel+

a3 lnG′rel
]
.

The  effect  of  the  cell  temperature  is  accounted  for  in
the exact same way as in the Evans model, whereas the irradi-
ance-dependence is modeled by a linear-logarithmic relation-
ship  with  three  parameters.  To  fit  these  parameters,  one
only needs the relative efficiency of the modules at three dif-
ferent irradiance levels, which makes this model fairly easy
to  be  tailored  to  the  PV  module  of  interest.  Even  though
such data are not universally available, many PV manufactur-
ers disclose such information in their product datasheets.

Impp Vmpp

I V

Besides the Evans, Huld, and Beyer models, other empiri-
cal DC power models also exist, and are in fact great in num-
ber. Among the various modeling strategies, linear regression
and nonlinear regression with interaction terms are the most
popular. Skoplaki and Palyvos (2009a) offered a comprehen-
sive list of empirical DC power models. Whereas most empiri-
cal  models  do not  substantially differ  in functionality from
each  other,  a  rather  unique  one  is  the  model  developed  by
King  et  al. (2004),  which  not  only  models  the  DC  power,
but  also  provides  equations  to  estimate  the  MPP  current
( ) and voltage ( ). Because the formulation is fairly
tedious and evolves many module-specific empirical coeffi-
cients, the details are omitted here. Worth mentioning, how-
ever, is that King et al. (2004) is essentially estimating five
points on the –  curve, which makes it  a special  form of
the diode model, which is the next subject of discussion.
 

4.6.2.    Physical DC power model: The diode model

m
I

According to the -diode model as depicted in Fig. 15,
the current  of a PV module, as governed by Kirchhoff’s cur-
rent law, is expressed as 

I = IL−
m∑

j=1

ID j − Ish

= IL−
m∑

j=1

I0 j

[
exp

(
V +RsI

a j

)
−1

]
− V +RsI

Rsh
, (59)

IL
I0 j jth

a j = Nsn jkTcell/q
jth Ns

n j k = 1.380649×10−23

Tcell
q = 1.60217663×10−19 Rs
Rsh

where  is  the  photocurrent,  which  is  proportional  to  the
effective  irradiance;  is  the  reverse  saturation  of  the 
diode,  is  the  modified  ideality  factor  for
the  diode (  is the number of cells connected in series,

 is the ideality factor,  J K−1 is Boltz-
mann’s  constant,  is  the  cell  temperature,  and

 C is  the  electronic  charge);  and
 are the series and shunt resistances, respectively.

D1

D2

Physically, it is well known that diode  accounts for
the carriers diffusing across the P–N junction and recombina-
tion that takes place in the bulk and at the surface. Diode 

D3 Dm

D1 D2 D3 Dm

can  be  attributed  to  carrier  recombination  by  traps  within
the depletion region, or to carrier recombination at an unpassi-
vated cell edge. As for the other diodes  to , the motiva-
tion  for  having  them  is  more  mathematical  than  physical,
but one may think of them as accounting for distributed and
localized effects in solar cells such as Auger recombination.
Compared  to  and ,  the  contribution  of  to  to
DC  power  modeling  is  small;  the  literature  is  populated
with  works  that  deal  with  one- and  two-diode  models.  Of
course, in terms of a mathematical solution, multi-diode mod-
eling, though entirely possible to be solved analytically [see
Lim et al. (2015a)] is notoriously intricate, which has hitherto
been limiting its uptake. In what follows, only the one-diode
model is considered, and Eq. (59) reduces to 

I = IL− I0

[
exp

(V +RsI
a

)
−1

]
− V +RsI

Rsh
. (60)

IL I0

a Rs Rsh
I

V

I V

pvlib Rs

Equation (60) contains five parameters, namely, , ,
, ,  and .  When these five parameters are all  known,

the  equation  should  theoretically  allow one  to  obtain  for
any  value, or vice versa. However, because Eq. (60) is a
transcendental equation (i.e., not algebraic), it is difficult to
solve.  On  this  point, Jain  and  Kapoor (2004)  showed  that
the explicit solution for  and  can be expressed using the
Lambert W function—this bi-directional retrieval method is
implemented in the "i_from_v" and "v_from_i" functions of

.  Among  the  five  unknown  parameters,  is  a  con-
stant,  whereas  the  other  four  parameters  are  time-varying
and  depend  on  the  meteorological  conditions  under  which
the module operates. Generally, if the one-diode model is to
be used in a model chain, three main steps are involved: (1)
estimating the five parameters at some reference condition,
which usually refers to STC, (2) estimating the five parame-
ters for the operating conditions, and (3) solving the circuit
equation to find the MPP.

Perhaps surprisingly, a typical datasheet of a PV module
does  not  contain  the  values  of  the  five  parameters  at  STC.
However, solving the one-diode model parameters has been
extensively  studied,  and  many  strategies  are  now  well
known. First and foremost, it is necessary to apply Eq. (60)
for  the  short-circuit,  open-circuit,  and  MPP  conditions,
which leads to three equations: 

Isc = IL− I0

[
exp

(RsIsc
a

)
−1

]
− RsIsc

Rsh
, (61)

 

0 = IL− I0

[
exp

(Voc

a

)
−1

]
− Voc

Rsh
, (62)

 

Impp = IL− I0

[
exp

(
Vmpp+RsImpp

a

)
−1

]
−

Vmpp+RsImpp
Rsh

,

(63)

Impp Vmpp Isc Vocwhere , , , and  are the MPP current and volt-
age,  short-circuit  current,  and  open-circuit  voltage,  respec-
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tively.  Subsequently,  knowing  that  the  derivative  of  the
power at MPP with respect to voltage is zero, the fourth equa-
tion obtains, 

d(IV)
dV

∣∣∣∣∣
mpp
= −

Vmpp

Rs+
1

I0

a
exp

(
Vmpp+RsImpp

a

)
+

1
Rsh

+ Impp = 0 .

(64)

pvlib

pvlib fit_cec_sam
fit_desoto

fit_pvsyst_sandia

In regard to the fifth equation, opinions diverge, which
has led to various proposals [e.g., De Soto et al. (2006); Lau-
dani  et  al. (2015); Lim  et  al. (2015b)].  It  should  be  made
clear  that  not  all  methods  for  solving  the  fifth  equation  in
the literature have comparable accuracies, because some meth-
ods make more suppositions than others, leading to identifica-
tion  errors  in  the  first  parameter  and  thus  all  subsequent
ones.  Practically,  there  are  two  options  to  obtain  the  one-
diode model parameters for a given module. First is that the
California  Energy  Commission  (CEC)  module  library,  as
available in both  and SAM, offers the identified parame-
ters  for  a  very  wide  range  of  modules  on  the  market,h and
one may directly search and use those values. If some particu-
lar module is not within the database, such as the JA Solar
JAM72S20-460/MR module  used  in  the  design  in Fig.  14,

 offers  various  options,  including  " "
(Dobos,  2012),  " "  (De  Soto  et  al.,  2006),  and
" "  (Hansen,  2015),  which  can  convert  the
datasheet information into one-diode model parameters.

G′c
Tcell

Upon  successfully  estimating  the  values  of  the  five
parameters of the one-diode model under STC, the next step
is to translate these parameters in accordance with an arbitrary
operating  condition  as  specified  by  a  particular  set  of 
and  values.  Again,  various  options  are  available  for
this step [e.g., De Soto et al. (2006); Dobos (2012); Sauer et
al. (2015)]. For instance, the system of equations offered by
De Soto et al. (2006) is: 

a = aref
Tcell

298.15
, (65)

 

I0 = I0, ref
( Tcell

298.15

)3

exp
[
1
k

(
Eg, ref

298.15
−

Eg

Tcell

)]
, (66)

 

Eg = Eg, ref [1−0.0002677(Tcell−298.15)] , (67)
 

IL =
G′c

1000
[
IL, ref−αsc(Tcell−298.15)

]
, (68)

 

Rsh = Rsh, ref
1000
G′c

, (69)

k = 8.61733×10−5where  is the Boltzmann’s constant in eV

Tcell Eg, ref = 1.121
αsc

Rs Rs = Rs, ref

Tcell

pvlib

(K)−1;  is in K;  eV for crystalline silicon
but  takes  other  values  for  other  cell  materials;  is  the
short-circuit  current  temperature  coefficient  of  the  module
with  a  unit  of  A/C,  a  parameter  available  from  the
datasheet;  and  also  recall  is  a  constant, .  The
units here can be a bit confusing, and thus need to be clari-
fied.  Equation  (66)  follows  Eq.  (10.4)  of Messenger  and
Abtahi (2004), in which the unit of temperature is K, which
forces  to take the same unit. The bandgap of a semicon-
ductor has the unit of eV, which forces the Boltzmann’s con-
stant to take the unit of eV K−1 instead of the more common
J K−1. Interestingly, both Messenger and Abtahi (2004) and
De Soto et al. (2006) explicitly stated the unit of Boltzmann’s
constant  as  J  K−1,  which seems to  be  an  oversight,  but  the

 implementation makes a correction.
IL I0 a Rs Rsh

I V

After the five parameters , , , , and  are esti-
mated for the particular operating condition of concern, the
corresponding –  curve may be traced out using Eq. (2) or
(3) of Jain and Kapoor (2004), who leveraged the Lambert
W function in expressing the analytical solution to the one-
diode model: 

I =
Rsh(IL+ I0)−V

Rs+Rsh
− a

Rs
W

(
I0RsRsh

a(Rs+Rsh)
×

exp
(

Rsh [Rs(IL+ I0)+V]
a(Rs+Rsh)

))
. (70)

I V

G′c Tcell

fit_desoto pvlib
IL, ref I0, ref aref Rs, ref Rsh, ref

calcparams_desoto singlediode

I V
I V

P V

To  conclude  the  procedure  outlined  thus  far, Fig.  16
demonstrates four –  curves corresponding to a JA Solar
JAM72S20-460/MR  module,  under  four  operating  condi-
tions, with  ranging from 400–1200 W m−2 and  rang-
ing  from  15°C–45°C.  Because  the  module  is  not  listed  by
the CEC module library,  the " "  function in 
is used to estimate , , , , and . Follow-
ing that, the five parameters of the one-diode model under var-
ious  operating  conditions  are  acquired  via  the
" " function. Then, the " " func-
tion,  which implements Jain  and Kapoor (2004)  and a  few
other alternatives,  is  used to compute the –  curve under
each operating condition. Finally, from the –  curves, the

–  curves and MPPs follow, as marked by the black dots
in Fig. 16.

The  review of  the  one-diode  model  has  been  focusing
on its application for just a single module. Since the PV sys-
tem consists of many modules connected in series or paral-
lel,  scaling  of  the  MPP current  and  voltage  is  needed.  For
series-connected  modules,  the  voltage  is  additive,  whereas
the amperage remains unchanged. In contrast, for parallel-con-
nected modules, the current is additive, whereas the voltage
remains  unchanged.  Ideally,  the  series–parallel  scaling
should be performed for each MPPT, but this is only possible
if the inverter information and MPPT connection configura-
tion are fully known.
 

 

 

h https://github.com/NREL/SAM/tree/develop/deploy/libraries
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4.7.    Loss modeling

PV  systems  that  operate  under  outdoor  conditions
inevitably suffer from various loss mechanisms. Shading is
more  often  than  not  a  significant  loss  factor  for  ground-
mounted  PV systems,  due  to  limited  fleet  spacing,  and the
loss amount is  governed by geometry.  Soiling may or may
not be a significant loss factor, for it depends on the cleaning
schedule,  the  rate  at  which  dust  accumulates,  and  the  fre-
quency and severity of rain events.  For PV plants installed
in cold climates, losses due to snow would be relevant. On
the DC side,  the  equivalent  resistance of  the  wires  and the
operating current can be used to calculate the ohmic loss in
units of power. The inverter loss is a portion of the energy
lost during the conversion of DC power to AC power due to
potential  power clipping and conversion efficiency.  On the
AC side, the cable that connects an inverter to a transformer
also  has  a  resistive  component,  which  results  in  AC  cable
losses.  In  many  MW-scale  PV  farms,  the  transformer,
which acts as an external device between the PV system and
the  medium-voltage  or  even  high-voltage  grid,  introduces
two main losses just before power is injected into the grid.
These losses are the copper loss in the primary and secondary
windings and the iron loss caused by hysteresis and eddy cur-

rents  in  the  transformer  core.  The  degradation  of  the  sys-
tems, which can be categorized into numerous types and to
which numerous factors  contribute,  further  complicates  the
situation. Dobos (2014) gave a comprehensive list of major
loss  mechanisms  as  well  as  their  typical  values;  they  are:
2%  soiling  loss,  3%  shading  loss,  2%  mismatch  loss,  2%
wiring loss, 0.5% connection loss, 1.5% light-induced degra-
dation, 1% nameplate loss, and 3% availability loss.

Even  though  not  all  loss  factors  apply  to  all  PV  sys-
tems—for example, row-to-row shading does not affect PV
panels  tiled  on  the  roof  of  a  residential  house,  or  low-to-
medium  voltage  transformers  collocated  among  the  PV
rows make AC cable loss negligible—accurate modeling of
the eventual AC power injecting into the grid cannot be dis-
missed as trivial, even if DC power is known in high confi-
dence.  The  scientific  and  engineering  principles  governing
the different  loss  factors  have been studied in the past,  but
the  validity  of  those  conclusions  is  frequently  only  limited
to  the  specific  experimental  setup  used  by  the  researchers,
making them context-specific rather than generally applica-
ble. Even though some principles such as the geometrical cal-
culations for beam shading loss are in fact general, their appli-
cability is always constrained to some degree, depending on
whether or to what extent the modeler has access to informa-
tion regarding the row spacing, the slope of the mounting sur-
face,  or  the  slant  height.  For  this  reason,  there  does  not
seem to be much motivation to enumerate who did what and
under what boundary conditions. Therefore, only the funda-
mental ideas underlying the various loss factors are discussed
in what follows.
 

4.7.1.    Shading loss

Shading loss is a problem concerning geometry (Appel-
baum and Bany, 1979), which implies that if the 3D layout
of a PV system and its nearby structures is known, at least
the beam shading can be calculated to an exactitude. Shading
due to diffuse radiation is by nature more challenging, for it
involves integration. Diffuse shading (also known as diffuse
masking) calculation relies upon the choice of transposition
model as well as the accuracy to which the sky-view factor
can be  determined [e.g.,  see Maor  and Appelbaum (2012);
Appelbaum  et  al. (2019); Varga  and  Mayer (2021)].
Because of the series connection of cells or modules, shading
affects not just the shaded part itself but the whole module
or string. Installing bypass diodes, on this point, has been a
standard way to mitigate shading loss. Consequently, depend-
ing on how bypass diodes are connected, modules installed
in portrait and landscape orientation may have a very different
response to shading. In any case, owing partly to the complex-
ity of calculation, and more to the unavailability of the 3D lay-
out  and  the  lack  of  information  on  the  efficacy  of  bypass
diodes under the arrangement of concern, shading loss estima-
tion often relies on various assumptions and simplifications
on geometry [e.g., see section 9.1 of Gilman et al. (2018)],
or on many occasions, reduces simply to a constant percent-
age, so as to be subtracted from the PV DC power output.

Various  commercial  and  research  software  tools  have
done  well  in  shading  analysis.  Users  of  such  tools  are

 

I V P V

pvlib fit_desoto

calcparams_desoto
singlediode I V

Fig.  16. (a)  The –  curves  and  (b)  the  corresponding –
curves  of  a  JA  Solar  JAM72S20-460/MR  module,  under
various operating conditions.  The maximum power points  are
marked  with  dots.  Three  functions  are  used:  " "
estimates  the  five  parameters  of  the  one-diode  model  at  STC
according  to  the  electrical  parameters  given  in  the  datasheet,

"  estimates  the  five  parameters  for  various
operating  conditions,  and  " "  retrieves  the –
curves.
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trained engineers, who are able to portray a 3D drawing of
the PV system of interest using predefined 3D shapes, repre-
senting  trees,  chimneys,  and  other  possible  structures  that
can cause shading (Gilman et al., 2018). The calculation for
shading loss is a two-part procedure, dealing with beam and
diffuse radiation separately. Coordinate transformation under-
pins the calculation procedure for beam shading, in that, the
entire 3D scene is rotated to align with the sun-ray and then
“flattened” to  a  2D  set  of  polygons  with  a  back-to-front
order. With a 2D polygon clipping algorithm, the shade frac-
tion can be converted into a loss percentage. As for diffuse
shading, the procedure is to grid the hemispherical sky into
small elements, each acting as a light source, so that the proce-
dure for beam shading can be executed repeatedly. Through
integration, the sky-view factor and thus diffuse shading esti-
mates  result.  It  should  be  clear  that  the  above  procedure
needs to be conducted for each time instance. Because the pro-
cedure has been known for decades, nothing is too difficult,
except for the fact that the information needed for the 3D con-
struction of scenes is often proprietary, and those who possess
such information are rarely interested or skilled enough to pro-
ceed with shading calculation. In any case, since the row-to-
row shading is the dictating mechanism for large PV plants,
the remaining discussion should focus just on that. The row-
to-row diffuse shading is discussed first, followed by row-to-
row beam shading.

ψ

l

A schematic featuring the geometry for diffuse self-shad-
ing is shown in Fig. 17. Two adjacent rows of PV arrays are
represented by the two thick tilted lines, whereas the arrows
pointing  inward  to  the  second  row  of  panels  represent  the
omnidirectional diffuse radiation. Following simple geome-
try,  the  obscuring  angle  ( ),  also  known  as  the  masking
angle,  as  a  function  of  the  slant  height ,  i.e.,  the  distance
from the bottom of the back-row panel to an arbitrary position
along that panel, is given by: 

ψ(l) = arctan
(

H− lsinS
D2+ lcosS

)
= arctan

(
LsinS − lsinS

D−LcosS + lcosS

)
. (71)

l

RISO
d = [1+ cos(S )]/2

The dashed arrows in Fig. 17 denote the fraction of the
incoming diffuse radiation that is not seen by that arbitrary
point. As  changes from the top to the bottom of the back-
row  panel,  this  fraction  increases  in  gradation.  Assuming
that  the diffuse transposition factor  is  isotropic,  the diffuse
irradiance masking can be taken into account by modifying
the  isotropic  diffuse  transposition  factor,  i.e.,

, as
 

RISO, mask
d =

1+ cos(S +ψ)
2

= cos2
(S +ψ

2

)
. (72)

ψ(l) 0 L

The above equation can be applied to all  points  of  the
modules to calculate how the diffuse irradiance is distributed
along the height  of  the  modules  (Varga and Mayer,  2021).
However, in most cases, the average of the diffuse shading
over the whole module plane is of interest. To calculate this,
a common simplification is to introduce an average obscuring
angle, by integrating  along  to , of which the analytical
solutioni is available as 

ψ =− K
2

sinS log
∣∣∣∣2K cosS −

(
K2+1

)∣∣∣∣
+ (K cosS −1)arctan

(
K cosS −1

K sinS

)
+ (1−K cosS )arctan

(cosS
sinS

)
+K log K sinS , (73)

K = D/Lwhere  is the relative row spacing. Another possible
simplification  is  to  just  assume  the  worst  case,  as  SAM
does,  in  which  the  highest  portion  of  diffuse  radiation  is
obstructed by the front-row panel,  and the obscuring angle
becomes 

ψ(0) = arctan
(

H
D2

)
= arctan

(
LsinS

D−LcosS

)
. (74)

The rationale behind using the highest obscuring angle
is  that  it  results  in  the  lowest  remaining diffuse  irradiance,
and  thus  the  lowest  current  in  the  PV  cells.  Due  to  their
series connection, the cell with the lowest current can limit
the current of the whole string, further reducing the overall
power output.  However,  as  simulated by Varga and Mayer

 

 

Fig. 17. Illustration of diffuse self-shading.
 

pvlib
 

i Equation (9) of Passias and Källbäck (1984) gives an expression that is incorrect. The correct equation is given in the  online man-
ual.
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(2021),  the  diffuse  masking causes  only  a  small  difference
in the absorbed irradiance, which translates to small current
differences,  which  are  well  compensated  by  small  changes
in  the  voltage  without  a  significant  power  loss  resulting
from the mismatch of the modules (see the flat peak of the

–  curves in Fig. 16).
A  theoretically  more  accurate  method  to  calculate  the

average  diffuse  shading  is  based  on  the  discovery  that  the
isotropic  transposition  factor  is  actually  the  view  factor
between  the  modules  and  the  sky  (Maor  and  Appelbaum,
2012). Therefore, the reduced view factor that also considers
the masking of the adjacent rows can also be calculated by
Hottel’s crossed string method [see pg. 31–37 of Hottel and
Sarofin (1967)] as 

RISO, mask
d =

L+D−
√

(LsinS )2+ (D−LcosS )2

2L

=
1+K −

√
sin2 S + (K − cosS )2

2
. (75)

G′c

This  reduced  transposition  factor  is  an  average  of  the
whole module surface. To include diffuse self-shading in a
model chain,  obtained from Eq. (36) should subtract the
amount 

τdDh

(
RISO

d −RISO, mask
d

) Nrow−1
Nrow

, (76)

(Nrow−1)/Nrow

S
L D K = 1/

RISO, mask
d

to account for diffuse self-shading. Since the first row of pan-
els is not shaded, a derating term  is devised.
The average masking loss factor changes with both the surface
tilt  and  the  ground  coverage  ratio  (GCR),  which  is
defined to be the ratio of  to , thus, GCR. The rela-
tive diffuse irradiance (the ratio between DTI after accounting
for shading and DHI), that is  as calculated by Eq.
(75), is plotted in Fig. 18b.

The  modeling  for  beam  shading  is  more  straightfor-
ward,  for  it  depends  upon  the  shadow  dimensions,  which
are related just to solar positions. Over the course of a day,

l
w

w

Lshadow L

the zenith and azimuth angles change, with which the shadows
the front rows cast onto the back rows morph in two direc-
tions.  Graphically,  the  two directions  are  represented by -
and -directions as shown in the zoomed inset of Fig. 19. If
the  row  is  sufficiently  long,  which  is  usually  the  case,  the
changes  in -direction  can  be  neglected,  and  the  problem
reduces  to  calculating  the  shadow  height.  Let  the  shadow
height be denoted by , its ratio with respect to , i.e.,
the relative shaded area of the array, has been expressed in
Eqs. (9.17) and (9.19) of Gilman et al. (2018), which, under
the present notation convention, is 

Lshadow

L
= 1− K tanα

sinS cos(φS −φC)+ cosS tanα
, (77)

φS φC

α = π/2−Z

Lshadow/L

G′c

where  and  are the azimuth angles of the sun and the
array,  and  is  the  elevation  angle;  these  have
already  been  defined  in  section  4.1.  At  this  stage,  two
options are available for estimating the BTI under self-shad-
ing, of which the first is a nonlinear option, and the other is
linear.  The  nonlinear  option  considers  the  actual  design  of
the bypass diodes, and determines which diode is activated
and  which  is  not,  according  to  whether  the  modules  are
posited in portrait and landscape—see section 9.5 of Gilman
et al. (2018) or section 3.2 of Mayer and Gróf (2020), which
also includes a graphical explanation. The linear option is sim-
pler, in that, one may assume the reduction in BTI to be pro-
portional to ; however, it must be known that this
approach always underestimates the shading losses. Put differ-
ently,  if  one  is  to  include  beam  self-shading  in  a  model
chain,  obtained  from  Eq.  (36)  should  subtract  the
amount 

τbBc

(
1− K tanα

sinS cos(φS −φC)+ cosS tanα

)
Nrow−1

Nrow
, (78)

to account for beam self-shading.
 

4.7.2.    Soiling loss

Solar  panels  are  installed  in  outdoor  environments,
 

 

Fig. 18. Average masking angle (a) and relative diffuse irradiance (b) as a function of tilt angle for various ground coverage
ratios.
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their  performance  is  thus  affected  by  various  pollutants,
such as dust, sediment, or bird excrement. The term “soiling”
generally  describes  the  buildup  of  pollutants  on  solar  pan-
els, which reduces the amount of effective light that reaches
the solar cells and, as a result, the effectiveness of the panel
and the system. In the past, solar engineers were mainly con-
cerned with converting the effects of soiling into a proportion
of  the  overall  energy  yield  of  a  PV  system,  so  that  they
could  be  taken  into  account  when  designing,  simulating,
and  evaluating  the  performance  of  the  system.  To  put  it
another way, up until now, soiling studies have followed the
same  time  scale  concerning  resource  assessments  (Mejia
and Kleissl, 2013). When forecasting is the application of con-
cern, the interactions between short-term variations in meteo-
rological  conditions  and  soiling  become  prominent,  for  a
rain event can undo the power losses caused by soiling and
thereby boost the power output by a relatively sizable mar-
gin.  It  is  best  to  take  into  account  the  PV plant’s  cleaning
schedule when forecasting because it has an impact on soiling
as well. Regardless, a sizable amount of research has been car-
ried  out  for  soiling  [see Conceição  et  al. (2022),  for  a
review].  Again  it  is  important  to  note  that  the  results  from
one scenario can rarely be transferred to another, due to the
various experimental designs and ambient conditions.

As previously stated, the severity of soiling is primarily
influenced by three variables: (1) the buildup of dust, which
is further influenced by the exposure time (i.e., the interval
between successive rain events), as well as other environmen-
tal factors at the PV system installation location; (2) the effec-
tiveness  of  rain  events  in  removing  dust,  which  is  further
influenced by the intensity of rain over a period; and (3) the
active cleaning schedule.  Theoretically,  one could incorpo-
rate the first two variables into the soiling modeling process
by using NWP, particularly those atmospheric composition
models that can reasonably predict episodes of precipitation
and dust storms of varying severity. However, a reliable soil-
ing  forecasting  model  should  also  take  into  account  local
anthropogenic particle sources, which are much more difficult
to  collect  and  standardize  information  about.  Examples  of
these sources include farming, industrial  facilities,  airports,
and major roads (Conceição et al., 2022). Additionally, one
should be aware that cleaning is entirely influenced by soiling
economics and human factors and varies from case to case.
In order to increase optical efficiency while reducing the num-
ber of cleanings, numerous studies have inquired into clean-

ing optimization in accordance with local dust accumulation
behaviors  [e.g., Abdeen  et  al. (2017); You  et  al. (2018);
Micheli et al. (2020); Ullah et al. (2020)]. At this time and
for the foreseeable future, it would likely not be possible to
incorporate  this  knowledge  into  forecasting  because  these
optimizations call for an excessive number of location-depen-
dent and largely unknown parameters.

Although  it  is  difficult  to  fully  incorporate  the  effects
of soiling for PV power forecasting, this problem can be miti-
gated  to  a  large  extent  if  in  situ  soiling  measurements  are
available.  In fact,  just  as installing in-plane reference cells,
thermocouples, and anemometers for GTI, cell temperature,
and  wind  speed  measurements  became  the  standard  for
large PV systems a long time ago, one can expect soiling sen-
sors to follow suit in the near future. Commercial soiling sen-
sors  have  emerged,  including  DustIQ  from  Kipp  &  Zonen
and  MARS  from  Atonometrics.  Low-cost  soiling  sensors
have also recently advanced, according to the reports of Hus-
sain et al. (2021) and Valerino et al. (2020). Because hardware
is no longer a barrier preventing better soiling modeling, the
remaining difficulty is, in the main, public acceptance. With
the exception of severe weather events like dust storms or tor-
rential  rain,  the  daily  changes  in  soiling  rate  only  account
for a tiny portion of the overall variations in the PV power
the following day. To that end, it is hypothesized that forecasts
of the soiling ratio, a dimensionless parameter used to quan-
tify  the  soiling  impact,  can  be  obtained  by  combining  the
immediate past soiling ratio measurements and the forecast
impact of severe weather. 

4.7.3.    DC cable loss

Rdc, wire

I V

Np

Ns

It is preferable to use DC cable loss, also referred to as
DC wiring loss, in conjunction with the physical DC model
covered  in  section  4.6.2.  Between  the  power  produced  by
the modules and the power that reaches the terminals of the
PV array,  losses  are  caused  by  the  ohmic  resistance  of  the
wiring circuit. The resistance , which is the equivalent
resistance of the wires as seen from the MPPT in relation to
the array, is an important parameter in this context. Recalling
that the one-diode model follows the –  curve of a single
module,  and that  this  curve must  be scaled to fit  the series
and parallel  configuration  at  the  MPPT,  and supposing the
number  of  parallel  strings  is  denoted  by  and  that  of
series-connected modules by , then the DC current and volt-
age are: 

 

 

Fig. 19. Illustration of beam self-shading.
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Idc = NpImpp , (79)

and 

Vdc = NsVmpp− ImppRdc, wire , (80)

which, when multiplied, gives 

Pdc = NsNpPmpp−NpI2
mppRdc, wire , (81)

Impp Vmpp Pmppwhere , ,  and  result  from  the  one-diode
model. In other words, the second term of Eq. (81) quantifies
the ohmic loss in DC cables, which has a quadratic relation-
ship with the MPP current. Needless to say, the above calcula-
tion needs to be repeated for each MPPT.

Rdc, wire

ldc, wire

In  calculating  the  equivalent  resistance ,  there
are two ways: either from the length in meters and resistivity
of the cables in ohms per meter, or from a percentage ohmic
loss ( ), that is, 

Rdc, wire = ldc, wire
Vmpp

Impp
. (82)

Impp Vmpp
Impp Vmpp

In particular, when empirical DC models, such as those exem-
plified in section 4.6.1, are used,  and  may or may
not result  from the modeling process.  If  and  are
not  output  by the  empirical  DC model,  the  only option for
the modeler is to assume, based on experience, a percentage
to  represent  the  ohmic  loss.  Regarding  the  importance  of
implementing DC cable loss modeling for real PV systems,
it  is  important  to  be  aware  of  the  industrial  practices  that
string  inverters  are  typically  installed  close  to  the  string,
implying  a  negligible  DC  cable  loss  but  a  non-negligible
AC cable loss, whereas the situation for central inverters is
reversed,  in  that  they  are  placed  closer  to  the  transformer,
implying a non-negligible DC loss but a negligible AC loss
(Cabrera-Tobar et al., 2016). 

4.7.4.    Inverter loss

The  power  loss  due  to  the  inverter  results  from  two
main mechanisms. The first is linked to the DC–AC inversion
efficiency.  Insofar  as  the  power  electronics  within  the
inverter  operates,  a  proportion  of  the  power  dissipates  as
heat,  and  another  part  is  consumed  as  stand-by  power  for
keeping the inverter in powered mode. Describing the conver-
sion efficiency of  an inverter  is  an efficiency curve,  which
is a function of the load-to-nominal ratio and the input voltage
of the inverter. Worth noting is that the inverter only activates
when the DC input voltage is higher than the inverter’s start-
up voltage,  implying a minimum input  power (i.e.,  a  small
portion  of  the  nominal  power)  below which  the  inverter  is
not activated. The second mechanism that causes power loss
is inverter clipping, which refers to the truncation of power
when  the  maximum  input  power  rating  of  an  inverter  is
exceeded by the MPP power from a PV array. The inverter
typically switches to fold-back mode in this situation, forcing
the PV array to operate at a voltage higher than the MPP volt-
age and reducing the current and consequently power (Chen

I Vet al., 2013); cf. the –  curves in Fig. 16. Due to these two
differing loss mechanisms, inverter loss is often modeled in
two stages, one consisting of estimating the efficiency under
a  given  operating  condition,  and  the  other  on  checking
whether  the  minimum  and  maximum  power  limits  are
exceeded.

In what follows, we consider inverter loss with respect
to the AC model of King et al. (2004), who advocated to rep-
resent the AC power output of the inverter as 

PKing
ac, inv =

[
Pac, inv, ref

A−B
+C(A−B)

]
(Pdc, inv−B)+

C(Pdc, inv−B)2 , (83)

A B Cin which the intermediate parameters , , and  are given
by 

A = Pdc, inv, ref[1+C1(Vdc, inv−Vdc, inv, ref)] , (84)
 

B = Ps, inv, ref[1+C2(Vdc, inv−Vdc, inv, ref)] , (85)
 

C =C0[1+C3(Vdc, inv−Vdc, inv, ref)] , (86)

Vdc, inv Pdc, inv
Pac, inv, ref

Vdc, inv, ref Pdc, inv, ref
Pac, inv, ref Ps, inv, ref

C0, . . . ,C3

Vdc, inv Pdc, inv

Pac, inv, ref =

100 Vdc, inv, ref = 1120 Pdc, inv, ref = 101.45
Ps, inv, ref = 181.58 C0 = 0 C1 = −1.1×10−5 C2 = 3×
10−5 C3 = 1.63×10−3

Vdc, inv Pdc, inv

where  and  are  the  input  voltage  and  power
received by the inverter;  is the AC power rating of
the inverter;  and  are the DC voltage and
power with which  is achieved;  is the DC
power required to start the inversion process; and 
are empirical coefficients that describe the intrinsic properties
of  an  inverter.  Besides  and ,  which are  to  be
acquired  from  the  preceding  steps  of  the  model  chain,  the
remaining  parameters  are  usually  found  from  an  inverter
database—recall the CEC module library in section 4.6.2, a
similar database is available for commercial inverters. Alterna-
tively,  the  datasheet  of  most  inverters  includes the inverter
efficiency curves as a function of the load for three voltage
levels  in  a  graphical  (and  sometimes  even  tabular)  form,
which  one  can  use  to  fit  the  model  parameters  if  they  are
not  directly  available  from  a  database.  For  instance,  the
Huawei  SUN2000-100KTL-USH0 inverter  has 

 kW,  V,  kW,
 W, , , 

, and . With Eq. (83), the inverter effi-
ciency at some specific  and  values is given as 

η
King
inv =

PKing
ac, inv

Pdc, inv
. (87)

Pdc, inv Pnt, inv

PKing
ac, inv = −Pnt, inv

Pdc, inv

Pac, inv, ref PKing
ac, inv =

Pac, inv, ref

When  is smaller than , which is the AC power
consumed by the inverter at night, i.e., night tare, King et al.
(2004) assigns , where the negative sign indi-
cates  that  power  is  drawn  from  the  grid.  When  is

greater  than ,  the  model  assumes 
. Figure  20 presents  the  efficiency  curves  of  the

Huawei SUN2000-100KTL-USH0 inverter under several dif-
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Vdc, invferent  values. Due to modeling errors, there are some
differences  between  the  curves  shown  in  this  figure  and
those in the datasheet of the inverter.

Pac, inv, ref

The  above  model  is  undoubtedly  a  simplified  one
because the actual working of an inverter is much more intri-
cate. The fold-back mode, in particular, is only one compo-
nent of the overall inverter protection system. Other measures
include  cooling  systems  and  inverter  protection  delays,
which  refer  to  the  time  period  during  which  some  energy
lost  as  a  result  of  excessive  radiation can be  recycled.  The
King model assumes that every watt exceeding  is
truncated;  this  is  also  the  case  in  many  other  conventional
approaches  to  inverter  modeling  of  inverters  [e.g., Burger
and Rüther (2006)]. In reality, however, the inverter is able
to operate in over-irradiance situations for a brief period of
several minutes. Invoking protection delay generates exces-
sive heat, which harms the inverter, and hence it is of interest
to invest in a cooling system to prolong the delay. Most invert-
ers  in  the  kW  range  including  the  Huawei  SUN2000-
100KTL adopt natural  convection cooling via finned metal
housings. Some may choose to include additionally a fan as
a supportive cooling method which is only turned on if over-
loading is severe. This, however might lower the overall relia-
bility  of  the  inverter,  and  thus  the  inverter  controller  must
have the ability to disable the protection delay when the cool-
ing system fails.  On the other  hand,  if  no active cooling is
installed,  the  maximum  output  power  of  the  inverter  can

even decrease if the ambient temperature is too high, which
is called the derating of the inverter. In this regard, mimicking
the  actual  operation  of  an  inverter  in  a  model  chain  is  a
tedious task,  although the engineering principles have long
been investigated.

Inaccuracies  in  inverter  modeling  originate  not  just
from operational issues,  but also from design issues.  There
are  climatological  and  meteorological  factors,  such  as  the
local  irradiance  and  temperature  statistical  regime,  which
impact  the  DC  output  of  the  PV  system;  there  are  factors
related to energy economics, such as feed-in tariff or electric-
ity  pricing  policies,  which  determine  the  return  on  invest-
ment;  and there  are  those  aforementioned intrinsic  inverter
properties, such as efficiency curves or overload protection
schemes,  which  define  the  hardware  constraints  (Chen
et al., 2013). Whereas all these practical factors may influence
the design of an inverter, when they are not considered, two
common  sizing  strategies  are  available.  The  first  strategy
matches the inverter size to the nominal DC output—e.g., a
100-kWp system is sized with a 100-kW inverter, which is
the case in Fig. 14. The other strategy is to use an inverter
with  30%  smaller  capacity  than  the  nominal  DC
output—e.g.,  a  100-kWp  system  is  sized  with  a  70-kW
inverter. This latter strategy is motivated by the fact that the
PV system rarely generates power close to the nominal DC
capacity, such that sizing a smaller inverter is more economi-
cal.  In  contrast,  if  PV  systems  are  employed  for  reactive
power control in distribution systems, then a larger inverter
size  is  desirable  as  it  reduces  the  need  to  curtail  real  PV
power  during  times  of  overvoltages  (Cañadillas  et  al.,
2021).  Clearly  then,  nor  is  there  a  definitive  orientation
towards  what  the  optimal  sizing  strategy  should  be,  since
the  practical  factors  are  specific  to  each  installation
(Macêdo and Zilles, 2007). The reader is referred to Toreti
Scarabelot  et  al. (2021), Luoma et  al. (2012), Notton et  al.
(2010) and Mondol et al. (2006) for more engineering consid-
erations on inverter sizing. An important note to highlight at
this stage is that inverter sizing and operation strategy, just
like other PV system design parameters,  is  rarely available
and thus is hardly conducive to model chain construction. 

4.7.5.    AC cable loss

Conductor loss is the main reason explaining the attenua-
tion of electric power transmitted by cables. In comparison
to  the  DC  conductor  loss,  the  severity  of  the  AC  loss  is
higher as a result of the skin effect and the proximity effect.
Faraday’s  law  of  electromagnetic  induction  suggests  that
when AC power is transmitted by a cable, an alternating mag-
netic field stimulated by the current induces an electromotive
force opposite to the driving force. The counter electromotive
force is strongest at the center of the conductor and diminishes
radially  outwards,  and  hence  propels  electrons  towards  the
outer part of the conductor. Consequently, the current density
is highest at the conductor surface and reduces in magnitude
moving  deeper  into  the  conductor,  which  is  known  as  the
skin  effect.  The  skin  effect  may  be  quantified  by  the  skin
depth,  which  is  the  depth  at  which  the  current  density

 

Vdc, inv
Pdc, inv

5% < η
King
inv < 100%

Fig. 20. (top) The efficiency curves of the Huawei SUN2000-
100KTL-USH0  inverter  under  three  fixed  values  each
with varying ,  modeled using the AC model of King et
al. (2004).  (bottom)  Zoomed  view  over  the  region

.
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δ
declines to 1/e (about 0.368) of its value near the surface. At
low frequencies, the general formula for the skin depth ( )
is 

δ =

√
1

πµσ f
, (88)

µ σ

f
where  and  are the permeability and conductivity of the
conductor, whereas  is the frequency.

Since the current can only flow between the surface and
several  skin  depths  below  that,  the  same  conductor  would
have  a  greater  apparent  AC  resistance  than  it  would  have
under DC conditions. For cylindrical conductors, the AC resis-
tance is: 

Rac, wire =


lwire

πσr2
wire

, rwire < 2δ

lwire
2πσr2

wireδ
=

lwire
2rwire

√
µ f
πσ

, rwire > 2δ
, (89)

lwire rwire

I2
rmsRac, wire Irms

where  and  are the length and the radius of the cylin-
drical conductor, respectively. The AC ohmic loss can then
be calculated with Joule's  law as ,  where  is
the root mean square (RMS) amplitude of the transmitted cur-
rent.  In  practice,  to  acquire  the  power  entering  the  trans-
former,  the  AC power  coming  out  of  the  inverter  needs  to
be subtracted by the AC loss: 

Ptrans = Pac, inv−
(

Pac, inv

Vrms

)2

Rac, wire, (90)

Vrmswhere  is the RMS value of the line voltage at the low-
voltage side of the transformer.

Besides the skin effect,  the current density distribution
of one conductor is also impacted by other current-carrying
conductors nearby, which is known as the proximity effect.
Although the proximity effect is also caused by electromag-
netic induction, it differs from the skin effect in that the prox-
imity effect results from the mutual induction between insu-
lated  conductors  rather  than  self-induction.  However,  the
proximity effect enhances the AC resistance of a conductor
as well as its thermal loss by preventing current distribution
from being  even  over  the  cross-section.  The  quantification
of proximity effects must be performed by considering the dis-
tance between, as well as the cross-sectional area of, the acting
and acted conductors: The nearer the conductors are placed
and the larger the cross-sections are, the more prominent the
proximity  effect.  On  this  point,  if  one  is  to  investigate  the
quantification of the proximity effect on AC resistance, the
usual strategy is to engage the finite element method, which
is  not  only  a  very  specialized  skill,  but  also  time-consum-
ing. In this regard, it is possible to estimate the AC resistance
based  on  the  DC resistance,  as  exemplified  in  the  work  of
Hafez et al. (2014); this approach is suitable for medium-volt-
age  grid  inter-connection,  which  is  typical  for  MW-scale
PV plants.
 

4.7.6.    Transformer loss

The final part of a grid-tied PV system, the transformer,
increases  the  inverter  output's  AC voltage  to  the  grid  volt-
age. For the classification of low, medium, and high grid volt-
age ratings, there are numerous international and national stan-
dards. The IEEE 1547 Standard for Interconnection and Inter-
operability of Distributed Energy Resources with Associated
Electric Power Systems Interfaces (IEEE Std 1547-2018) is
frequently  regarded  as  one  of  the  founding  documents  for
solar  energy systems (Narang et  al.,  2021).  Low voltage is
defined in IEEE Std 1547-2018 as a class of nominal voltages
below 1 kV; medium voltage is  defined as ranges between
1  kV  and  35  kV;  and  high  voltage  is  defined  as  voltages
above that.

A topology of a PV system describes how its component
parts are interconnected and related to one another. Radial,
ring, and star topologies can be used to describe AC collection
grids (Cabrera-Tobar et al., 2016); these three arrangements
are also suitable for wind power plants (De Prada Gil et al.,
2015).  Several  transformers  are  connected  in  series  by  a
radial collection grid. The radial configuration has low relia-
bility despite being cost-effective because losing one trans-
former renders the entire collection grid inoperable. A ring
collection  grid  can  increase  reliability  because  it  joins  the
open  ends  of  the  serially  connected  transformers,  closing
the  circuit,  so  that  even  if  one  transformer  is  lost,  the  grid
can  continue  to  function  as  a  radial  one.  Compared  to  the
other two configurations, the star collection grid has the high-
est level of reliability because all transformers are connected
to the same medium voltage point.

Similar to the process of sizing an inverter, the process
of sizing a transformer generally involves striking a balance
between the conservative approach of  under-sizing and the
economical approach of sizing in accordance with the rated
power of the plant. In the former situation, the transformer fre-
quently operates at a lower efficiency due to the operational
ambient  conditions  not  always  matching  the  STC,  which
may cause significant oscillations in the power injected into
the  grid  (Testa  et  al.,  2012).  In  the  latter  scenario,  a  trans-
former  that  is  too  small  acts  as  a  power  export  bottleneck,
wasting energy. A transformer sizing strategy based on the
loss  of  produced power  probability  (LPPP) index was pro-
posed by Testa et al. (2012). This index calculates the likeli-
hood that the transformer will be unable to deliver all of the
power that enters the transformer to the grid due to overloads
or power losses in the transformer. Conceptually, the LPPP
ought  to  be  reduced,  and  is  dependent  on  the  load  profile,
the  availability  of  solar  resources,  and  the  presence  of
energy storage devices (Testa et al., 2012).

PFe

Transformer power losses are brought on by two different
mechanisms.  One  of  them  is  referred  to  as  the  core  loss,
which is an umbrella term for the various losses that happen
in the transformer when there is no load, including dielectric
loss, stray eddy current loss, hysteresis loss, and eddy current
loss.  Iron being the primary component of the transformer,
core loss is also referred to as iron loss ( ). Insofar as the
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PCu

transformer  is  excited,  core  loss  depends  on  the  voltage
level and operating frequency and can be taken for granted
to be constant. The heat generated by the currents in the trans-
former windings is the source of the other type of loss in trans-
formers, namely, the copper loss ( ).  The loading of the
transformer  determines  the  copper  loss,  and  is  therefore
only relevant during operation.

Ptrans

In  the  case  of  oil-cooled  (oil-immersed)  transformers,
both the iron and copper losses vary quasi-linearly with the
nominal transformer rating , which has units of kVA: 

PFe = β0+β1Ptrans, ref , (91)
 

PCu = β2Ptrans, ref , (92)

β0 β1 β2

Ptrans, ref
Ptrans, ref

of which the coefficients , , and  for oil-cooled trans-
formers, with a nominal transformer rating ranging from 50
to  2500  kVA,  with  the  highest  voltage  for  equipment  not
exceeding  36  kV,  have  been  tabulated  by Malamaki  and
Demoulias (2014).  For  cast-resin  (dry-type)  transformers,
the iron loss still varies quasi-linearly with , but the
copper loss is quadratic with , i.e., 

PFe = β
′
0+β

′
1Ptrans, ref , (93)

 

PCu = β
′
2Ptrans, ref+β

′
3P2

trans, ref , (94)

β′0, . . . ,β
′
3of which the coefficients  for cast-resin transform-

ers, with a nominal transformer rating ranging from 100 to
3150 kVA, with the highest voltage for equipment not exceed-
ing  36  kV,  have  again  been  tabulated  by Malamaki  and
Demoulias (2014).

Ntrans

Ptrans
Ptrans

Suppose there are  identical transformers connected
in  parallel,  the  total  transformer  loss  under  an  input  power

—recall Eq. (90)—is given as the sum of iron and copper
losses,  which  needs  to  be  subtracted  from  during
model  chain  evaluation,  and  the  final  power  injected  into
the grid is: 

Pgrid = Ptrans−
NtransPFe+

PCu

Ntrans

(
Ptrans

Ptrans, ref

)2 . (95)

PFe
PCu

ltrans

Alternatively,  when  information  for  identifying  and
 is  unavailable,  one  may  account  for  the  transformer

loss  via  a  lump  medium-voltage  loss  factor  at  nominal
power, which is herein denoted as . The power injection
into the grid in this case may be written as: 

Pgrid = Ptrans

(
1− ltrans

Ptrans

Ptrans, ref

)
. (96)

As  a  rule  of  thumb,  transformers  consume  approximately
1.5%  of  the  nominal  energy  output  by  the  PV  plant,  i.e.,

ltrans ≈ 1.5%.
 

5.    Hybrid solar power curves

Cascading two or more techniques in order to enhance
the overall modeling performance is a well-accepted strategy
in many fields—this strategy is known as hybrid modeling.
In the case of solar power curve modeling, the drawback of
regression methods is  from a practical  aspect their  reliance
on historical data, and from a theoretical aspect, that they do
not incorporate all theoretical knowledge that has been col-
lected in the domains of the atmospheric sciences and solar
engineering. On the other hand, most stages of model chains
are actually partly empirical in nature, since their parameters
are  determined  by  theoretical  inference  or  learning  from
data.  Consequently,  even  the  most  detailed  model  chains
must  rely  on  several  simplifications  that  compromise  their
accuracy, especially when the available design data are incom-
plete. Moreover, model chains, or solar power curves in gen-
eral,  are  nonlinear,  which suggests  that  the  initial  errors  of
the input dataset propagate differently in different irradiance
domains.

The  mean  square  error  (MSE),  or  its  equivalent,  root
mean  square  error  (RMSE),  is  the  most  commonly  used
error metric for deterministic solar predictions or estimatesj

(Blaga et al., 2019; Yang et al., 2020). Therefore, various dis-
cussions have been populated in regard to optimizing predic-
tions in terms of MSE. However, MSE-optimized GHI predic-
tions  are  always  under-dispersed,  which  means  that  they
have a positive conditional bias in the low, and a negative con-
dition bias in the high, irradiance domain (Mayer and Yang,
2023a). Due to their nonlinearity and the errors of the input
GHI  predictions,  model  chains  are  likely  to  introduce  bias
even if  their  inputs are unbiased. Moreover,  the introduced
bias also depends on the design parameters, such as the tilt
angle, inverter sizing factor, and row spacing; thus, it is differ-
ent  for  all  PV  plants  (Mayer,  2022b).  Therefore,  model
chains are expected to benefit from a data-driven correction
method.  It  is  worth  noting  that  a  combination  of  two  or
more regression models is also a form of hybridization, but
such  purely  statistical  hybridization  approaches  have  less
added value than combining the physical and statistical meth-
ods  (Yang and Dong,  2018).  Therefore,  this  section  exclu-
sively  focuses  on  such  methods  where  model  chains  and
regression methods are used together.

Insofar  as  the  performance  of  a  model  chain  is  to  be
improved,  hybridization  is  not  the  only  option.  One “brute
force” approach is simply testing a large collection of model
chains,  and selecting the one with the highest  performance
based on historical data. This brute force approach was first
introduced by Mayer and Gróf (2021), who gathered a pool
of component models, which, when exhaustively combined,
resulted in a total of 32 400 different model chains. By testing

 

 

j Generally, a forecast is a special form of a prediction/estimate, as it refers to the prediction of a future event or quantity. In solar engineer-
ing, prediction also encompasses the outcome of various radiation models and satellite retrieval algorithms.
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those model chains on the forecasting of 16 PV plants in Hun-
gary, the results revealed a difference of up to 13% in mean
absolute error (MAE) and 12% in RMSE between the most
and the least accurate sets of forecasts on the average of all
locations.  The  drawback  of  this  enumeration–selection
approach for model chain optimization is that it requires the
implementation of not only one set of component models to
create a single model chain, but several different models in
each stage to be able to construct a large number of model
chains, which calls for an even higher level of domain knowl-
edge.  As  an  alternative,  it  is  easier  to  use  only  a  single
model chain and correct it with a regression model, which is
the  true  manifestation  of  a  physical–statistical  hybrid  solar
power curve.

Hybridization  is  conceptually  similar  to  post-process-
ing, as both procedures depend on using regression to modify
predictions. Generally, if the regression is applied to a set of
PV  power  predictions,  the  procedure  is  post-processing,
whereas  if  the  regression  consolidates  different  partial
results  of  a  model  chain  as  predictors,  then  it  is  more  of  a
hybrid solar power curve. One of the earliest attempts at mak-
ing  hybrid  solar  power  curves  was  presented  by Ogliari
et al. (2017), who proposed a so-called physical hybrid artifi-
cial  neural  network  (PHANN),  in  which  the  physical  part
was no more than a clear-sky irradiance predictor, whereas
the  statistical  part  was  a  neural  network.  In  today’s  view-
point,  PHANN,  in  which  no  model  chain  is  explicitly
involved, is more likely to be classified into the regression cat-
egory of solar power curve modeling, for clear-sky irradiance
is  but  one  basic  feature  as  recommended in  section 3.1.  In
state-of-the-art hybrid solar power curve modeling, it is typi-
cal  to  involve  several  early  stages  of  a  model  chain  (e.g.,
solar positioning, separation, or transposition), and the goal
is  to  exploit  the  advantages  of  physical  modeling  as  much
as  possible,  insofar  as  the  design  information  can  support,
and then integrating the results using regression.

Naturally,  two  questions  arise:  (1)  If  several  model
chain stages are used, each yielding some output variables,
should all these intermediate variables be used as predictors;
and (2) which model chain stages contribute most to the accu-
racy of hybrid solar power curves? The first study aiming to
provide a detailed answer to these questions was presented
by Mayer (2022a). In that paper, the author compared physical
model  chains,  regression-based  solar  power  curves  in  the
form of multilayer perceptions (MLPs), and their hybridiza-
tion, for PV power forecasting of 14 PV plants in Hungary
based on NWP irradiance, temperature, and wind speed fore-
casts.  In addition to the reference case where only an opti-
mized model chain is used, 12 further cases involving regres-
sion were defined with an increasing number of predictor vari-
ables. The possible predictors include:

1. NWP outputs, including GHI, the 2-m ambient temper-
ature, and the 10-m wind speed forecasts.

2. Solar zenith, azimuth, and declination angles, as calcu-
lated via solar positioning.

3. Clear-sky index and/or clear-sky irradiance.

4. Beam horizontal irradiance and DHI, as decomposed
from the GHI by a separation model.

5. GTI, as derived by a transposition model.
6.  Cell  temperature and MPP module power,  as calcu-

lated by temperature and DC power models.
7. Power fed into the grid by the PV plant, which is the

ultimate output of the model chain.
The above list is not exhaustive, and further predictors

can also be defined from the intermediate results of the differ-
ent  stages  of  a  model  chain.  The  results  of Mayer (2022a)
revealed that using all  predictors mentioned above leads to
the most accurate forecasts. A more recent analysis of the pre-
dictor importance in hybrid power curve modeling was pre-
sented by Visser et al. (2023). In that paper, an even wider
range of intermediate model chain outputs were used as pre-
dictors,  e.g.,  not  only  the  GTI,  but  also  its  beam,  diffuse,
and  ground-reflected  components,  recall  Eq.  (13).  The
results support the earlier finding that including more predic-
tors  improves  forecast  accuracy.  However,  the  added  error
reduction by involving a further  predictor  diminishes to an
insignificant level after the 8–10 most important predictors.

The  benefit  of  including  intermediate  results  besides
the  final  PV power  output  is  also  easy  to  explain  theoreti-
cally: If the regression model can condition its output on the
intermediate results, it enables the hybridization to indirectly
correct the inaccuracy in the individual stages of the model
chain  instead  of  only  correcting  the  overall  errors  of  the
model chain as a whole. Including too many predictors, on
the other hand, can make the model more prone to overfit-
ting, and the less important predictors can obscure the effect
of the more important ones. In summary, the response of the
first question is that using intermediate model chain outputs
are predictors is beneficial,  but one should pay attention to
include  the  most  relevant  variables  only,  selected  either
based on domain knowledge or a data-driven predictor impor-
tance analysis. The exact number and range of the useful pre-
dictors depend on many factors, e.g., the complexity of the
regression model and the length of training data.

The importance of the different stages of a model chain
was first assessed by Mayer and Gróf (2021), and the ranking
was  based  on  how  the  component  model  selection  in  a
given stage affects the overall accuracy of the model chain.
In this respect, the most critical step is transposition model-
ing,  closely  followed by separation  modeling.  This  finding
gave the motivation to Mayer (2022a) to compare two differ-
ent kinds of hybrid models, one of which involves a complete
model  chain  (including  all  seven  predictor  groups  listed
above),  whereas  the  other  restricts  the  physical  modeling
only up to the the calculation of the GTI (including only the
predictors  from the  first  five  points  of  the  above  list).  The
results showed that the accuracy of these two hybrid models
is similar in PV power forecasting. A clear benefit of the sec-
ond approach, however, is its simplicity, as it only requires
a partial and shorter model chain including solar position, sep-
aration,  transposition  (and  optionally  reflection)  models,
and  it  does  not  require  any  design  information  aside  from
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the  tilt  and  azimuth  angles  of  the  PV  modules,  which  are
known most of the time. The answer to the second question
is  therefore  this:  The second half  of  model  chains  (beyond
the calculation of GTI) can be well substituted by machine
learning,  and  therefore,  if  there  are  enough  historical  data
for hybrid modeling, one can rely on a shorter model chain
that calculates only GTI, without significantly compromising
the prediction accuracy of the solar power curve.

Another  practical  question  related  to  hybrid  modeling
is the error reduction potential over the use of regression or
model  chain  alone.  Since  the  accuracy  of  both  individual
approaches depends on many factors, this question can only
be  answered  qualitatively.  Extending  a  regression  method
with relevant physical information is almost always benefi-
cial, therefore, hybrid modeling has an edge over regression
in all but a few exceptional practical cases. However, the com-
parison  of  physical  and  hybrid  modeling  is  not  that  clear.
Mayer (2022a)  showed  that  if  the  model  chains  are  opti-
mized,  extending  them  with  regression  might  only  bring  a
clear improvement if at least two years of training data are
available.  However,  as  long  as  hybridization  is  used  as  an
alternative to model chain optimization, it has a clear benefit
even with just one year of training data. It not only reduces
the errors, but also equalizes the accuracy of different model
chains,  and  thus  reduces  the  uncertainty  coming  from  the
use of a random non-optimized model chain. The error reduc-
tion also depends on the directive, which refers to the error
metric  that  is  intended  to  be  optimized  by  the  predictions.
Hybrid  solar  power  curves  are  able  to  achieve  a  higher
degree of error reduction in MAE than in RMSE compared
to the errors of the model chains (Mayer, 2022a).

Finally,  the  applied  regression  method  also  affects  the
accuracy  of  the  hybrid  solar  power  curve. Visser  et  al.
(2023) compared two machine learning methods, namely an
MLP and a random forest (RF), paired with the same model
chain  and  predictor  variables,  and  discovered  a  noticeable
error difference in favor of the RF model. Overall, the selec-
tion and hyperparameters of the regression model can offer
added  value  comparable  to  that  of  the  physical  predictors,
especially  for  such  regression  methods  that  can  also
describe deeper relationships such as the spatio-temporal cor-
relations  between  multiple  sites.  Theoretically,  almost  any
kind of regression method can be utilized in hybrid model-
ing, which, considering the large body of literature on regres-
sion  methods  with  increasing  complexity  and  accuracy,
gives a broad perspective to further research on hybrid solar
power curves.

An  outline  of  the  general  concept  of  state-of-the-art
hybrid  modeling  (in  a  forecasting  setting)  is  shown  in
Fig. 21. The left-hand column shows the training and opti-
mization of  the  hybrid  model,  which is  more complex,  but
only needs to be performed on a monthly or quarterly basis,
if not longer. The right-hand column shows the process of cre-
ating the PV power forecasts using the trained models. The
outline also includes the post-processing of the raw NWP irra-
diance forecasts, which can be done by a large variety of dif-
ferent methods (Yang and van der Meer, 2021). It is followed

by  a  model  chain  optimization  procedure,  which  generally
improves the accuracy, but could also be omitted for simplic-
ity (Mayer, 2022a). The last step of the process is the applica-
tion of regression, via an MLP in this case, but it can be sub-
stituted by any other regression method, including the current
hype—deep learning models.

Overall, the essence of hybrid modeling is the combina-
tion of selecting a detailed and accurate model chain, an effec-
tive  regression  method,  and  most  importantly,  an  optimal
way to combine them. Hybrid solar power curves, in terms
of their complexity, are still a largely unexplored area with
only a few examples in the literature to date, which calls for
extensive further research in this field. 

6.    Probabilistic solar power curves

The probabilistic representation of a prediction can take
several forms, among which predictive density is most pre-
ferred as it covers all other forms including quantiles, predic-
tion intervals, and samples that form an ensemble. The overar-
ching  motivation  for  using  a  probabilistic  representation  is
to  quantify  the  uncertainty  associated  with  the  prediction
(Gneiting  et  al.,  2007; Gneiting  and  Katzfuss,  2014).
Despite  many  application  scenarios  still  only  demanding
deterministic predictions, the best attempts to make informa-
tive predictions should perpetually be probabilistic. Weather
forecasters have been at the frontier of making probabilistic
predictions,  particularly  forecasts,  ever  since  the  early
1960s, when the chaotic nature of the weather was first dis-
covered. On the other hand, statistics is the science of uncer-
tainty, in that, probabilistic methods have also flourished in
the field of statistics.  In regard to probabilistic solar power
curve modeling, several options are available, among which
some have been discussed in section 3.3, where general statis-
tical  procedures  to  convert  from  deterministic  predictions
to, or to improve the quality of, probabilistic predictions are
discussed.  Nonetheless,  this  section  should  move  beyond
those  statistical  means  of  generating  probabilistic  solar
power  curves.  More  specifically,  the  following  discussion
deals  exclusively  with  the  probabilistic  methods  for  solar
power curve modeling that involve model chains.

Although  probabilistic  modeling  is  a  concept  that  has
been well recognized and studied for a very long time, its real-
ization in model chain applications is far more recent. The ear-
liest attempts, which emerged just a few years ago, focused
on particular stages of a model chain, such as transposition
(Quan and Yang, 2020) or decomposition (Yang and Guey-
mard, 2020). Two distinct approaches of probabilistic model-
ing for energy meteorology models (i.e., the component mod-
els of a model chain) are possible. One of those is to modify
an  existing  model  by  upgrading  its  construct,  to  integrate
the  notion  of  uncertainty  into  the  modeling  itself.  For
instance, the Perez model—recall section 4.3—is essentially
a  least-squares  problem  assuming  homogeneous  Gaussian
errors  (Perez  et  al.,  1988; Yang  et  al.,  2014),  which  by
nature offers not just the predictive mean but also the standard
error,  which  in  turn  allows  probabilistic  estimation  of  GTI
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(Quan and Yang, 2020). However, modifying the construct
of an energy meteorology model is not always possible, the
statistical derivations are often tedious, and the predictive dis-
tributions are usually confined to a presupposed parametric
form. Therefore, the second approach for probabilistic model-
ing, namely, using ensemble,  is  much more amenable.  The
idea is very simple: One collects several models of the same
class,  and  treats  their  outputs  as  member  predictions.  This
was  in  fact  the  approach  of Quan  and  Yang (2020)  and
Yang  and  Gueymard (2020),  who  applied  the  approach  to
transposition  and  decomposition  modeling,  respectively.
Another  benefit  of  ensemble-based  probabilistic  modeling
of energy meteorology models is that such predictions allow
further calibration, e.g., through P2P post-processing meth-
ods such as BMA or EMOS, which yield predictive densities

of various types.
If we are to apply ensemble modeling to every stage of

a model chain—this is possible as numerous component mod-
els are available for each stage—an obvious difficulty is the
sheer dimensionality. To give perspective, suppose we sample
100 deterministic predictions from a predictive distribution
of a probabilistic separation model, each of these 100 predic-
tions needs to be used as the input for a probabilistic transposi-
tion model, which would result in 100 different GHI predic-
tive distributions, so on and so forth, and the dimensionality
scales  exponentially.  On  this  point,  a  better  approach  is  to
use an ensemble of model chains; that is, each model chain
is treated as an ensemble member. The concept of a model-
chain ensemble is depicted in Fig. 22b, in which each blue
path  represents  a  possible  member,  whereas  the  red  path

 

 

Fig.  21. Outline  of  a  general  hybrid  PV  power  forecasting  process,  involving  the  post-
processing of  the raw NWP output,  the optimal model  chain selection,  and creating the PV
power  forecasts  based  on  the  physical  predictors  by  a  machine-learning  model  (Mayer,
2022a).
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denotes  the  best-guess  option  (i.e.,  the  optimized  model
chain).  This  framework  was  first  formally  put  forward  by
Mayer and Yang (2022), who presented a model-chain ensem-
ble in a PV power forecasting setting.

Using  power  measurements  from  eight  ground-
mounted  PV  plants  and  their  corresponding  deterministic
day-ahead (24–48-h horizon) forecasts from the operational
Application  of  Research  to  Operations  at  Mesoscale
(AROME)  model  of  the  Hungarian  Meteorological  Ser-
vices, Mayer and Yang (2022) tested five different probabilis-
tic  model  chains,  each  differing  from  the  others  either  in
terms  of  the  number  of  members  or  how the  members  are
selected. Two strategies for selecting member model chains
were easily thought of: (1) random selection and (2) ensuring
each  component  model  gets  selected  at  least  once—this  is
referred to as ACM, which stands for “all component models.”
Furthermore, the authors also studied the effect on predictive
performance when quantile  regression as  a  post-processing
tool is applied to the model-chain ensemble. The conclusions
of that study were many. First, it found that the raw model-
chain ensemble is under-dispersed, which echoes the neces-
sity for calibration. Based on the empirical evidence, linear
quantile regression with one year of fitting data seems suffi-

cient,  because  the  nonlinearity  in  PV  power  modeling  has
been effectively handled by the model chains. The calibration
can also neutralize to a certain extent the subjectivity during
the selection of  ensemble members,  making the number  of
members  a  less  important  factor.  Last  but  not  least,  it  has
been concluded that model-chain ensembles are also benefi-
cial  even if  only deterministic  predictions are needed.  This
is  because  eliciting  deterministic  PV power  forecasts  from
the  model-chain  ensembles  can  outperform  the  classical
approach, in which the deterministic forecasts are generated
through a single optimized model chain.

At  this  stage,  one follow-up question is  whether  using
deterministic  weather  input  is  sufficient,  or  would there  be
any  added  benefits  if  probabilistic  weather  predictions  are
used in  conjunction with  a  model-chain  ensemble? Indeed,
as shown in Fig. 22a, which is a well-known representation
of the ensemble NWP concept, several equally probable fore-
cast trajectories may be produced using different initial condi-
tions  but  the  same  model—this  is  the  case  of  dynamical
ensemble  NWP,  whereas  probabilistic  weather  forecasts
from several NWP models form a poor man’s ensemble; the
reader is referred to Roulston and Smith (2003) for a review
of different types of ensemble NWP. Moving beyond fore-

 

 

Fig. 22. Schematics of (a) ensemble NWP and (b) ensemble model chain, where each
circle  represents  a  component  model.  The  red  paths  mark  the “best-guess”
predictions,  whereas  the  blue  paths  exemplify  the  member  trajectories  (Mayer  and
Yang, 2023b).
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casts, probabilistic predictions of weather variables, such as
the irradiance or  aerosol  optical  depth,  can also be derived
from  remote  sensing  data  [e.g., Yang  and  Gueymard
(2021a, b)]. Clearly then, there are three ways to materialize
a  probabilistic  model  chain without  post-processing:  (1)  a
deterministic weather input with an ensemble model chain;
(2)  probabilistic  weather  input  with  a  single  optimized
model  chain;  and  (3)  probabilistic  weather  input  with  an
ensemble model chain. While the first option was investigated
by Mayer and Yang (2022), the latter two were considered
in the follow-up work of Mayer and Yang (2023b).

The raw ensemble is under-dispersed since it only covers
some, but not all  sources of the uncertainties. This is espe-
cially  true  for  the  model-chain  ensemble,  which  only
accounts for the uncertainty of the irradiance-to-power conver-
sion,  while  most  of  the  uncertainty  comes  from  the  NWP.
Good reliability is a prerequisite of good probabilistic fore-
casts;  therefore,  ensemble  models  always  need  to  be  cali-
brated, which can be done practically with any P2P method,
but the most commonly used ones are EMOS and QR. In a
more  general  sense,  even  deterministic  predictions  can  be
post-processed into probabilistic ones, which makes the work-
flows of creating a probabilistic solar power curve with post-
processing extremely versatile:

1. Deterministic weather input + D2P post-processing +
single model chain;

2.  Deterministic  weather  input  +  D2D post-processing
+ ensemble model chain;

3.  Deterministic  weather  input  +  D2D post-processing
+ single model chain + D2P post-processing;

4. Deterministic weather input + D2P post-processing +
single model chain + P2P post-processing;

5.  Deterministic  weather  input  +  D2D post-processing
+ ensemble model chain + P2P post-processing;

6. Probabilistic weather input + P2P post-processing +
single model chain;

7. Probabilistic weather input + P2D post-processing +
ensemble model chain;

8. Probabilistic weather input + P2D post-processing +
single model chain + D2P post-processing;

9. Probabilistic weather input + P2P post-processing +
single model chain + P2P post-processing;

10.  Probabilistic  weather  input  +  P2D  post-processing
+ ensemble model chain + P2P post-processing.

Clearly,  this  sort  of  freedom of  choice  implies  a  large
amount of work to be done, in order to determine which work-
flow is optimal and why. At this moment, there is no published
work  in  this  regard,  however,  several  are  being  prepared
(Sebastian  LERCH,  2023,  personal  communication).  Some
preliminary  results  from  Lerch,  as  well  as  the  current
authors, suggest the intermediate post-processing step is not
so efficient, as the post-processing at the final stage is able
to correct most of the calibration problem, while not losing
too much accuracy.  In  this  regard,  the  possible  options  are

reduced to:
1.  Deterministic  weather  input  + single  model  chain  +

D2P post-processing;
2. Deterministic weather input + ensemble model chain

+ P2P post-processing;
3.  Probabilistic  weather  input  +  single  model  chain  +

P2P post-processing;
4.  Probabilistic weather input + ensemble model chain

+ P2P post-processing.
These  four  workflows  correspond  to  methods  0,  1C,

2C,  and  3C  in  the  article  by Mayer  and  Yang (2023b),
where “C” stands for “calibration,” which contrasts methods
1R, 2R, and 3R that denote the corresponding “raw” versions
without  P2P  post-processing.  It  should  be  remarked  that
because  post-processing  is  involved  in  all  four  workflows,
one  may  interpret  them  as  a  form  of  hybridization,  where
model  chain  and  (probabilistic)  regression  work  hand-in-
hand.

In  the  empirical  part  of  the  work, Mayer  and  Yang
(2023b)  considered  data  from  14  utility-scale  PV  plants
from Hungary alongside ensemble NWP forecasts from the
ECMWF, over a course of two years (2019–20), at a 15-min
temporal resolution.k Whereas the ensemble model chain con-
struction  largely  followed  the  previous  work  (Mayer  and
Yang,  2022),  the  P2P  post-processing  tool  employed  was
quantile regression. The results reveal that the overall most
accurate  workflow  was  the  one  that  used  both  ensemble
NWP and ensemble model chain with post-processing, i.e.,
method 3C, despite other alternatives only deteriorating the
continuous ranked probability score (CRPS) marginally, so
long as post-processing was applied. However, when post-pro-
cessing was not applied, e.g., due to a lack of additional train-
ing data, the CRPS was generally higher. CRPS is a composite
score, in that, it evaluates both calibration and sharpness. It
was found that methods 1R, 2R, and 3R have better sharpness
than 1C, 2C, and 3C, but  are not  calibrated,  both of which
can be can be attributed to the fact that the raw versions of
probabilistic  solar  power  curves  are  under-dispersed.  In
terms of deterministic forecasting, i.e., eliciting deterministic
forecasts from ensemble forecasts, method 3C again shows
the smallest error, confirming the need for probabilistic mod-
eling  even  if  the  final  target  required  is  just  deterministic.
This pioneering work has shed light on the forecasting appli-
cations  of  probabilistic  solar  power  curves,  whereas
resource assessment applications remain unexplored.
 

7.    Conclusion and outlook

Owing  to  the  cardinal  importance  of  the  topic  at
hand—solar  power curve modeling—this  tutorial  review is
longer, and provides a lot more technical details, than a typical
review article, with the aim of providing atmospheric scien-
tists with a complete knowledge map pertaining to the irradi-
ance-to-power  conversion.  Indeed,  solar  power  is  an  indis-

 

 

k ECMWF forecasts are originally at an hourly resolution, but were downscaled to 15 min, to match the resolution of ground-based data.
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pensable part of modern power systems, which can best exem-
plify the rapid morphing from a fossil-fuel-dominant energy
mix to one in which renewables take the largest share, so as
to eventually reach carbon neutrality. Just a few years ago,
neither  atmospheric  scientists  nor  power  system  engineers
were  paying enough attention to  solar  power  curve model-
ing, as the former were mostly confined to the physics of radi-
ation but not its downstream applications, whereas the latter
largely relied on very simple surrogates to represent the rela-
tively  small  proportion  of  renewables  in  power  systems.
Notwithstanding,  with  the  advent  of  energy  meteorology,
the  status  quo  has  changed,  and  the  gravity  of  the  solar
power curve is being recognized by increasingly many. It is
on  this  account  that  we  hope  the  present  tutorial  could
become a must-read for anyone entering the field or wishing
to stay up to date.

If we are to summarize solar power curves in one sen-
tence, it should be this. Solar power curves convert irradiance
and auxiliary variables to PV power, and they can be either
deterministic  or  probabilistic,  data-driven  or  physical  (or  a
combination  of  both),  and  their  highest  performance  can
only  be  achieved  with  calibration  and  optimization,  but
would always differentiate by geographical, meteorological
and sky conditions. Depending on whether or not the input
is forecast, solar power curves can be used for both forecasting
and resource assessment purposes, with the latter encompass-
ing a wide range of applications, such as PV resource map-
ping,  PV  system  design  and  evaluation,  firm  generation,
microgrid configuration, power system simulation, or climate
change impact on solar generation. Certainly, each of these
applications has been attracting attention, but this is still sub-
ject to indefinite refinement, which is why continuous devel-
opment of methods and techniques is most welcome.

A  rule  of  thumb  in  energy  meteorology  is  that  if
physics is able to provide a complete picture, we tend to use
physics; otherwise, we have to turn to data-driven methods.
Although  the  former  cases  are  rare,  which  rationalizes  the
rapid developments of data-driven methods, the question is
how much physics remains exploitable with respect to the cur-
rent  epistemological  edifice.  Some  enhancement  to  solar
power curve modeling, such as integrating radiative transfer
in the separation of GHI or upgrading the piecewise parame-
terization of the Perez model with a continuous one, may be
achievable in the near future, but it seems to us that there is
no  way to  model  the  solar  power  curve  with  pure  physics,
which would then prove the existence of Laplace’s Demon.
In other words, scientific understanding of the world would
perpetually  be  partly  physical  and  partly  empirical.  How-
ever, this viewpoint is not incompatible with developing tech-
niques that are more general and models that are more accu-
rate.

As  the  complexity  and  performance  of  solar  power
curve  modeling  get  higher,  e.g.,  through  exploiting  either
more  advanced  deep-learning  techniques  or  model  chains
with  more adequate  combinations  of  component  models,  it
seems  quite  necessary  to  simultaneously  push  forward  the

modeling  capability  of  other  accompanying  technologies,
such  as  battery  storage  or  control  systems.  Only  then  can
the  final  conclusions  in  regard  to  the  best  way  of  utilizing
solar  energy  be  truly  justified.  Finally,  we  should  remark
that  a  shared  basis  of  all  the  aforementioned  research  is
data. Despite the fact that weather data are available in bulk,
PV system data are more often than not proprietary, which
has hitherto been viewed as a major limiting factor for advanc-
ing solar power curve research. Therefore, we urge PV system
owners  to  share  their  data  openly,  such  that  the  benefits
gained through research can one day be translated to true eco-
nomic gain and advancements towards century-long energy
sustainability,  which  is  absolutely  vital  to  the  continuation
of human life on this planet.
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