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Introduction

Precision of locomotor behavior is the key to the evolution-
ary success of animals and humans because motor control 
is often challenged in tasks with fastidious demands (Wil-
ligenburg et al. 2013). Successful handling of locomotor 
tasks, however, is highly prone to neuromuscular noise. 
Noise typically causes alterations in locomotor control and 
motor systems thus require elaborated sensory feedback for 
optimized performance (Roth et al. 2013). Receptor noise 
as well as random external perturbations from the environ-
ment may affect sensory precision though, changing mus-
cle activation patterns and thus the resulting kinematics of 
the animal’s body appendages. In general, experimental and 
computational approaches have shown that noise in nerv-
ous systems greatly contribute to both cellular and behavio-
ral variability (Faisal et al. 2008). In humans and monkeys, 
elevated motor precision is relevant in a large context of 
various motor behaviors, including goal-directed tasks such 
as control of precision grip by fingers and thumbs while 
lifting weights and grabbing objects with rough or slippery 
surfaces (e.g., Johansson and Westling 1984, 1988; Takei 
and Seki 2013), and equilibrium reflexes during the cortical 
control of normal gait, precision stepping (e.g., Fuglevand 
2011; Koenraadt et al. 2013), and precision control of trunk 
movement (Willigenburg et al. 2013). While goal-directed 
tasks require neural forward models which modify inner-
loop feedback control systems, equilibrium reflexes are 
typically controlled by means of negative feedback loops.

In most vertebrates, muscular precision typically 
depends on the activity of a synergistic ensemble of numer-
ous motor units, controlling mechanical forces and their 
dynamic changes via an elevated number of independently 
working muscle fibers and motor neurons (Thelen and 
Anderson 2006; Fuglevand 2011). In invertebrates, such 
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as insects, by contrast, the number of motor units is often 
greatly reduced and all muscle fibers within a single muscle 
are simultaneously driven by the same or very few motor 
neurons (Heide 1971; Ikeda 1977; Rheuben and Kammer 
1987; Bradacs and Kral 1990; Chakraborty et al. 2015). 
Besides the number of motor units and noisiness of the 
neural pathways, precision in motor control also depends 
on the contractile properties of muscles constituting in the 
walking, swimming or flying apparatus. Altogether, the 
signal-to-noise ratio of receptors, their encoding proper-
ties, the quality of sensory integration, and the robustness 
of muscle contraction determine the precision with which 
animals finally move under both unaffected and externally 
perturbated locomotor conditions (Faisal et al. 2008; Fugle-
vand 2011).

In particular in flight, the precision of locomotor behav-
ior is highly relevant for heading and body postural con-
trol using equilibrium reflexes. Posture stability in walking 
animals benefits from high friction between body limbs 
and the ground via ground reaction forces (Dickinson 
et al. 2000) and swimming animals benefit from hydrody-
namic forces owing to the elevated viscosity of water. By 
contrast, motor precision in flying animals, such as large 
insects, birds and bats is challenged by comparatively little 
aerodynamic friction between air and both body and wings 
(Ellington 1984). The importance of friction in flight, how-
ever, depends on body size because flight in small insects 
relatively suffers more viscous friction than the inertia-
dominated flight of birds and bats. Although reduced fric-
tion between the animal body and the environment rein-
forces flight maneuverability and aerial agility, small 
friction (aerodynamic damping) faces the neuromuscular 
apparatus of an insect with elevated demands on motor 
precision for body posture stability and steering (Ristroph 
et al. 2012). Low frictional damping in flight is thus the key 
to the extraordinary aerial performance of birds, bats and 
insects, but at the cost of requiring fast and precise visual 
and proprioceptive feedback-loop systems (Fig. 1; Hedrick 
et al. 2007, 2009; Hesselberg and Lehmann 2007; Rama-
murti and Sandberg 2007; Cheng et al. 2010).

Muscle precision in insects

In insects, flight muscle precision and efficacy are crucial 
for flight control because of high wing stroke frequencies 
ranging from 5 Hz in some butterflies to 1000 Hz in cer-
tain midges (Sotavalta 1947) and the need for relatively 
small modifications in wing kinematics during maneu-
vering flight. The fruit fly Drosophila, for example, alters 
wing stroke amplitude by only few angular degrees dur-
ing maneuvering flight (Götz et al. 1979; Lehmann 1997; 
Shishkin et al. 2012; Chakraborty et al. 2015; Berthé and 

Lehmann 2015; Bartussek and Lehmann 2016) and up to 
a maximum of ~5° during fast saccadic turning about the 
vertical body axis (Fry et al. 2003). Drosophila, moreover, 
modifies the onset of wing rotation about the longitudinal 
wing axis at the ventral stroke reversal by less than 70 μs 
during optomotor yaw stimulation (Dickinson et al. 1993) 
and also subtly alters wing excursion angle, wing elevation 
angle and the wing’s angle of attack during escape saccades 
(Muijres et al. 2014, 2015). To support theses tiny modi-
fications in kinematics, dipterans such as Drosophila have 
evolved important strategies to improve the precision of 
muscle control during wing flapping on a stroke-to-stroke 
basis. The main strategy is the separation of muscle power 
for wing flapping from a control system that modifies 
power transmission to the wings (Fig. 2a, b; Pringle 1968, 
1978). From an evolutionary perspective this strategy helps 
to control wing motion in all insect flight systems based 
on high-frequency mechanical thoracic oscillators because 
the number of actions potentials that can modulate muscle 
force in a 5–10 ms wing stroke cycle is clearly limited.

In dipterans, mechanical power for wing flapping is deliv-
ered by the asynchronous, indirect flight muscle (A-IFM) 
that generates wing motion by an indirect, mechanical 
linkage between muscle and wings. Wing flapping benefits 
from the elastic and resonance properties of the thorax shell 
(Fig. 2a; Pringle 1978; Götz 1983; Heide 1983; Heide et al. 
1985; Tu and Dickinson 1996; Dickinson and Tu 1997; 
Lehmann et al. 2013). Flight control muscles, by contrast, 
reconfigure the wing hinge of the thoracic oscillator, con-
trolling mechanical properties of the thorax, and thus power 
transmission from the A-IFM to the flapping wings via the 
wing hinge (Fig. 2b; Egelhaaf 1989; Lehmann 1997; Bal-
int and Dickinson 2001, 2004; Flick et al. 2001; Wang et al. 
2008; Deora et al. 2015). Time-resolved three-dimensional 
tomographic X-ray microscopy on musculoskeletal mecha-
nisms has recently shown in unmatched detail how flight 
control muscles in flies are oscillatory stretched and relaxed 
within each stroke cycle owing to the mechanical move-
ments of wing sclerites (Walker et al. 2014; Mokso et al. 
2015). Muscle force generation depends on the exact timing 
with which the neuronal spikes activate the tissue, whereby 
the impact of muscle force on wing kinematics continuously 
changes with changing activation phase. Shifting the timing 
of the electrical activation of muscles within the stroke cycle 
is thus a convenient way for the neural system to gradually 
alter muscle force, which in turn enhances muscle precision 
control during steering.

A widely neglected parameter that gradually alters 
muscle force independent of neural activation is heat 
resulting from the low efficiency between ~5 and 
~20%, with which insect flight muscles convert chemi-
cal energy into mechanical power (Casey 1981; Steven-
son and Josephson 1990; Lehmann and Dickinson 1997; 
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Lehmann 2001; Samejima and Tsubaki 2010; Crespo 
et al. 2012). Heat production in Drosophila helps to 
boost A-IFM power production at ambient temperatures 
below 15 °C that otherwise hinder active flight (Lehmann 
1999). After take-off, thorax surface temperature of flies 
increases from ambient temperature to more than 40 °C, 
changing mechanical power output in a muscle contrac-
tion work-loop 3.5-fold compared to the power produced 
at 20 °C ambient temperature (Gilmour and Ellington 
1993b). Elevated temperature causes an increase in both 
the range with which A-IFM can do oscillatory work and 
the amount of work per oscillatory cycle (Machin et al. 
1962). Thus, in large insects, the precision with which 
flight muscles deliver power is affected by dorsoventral 
temperature gradients inside the thorax. For example, the 
temperature difference in flight muscle fibers of the hawk 
moth Manduca between outer and inner fibers amounts to 
~5.6 °C (George and Daniel 2011; George et al. 2012). 
This temperature gradient produces a mechanical energy 
gradient in the dorsolongitudinal flight muscles from dor-
sal to medial, impeding the precision of power control of 
the entire flight muscle. The animal compensates for this 
unequal power output by changes in activity of the under-
lying neural system. Alterations in heat producing grades 
in muscle power have even been applied to cyborg-like, 
hybrid insects that use implanted neuromuscular pros-
thetic devices to decrease the preflight warm-up duration 
(Bozkurt et al. 2008).

Motor precision depends on learning and previous 
flight experience

In most vertebrates, the precision of locomotor control is 
largely tuned by motor learning and previous experience. 
In humans it typically takes several years of practice to 
become skilled in demanding motor tasks and sports dis-
ciplines (Hamer et al. 2002), while flight of birds mainly 
depends on the development of muscles and neurons dur-
ing maturation, and is thus primarily independent of learn-
ing (e.g., Yoda et al. 2004). Nevertheless, birds also learn 
to fly more efficiently within days or weeks after leaving 
the nest, increasing flight performance with the number 
of days since fledging (Yoda et al. 2004). Motor skills in 
insects, by contrast, are widely recognized as being pre-
dominately innate, genetically programmed, fixed-action 
motor patterns that follow stereotyped rules. An increasing 
number of studies, however, suggest that experience fine-
tunes locomotion to a higher precision. This was shown in 
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walking stick insects (Blaesing and Cruse 2004) and fruit 
flies (Pick and Strauss 2005) when they encounter and 
cross gaps, for flight initiation of locusts (Wilson 1961) and 
the vision-induced landing response in flies (Borst 1990).

Studies on visual and olfactory learning and plasticity of 
adult Drosophila and their underlying brain structures have 
demonstrated the enormous capacity of this animal to adapt 
to environmental stimuli (e.g., De Belle and Heisenberg 
1994; Dill et al. 1995; Liu et al. 1999; Heisenberg 2015; 
Giurfa 2015). The flying fruit fly also learns modulations 
of moments for yaw turning in response to visual motion 
when trained with heat punishment (Wang et al. 2003). A 
previous study has shown that self-learning (operant condi-
tioning), a form of motor learning, depends on the activity 
of protein kinase C (PKC) in many animals and behaviors, 
including biting in Aplysia, song-learning in birds, pro-
cedural learning in mice and avoiding behaviors in flying 
fruit flies (Colomb and Brembs 2016). If flight is deprived 
within the first 3 days after hatching by raising Drosophila 
in a flat chamber, tethered flying fruit flies employ more 

corrective steering while heading towards visual objects 
(Fig. 3a). This behavior results in larger peak-to-peak yaw 
turning moments than in controls (Fig. 3b; Hesselberg and 
Lehmann 2009). Untrained, naïve fruit flies reduce their 
maximum forward speed by ~23% compared to controls 
and also loose their ability to precisely compensate their 
flight course for visual perturbations in the environment 
when flying freely under optomotor conditions (Fig. 3c–f; 
Hesselberg and Lehmann 2009). The loss in precision in 
controlling wing motion is also evident in saccadic yaw 
turning angles, because naïve flies exhibit ~31% larger 
turning angles (~157°) than adults with previous free flight 
experience (~108°). Other authors found similar saccadic 
turning angles for Drosophila raised in conventional breed-
ing vials but slightly smaller angles in flies tested in a large 
free-flight arena (Mronz and Lehmann 2008; Bender and 
Dickinson 2006b). The fine structure of saccadic turns 
shows that experienced flies temporarily counter turn prior 
and after saccades while naïve flies do not, suggesting a 
subtle impairment in flight control (Fig. 3e). The loss in 
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turning precision in naïve Drosophila, however, is not due 
to an impairment in power generation of the asynchronous, 
indirect flight muscle because maximum flight muscle 
force seems to be widely unchanged compared to control 
flies. This finding runs counter to the idea that a loss in con-
trol precision is due to a loss in A-IFM exercise. Muscle 
exercise may even be unforable in flies because it causes an 
increase in mortality rate as a result of increased oxidative 
damage to flight muscles (Yan and Sohal 2000; Magwere 
et al. 2006).

The reported modifications of wing control in flight-
deprived Drosophila shift the frequency spectrum of 
moment-underlying wing stroke amplitudes towards 
higher values. This indicates an increase in dynamic range 
within the feedback-loop for flight control. It has thus been 
suggested that the loss of fine-tuning and locomotor preci-
sion in flight of naive Drosophila likely reflects a loss of 
synaptic adaptation in the motor pathway (Hesselberg and 
Lehmann 2009). Nevertheless, the finding is also consist-
ent with the idea of a loss in control precision with which 
synchronous, direct flight control muscles fine tune stroke 

amplitudes during wing flapping (Tu and Dickinson 1996). 
Similar to other insects, improving the precision of loco-
motor control in Drosophila is thought to be beneficial dur-
ing aerial escape, for example, to avoid hunting dragonflies 
that capture freely flying fruit flies by prediction of their 
flight course (Combes et al. 2012; Mischiati et al. 2014).

Precision of neural control of the asynchronous 
indirect flight muscle

Energy acts as a selective pressure on the evolution of 
locomotor systems. Energetic costs incur by the sensory 
system owing to the transduction of environmental stimuli 
into neural activity, information processing of the nervous 
system, the transport of respiratory gases and fluids, and 
during muscle contraction (Niven and Laughlin 2008). To 
determine the impact of energy as a selective pressure, it 
is significant to know how an organism expends its energy 
among the various tissues. Studies suggest, for exam-
ple, that the human brain consumes ~20% and the retina 
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of blowflies (Calliphora vicina) ~8% of the animal’s rest-
ing metabolism (Clarke and Sokoloff 1999; Howard et al. 
1987). The metabolic most active tissue in the animal king-
dom is the A-IFM of insects, requiring metabolic power of 
up to ~2500 W kg−1 flight muscle mass in the honey bee 
(Feuerbacher et al. 2003). Power production by flight mus-
cles is thus a primary factor that limits flapping flight per-
formance in insects (Ellington 1999).

Precise matching of power output produced by A-IFM 
to the aerodynamic demands during wing flapping is cru-
cial in flying Drosophila. Since wing flapping results from 
vibrations of the thoracic mechanical resonator, mechani-
cal power is a prerequisite of the animal’s ability to alter 
kinematic parameters, such as stroke frequency and stroke 
amplitude (Muijres et al. 2014, 2015). This is due to the 
expected low power output of flight control muscles that 
may not accommodate the changing power requirements 
during lift modulation between ~31.8 and ~77.0 W kg−1 
flight muscle mass or the asymmetrical power requirements 
between both wings during turning behavior (Lehmann and 
Dickinson 1997). If the indirect muscles of the thorax pro-
vide muscle power in excess to what is actually needed for 
wing flapping, the wing hinge must destroy waste power 
to avoid changes in wing kinematics. Otherwise the power 
leads to unwanted power-driven changes in wing kinemat-
ics at the potential cost of changes in heading direction and 
a decrease in body stability. However, a waste of power 
leads to a significant degradation of muscle and flight effi-
ciency, harming the biological fitness of Drosophila (Casey 
1981, 1989; Ellington 1985; Dickinson and Lighton 1995; 
Lehmann 2001; Lehmann and Pick 2007). Alternatively, 
if Drosophila may not sufficiently provide instantaneous 
mechanical power, power transmission to the wings may 
fail when steering muscles reconfigure wing hinge mechan-
ics during flight maneuvers. Precision of A-IFM activation 
is thus crucial for energetic efficiency, the stability of body 
posture, and steering performance.

The need for precise control of muscle power in Dros-
ophila is evident and faces the animal with a difficult task 
owing to A-IFM contraction dynamics. Since insect flight 
requires higher levels of mechanical power than any other 
form of animal locomotion, the A-IFM of Drosophila 
offers morphological and physiological specializations 
such as stretch activation and shortening deactivation at an 
oscillation frequency of more than 200 Hz. Stretch activa-
tion describes the transition from a non-force-producing 
(weekly bound state) cross-bridge-state to a force-produc-
ing (strongly bound state) state, termed ‘three-state cross-
bridge model’ (Tawada and Kawai 1990; Zhao and Kawai 
1993). The transmission of strain to the muscle’s myosin 
filament (thick filament) likely affects strain-sensitive rate 
constants of the cross-bridge-cycle, and thus the distribu-
tion of cross-bridge-states in A-IFM myofibrils (Granzier 

and Wang 1993a, b). Previous studies on A-IFM function 
suggest that the A-IFM’s low spike frequency between 5 
and 20 Hz maintains rather constant intramuscular calcium 
levels during flight (Gilmour and Ellington 1993a; Gordon 
and Dickinson 2006). Calcium-activated muscle tension, 
however, is minor in Drosophila A-IFM, producing only 
~30% of total tetanic contraction by actin-myosin cross-
bridge-cycling (Tohtong et al. 1995; Wang et al. 2011). 
Since the calcium-activated isometric force component 
accounts for only fractions of the power required to sustain 
active flight, stretch activation due to ~1.0–2.5% alterations 
in fiber length increases the number of cross-bridge cycles 
of the calcium-activated muscle (Tohtong et al. 1995). 
This cross-bridge recruitment leads to a delayed threefold 
to fourfold increase in force during muscle shortening, 
and hence increases muscle work and power generation 
within each stroke cycle (Josephson et al. 2000; Swank 
2012). Shortening deactivation decreases force levels dur-
ing lengthening by decreasing the number of cross-bridges, 
which attenuates muscle stiffness when the fibers undergo 
their cyclic shortening–lengthening cycle at a relatively 
constant calcium levels (Pringle 1978; Peckham et al. 
1992; Thomas and Thornhill 1995; Josephson and Syme 
2001; Moore 2006).

Experimental studies recently questioned the simple 
picture on power control by A-IFM stretch-activation, 
focusing on the calcium-induced power production medi-
ated by the troponin-tropomyosin complex as part of the 
thin filament components of A-IFM (Gordon and Dickin-
son 2006; Lehmann et al. 2013). This complex typically 
regulates cross-bridge binding and contraction in striated 
muscles such as flight control muscles, in which Troponin 
C (TnC) acts as the calcium-sensor, triggering contrac-
tion. By contrast, genes controlling Drosophila A-IFM 
development express two TnC isoforms: the isoform TnC4 
(DmTnC4) is sensitive to stretch-activation owing to the 
mechanic resonance of the thoracic box, while the second 
isoform TnC41C (DmTnC1) is sensitive to calcium, pro-
ducing muscle power output as a function of intramuscu-
lar calcium levels, similar to striated muscles (Wang et al. 
2011). The isoforms yield a molar DmTnC4:DmTnC1 ratio 
of approximately 10:1 (Qiu et al. 2005; Kržič et al. 2010). 
The presence of both stretch-sensing and calcium-sensing 
troponin isoforms in the same muscle might indicate an 
evolutionary advantage of this hybrid expression pattern 
for contraction control. In Drosophila, the exact function 
of isoforms TnC4 and TnC41C for muscle power control is 
not yet understood but offers the option to precisely match 
power output of the A-IFM by variation in calcium activa-
tion during flight. Controlling TnC41C by precise altera-
tions in muscle spike frequency via the neural pathways 
may compensate for insufficient power control owing to 
stretch-activation and highlights the significance of spike 
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frequency and temporal precision inside the various A-IFM 
fibers of Drosophila (Gordon and Dickinson 2006; Heide 
et al. 1985).

The idea of precise power control by variation in cal-
cium levels contrasts the calcium-switching hypothesis and 
is supported by at least three studies. The first in vitro study 
demonstrated that increasing calcium inside A-IFM leads 
to an increasing power output during cyclic stretching in 
fibers using work-loop technique (Wang et al. 2011). The 
latter investigation was conducted in isolated, skinned mus-
cle fibers mounted in a force rack for tension measurements 
and showed a steep increase in positive muscle power with 
increasing calcium concentration (pCa) within a small 
range of calcium from pCa = 5.0 to pCa = 5.8. Above and 
below this threshold, forces were constantly minimum or 
maximum, respectively. In the second study, Gordon and 
Dickinson (Gordon and Dickinson 2006) recorded the 
spike frequency of specific A-IFM fibers during maneuver-
ing flight of Drosophila, while the tethered animal changed 
its instantaneous locomotor capacity in response to mov-
ing visual stimuli. The measured spike frequency of up 
to ~20 Hz was subsequently applied as trains of electrical 
pulses for stimulation of the muscle tissue in vivo. Express-
ing the calcium indicator Cameleon inside the muscle fib-
ers, the authors were able to show a twofold linear increase 
of calcium within the working range of the thoracic flight 
motor. Although both studies highlighted that muscle spike 
frequency alters calcium activation via the troponin isoform 
TnC4, they could not demonstrate how calcium signaling 
is spatially distributed between various fibers of A-IFM. In 
particular, turning flight requires an asymmetrical distribu-
tion of flight muscle power due to asymmetrical aerody-
namic drag on the two flapping wings. A flight system that 
supports these asymmetries on the level of neural control 
of power muscles is thus beneficial for power balancing. 
This aspect of flight control in fruit flies was investigated 
by in vivo measurements, simultaneously scoring calcium-
dependent fluorescence by Cameleon in several DLM and 
DVM muscle fibers during vision-induced maneuvering 
flight (Lehmann et al. 2013). The study demonstrated a 
highly linear relationship between intramuscular calcium 
concentration and muscle power production with regres-
sion coefficients (R2 values) ranging from ~0.95 in DLM 
to ~0.97 in fibers of the DVM and at muscle power output 
between ~20 and ~120 W kg−1 flight muscle mass. Precise 
A-IFM power adjustments occur through bilateral control 
of calcium levels between the two thoracic segments within 
a comparatively small range of intramuscular calcium lev-
els from ~56 to ~79 nM (Lehmann et al. 2013). The spatial 
A-IFM activation pattern thereby shows that a unilateral 
increase in calcium is correlated with an increase in stroke 
amplitude, and thus an increase in aerodynamic wing drag. 
This likely means that the neural drive to A-IFM fibers 

controls power for each body side and half stroke, depend-
ent on flight commands induced by the fly’s compound 
eyes.

Timing of flight control muscle activation 
by proprioceptive feedback

What we experience as flight behavior of Drosophila 
reflects the output of a complex high-speed feedback cas-
cade that turns sensory information into locomotor forces, 
linking muscle tissue activation to the various neural path-
ways in the fly (Borst and Haag 2002; Fotowat et al. 2009; 
Borst et al. 2010). The complexity of this feedback control 
loop, including all its facets, is still under investigation and 
understanding the integration process of signals coming 
from the compound eyes, ocelli, antennae, campaniform 
sensilla on wings and body, and the gyroscopic halteres 
remains a challenge. Thus, there is a continuing debate on 
which sensory feedback is needed for flight and how sen-
sory information, for example, from halteres and eyes are 
temporally encoded to provide the desired precision for 
body posture, flight course control, and equilibrium reflexes 
(Sherman and Dickinson 2003, 2004; Frye and Dickinson 
Michael 2004; Bender and Dickinson 2006a; Huston and 
Krapp 2009; Frye 2010; Bartussek et al. 2013; Bartussek 
and Lehmann 2016). A fairly comprehensive review on 
sensory control of insect flight was previously published by 
Taylor and Krapp (2007).

Precise muscle control in flies requires an exact timing 
of muscle spike initiation within the stroke cycle because 
the efficacy of flight control muscles on wing kinematics 
varies with changing activation phase. This was demon-
strated by simultaneous electrophysiological recordings of 
muscle activity and wing kinematics (Lehmann and Götz 
1996; Tu and Dickinson 1994, 1996; Heide and Götz 1996). 
Flies may thus gradually control wing kinematics with-
out alterations in muscle spike frequency. Preferred mus-
cle activation phases in flies have been reported for flight 
control muscles basalare 1 and 2, axillare I1, axillare III1-4 
(Heide 1979; Lehmann and Götz 1996; Balint and Dick-
inson 2001) and fibers of A-IFM (Spüler and Heide 1978; 
Heide et al. 1985). Muscle activation phases may widely 
vary during flight and are often temporally distributed over 
the entire wing stroke cycle, which is shown for multiple 
muscles in the blowfly Calliphora (Balint and Dickinson 
2001). Activation phases, however, consistently shift during 
yaw maneuvers, as shown for spikes of the basalare 1 mus-
cle during turning flight in Musca (~63°; Egelhaaf 1989), 
Calliphora (~26°; Tu and Dickinson 1996; Balint and 
Dickinson 2001), and Drosophila (~39°; Heide and Götz 
1996). Phase shifts are also found in other insects such as 
moth, in which the left–right pairs of dorsolongitudinal 
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and ventral muscles precisely fire within 0.5–0.6 ms of 
each other. Data show that this timing difference typically 
increases to ~8 ms during yaw turning of the animal (Spon-
berg and Daniel 2012; Springthorpe et al. 2012).

Since their first detailed investigation (Pringle 1948; 
Nalbach 1993, 1994; Nalbach and Hengstenberg 1994), 
the halteres of flies are known to be significant for muscle 
activation because of their fast feedback within the 5–10 
ms wing stroke cycle and their capability to time motoneu-
ron spike initiation of flight control muscles (Fayyazud-
din and Dickinson 1999; Fox et al. 2010; Fox and Daniel 
2008). It is the gating-like behavior of motoneurons that 
enables the flight apparatus to phase-couple muscle spike 
initiation with the haltere stroke cycle (Huston and Krapp 
2009). In blowflies, this neural gating is accomplished by 
the campaniform field dF2 at the haltere’s basis that pro-
vides strong input via electrical synapses to the motor neu-
ron driving the first basalare control muscle (Fig. 1b; Chan 
and Dickinson 1996; Fayyazuddin and Dickinson 1996). 
According to this concept, alterations in visually induced 
wing motion result from changes in halteres movements, 
whereby these changes are mediated by activation of hal-
tere control muscles (Chan et al. 1998). The main benefit of 
this ‘neural rerouting’ would be that haltere-mediated body 
stability reflexes and vision-controlled flight reside in the 
same neuromuscular network, without facing the problem 
of a functional interference between equilibrium reflex con-
trol by haltere and flight heading control owing to vision 
and olfactory system (Dickinson et al. 2000; Sherman and 
Dickinson 2004; Bender and Dickinson 2006a; Frye 2007).

More recent behavioral studies in Drosophila, however, 
questioned this conventional rerouting pathway of visual 
information for wing control, suggesting a direct neu-
ral pathway between the visual system and motoneurons 
of flight control muscles (Mureli and Fox 2015; Bartus-
sek and Lehmann 2016). The studies also suggest a sen-
sory integration mechanism that conceptually represents a 
neural local sensory feedback circuitry for motor control 
similar to what has been found in stick insects (Büschges 
and Gruhn 2008), cats (Ekeberg and Pearson 2005), and 
humans (Yang and Gorassini 2006). This local circuitry 
provides feedback with little delay within a single stroke 
cycle. Nevertheless, the finding of a direct, functional con-
nection between visual system and motoneurons is less sur-
prising because intracellular recordings combined with dye 
filling showed that in Diptera more than 50 pairs of visual 
motion-sensitive descending neurons from the brain termi-
nate bilaterally in superficial pterothoracic neuropils at the 
level of motoneurons (Fig. 1a; Gronenberg and Strausfeld 
1991). Motion-sensitive descending neurons that respond 
to yaw, pitch and roll movements of the fly, for example, 
provide segmental collaterals to neuropils containing moto-
neurons of flight control and neck muscles (Strausfeld and 

Gronenberg 1990). A study on male flesh flies Sarcophaga 
showed that the descending visual interneurons DNDC3-6a 
are dye-coupled to motoneurons of the two most prominent 
steering muscles b1 and b2 (Gronenberg and Strausfeld 
1991). The apparent absence of vision-evoked electrical 
responses in flight control muscles that has been reported 
by Chan and colleagues (Chan et al. 1998) in Calliphora 
may thus be explained by the motoneuron’s gating process 
in the in vitro preparation. The latter view is also supported 
by electrophysiological studies on visual interneurons and 
neck muscles of flies. These data show that visual stimu-
lation induces spiking of neck muscle motoneurons only 
during locomotor activity (Haag et al. 2010) owing to an 
increase in gain of visual interneurons (Maimon et al. 
2010; Rosner et al. 2010). A potential physiological mecha-
nism for integration of non-phasic visual information and 
phasic proprioceptive feedback from halteres and wings 
is currently under debate (Fig. 4; Bartussek and Lehmann 
2016) and based on observations on graded, non-spiking 
responses of visual interneurons (Haag et al. 2007) and sus-
tained, subthreshold depolarization of neck motoneurons 
following visual stimulation in flies (Huston and Krapp 
2009).

Besides visual pathways and feedback from the gyro-
scopic halteres, spike timing of flight control muscles also 
depends on neural projections from mechanoreceptors 
located on both wings (Cole and Palka 1982; Gnatzy et al. 
1987; Fayyazuddin and Dickinson 1999). Wing mecha-
noreceptors control body posture and spike timing in moth 
(Dickerson et al. 2014) and flies (Heide 1979, 1983; Balint 
and Dickinson 2001), providing feedback on wing loading 
(Hengstenberg 1991) and wing deformation caused by the 
travel of torsional waves over the wing surface (Dickin-
son 1990). The functional role of wing mechanoreceptors 
for flight control, however, is not well understood (Taylor 
and Krapp 2007). A recent study suggests that propriocep-
tive feedback from wing mechanoreceptors acts antago-
nistically to the feedback provided by the halteres (Fig. 4; 
Bartussek and Lehmann 2016). This was shown in tethered 
flying fruit flies, in which either the wing nerve or haltere 
feedback signaling was abolished. In response to moving 
(fixation response) or expanding visual stimuli (escape 
response) displayed in a flight simulator, fruit flies bilat-
erally vary their stroke amplitudes dependent on proprio-
ceptive feedback. At flight conditions (aerodynamic damp-
ing) similar to those expected for free flight, a reduction 
in feedback from the wings’ mechanoreceptors leads to an 
increase in kinematic envelope, i.e., the difference between 
minimum and maximum wing flapping amplitude, from 
~19° in controls to ~36° (Fig. 4c; Hesselberg and Lehmann 
2007). By contrast, an attenuation of feedback signaling 
from the halteres leads to a decrease in kinematic enve-
lope from ~19° to ~10° although both pathways provide 



9J Comp Physiol A (2017) 203:1–14 

1 3

excitatory synaptic input to the flight muscle motoneuron 
(Fayyazuddin and Dickinson 1999). This puzzling result 
may not easily be explained.

A possible explanation for the above finding is that com-
pression and expansion of kinematic envelope result from 
a change in the efficacy with which flight control muscles 
alter wing stroke amplitude (Bartussek and Lehmann 2016; 
Tu and Dickinson 1994). It has previously been shown that 
transmission efficacy of flight control muscles sinusoidally 

depends on spike activation phase (‘force-phase’ curve). 
Thus, different mean spike activation phases of wing and 
haltere signaling within the stroke cycle may produce dif-
ferent setpoints on the ’force-phase’ curve and, eventually, 
also different dependencies between muscle force and vis-
ual signaling (Fig. 4d, e). The direct link between spike tim-
ing, muscle force and wing kinematics has previously been 
demonstrated in M.b1 by scoring spike timing and in M.b2 
by electrical stimulation at various times of the stroke cycle 
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Fig. 4  Envelope of wing kinematics and steering precision depends 
on proprioceptive feedback in tethered flying fruit flies. a Rela-
tive change in fluorescence intensity (post–pre-application stimulus 
ratio) plotted in pseudo-color after local (red ring) application of a 
laser pulse, attenuating wing nerve signaling. The wing structures are 
retraced from bright-field microscopy and the wing nerve is shown 
according to anatomical studies (white, dashed line). PRWV, proxi-
mal radial wing vein. b Wing nerve spike counts owing to repetitive 
mechanical stimulation of the wing’s campaniform sensilla, prior 
(pre) and posterior (post) laser treatment of the wing nerve (N = 6). 
c Wing kinematics and instantaneous yaw moment in tethered flies, 
flying in a flight simulator and during vision-triggered escape sac-
cades (radial expansion pattern, pictogram). The pattern vanishes 
~1 s after stimulus onset from the panorama (grey line). Traces 
show mean responses of ipsi- (stimulus side) and contralateral wing 
that were offset-normalized by subtraction of mean pre-saccadic 
kinematics (top) and yaw moment (bottom). Light grey area around 
each data trace indicates one fifth of the standard deviation. Black, 
intact controls (N = 24 flies); red flies with bilaterally immobilized 
halteres (N = 17); and blue animals with laser-ablated wing nerves 
(N = 5 flies). d Hypothetical feedback loop for activation timing of 
a flight control muscle (steering muscle). Strain-sensitive campani-
form sensilla on wings and halteres produce neural spikes (blue) or 

volleys of spikes at specific times of the wing stroke cycle (phase-
coupled activation). The elementary motion detector (EMD) of the 
fly’s compound eye converts visual motion into graded potentials 
(red) that are transmitted via descending visual interneurons to the 
thoracic ganglion (visual pathway). The three inputs are integrated by 
a control muscle motoneuron (MN; ʃ, integration process), generating 
a single muscle action potential at the neuron’s threshold (TH) and 
time φ0 (activation phase) in each stroke cycle (cycle 1). A change 
in visual signaling alters the motoneuron’s membrane potential, and 
thus delays or advances spike timing (Δφ0) by alterations of depo-
larization time (cycle 2). Force (F) of the flight control muscle (FCM) 
changes depending on spike timing because of the muscle’s nonlin-
ear ‘force-phase’ curve (Lehmann and Götz 1996; Tu and Dickinson 
1996, 1994; Heide and Götz 1996). The changing work finally leads 
to changes in transmission efficacy, and thus wing motion. e Hypo-
thetical schematics of muscle force control by temporal changes in 
muscle spike generation. Mean activation phase (φ0) in control (black 
dot), wing nerve ablated (blue dot) and haltere treated flies (red 
dot) determines the range of muscle force generation during vision-
induced phase shifts (Δφvis, red). Force envelope is smaller in hal-
teres treated and larger in wing nerve treated flies, compared to con-
trols. Figures are partly adopted from a previous study (Bartussek and 
Lehmann 2016)
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(Tu and Dickinson 1994; Lehmann and Götz 1996). In this 
light, the cyclic stretching and the corresponding cyclic 
changes in muscle tension during wing flapping is a pre-
requisite for the flight system to convert changes in spike 
timing into biomechanical alterations of wing motion. A 
preliminary, numerical model on thoracic spike initiation in 
Drosophila also validates the assumption that graded visual 
signals are able to shift the timing of spike generation at the 
level of motoneurons, in turn changing kinematic efficacy 
during vision-controlled flight. The modeling also suggests 
that the two proprioceptive modalities are finely balanced 
with the biomechanical properties of flight control mus-
cles, stabilizing spike activation in a narrow temporal phase 
band of the stroke cycle and depending on the animal’s cur-
rent locomotor state.

A remarkable feature of the sensorimotor circuitry for 
flight is the elevated number of electrical synapses. Wing 
steering muscles and neck muscles are typically supplied 
by numerous motion-sensitive, descending interneuron 
via electrical synapses (Strausfeld and Gronenberg 1990; 
Gronenberg and Strausfeld 1990). The same holds for the 
haltere and wing nerves, both constituting electrical and 
chemical synapses on flight muscle motoneurons (Fig. 1; 
Trimarchi and Murphey 1997; Fayyazuddin and Dickin-
son 1996, 1999). There is an ongoing controversy on the 
benefits of this unusual neural design. Chemical synapses 
often show fatigue at high-frequency stimulation owing to 
a depletion of presynaptic vesicles (Zucker 1989). Studies 
on synaptic transmission of wing and haltere nerves in the 
blowfly Calliphora widely confirmed this assumption for 
frequencies that are close to normal wingbeat frequency 
of ~130 Hz (Fayyazuddin and Dickinson 1996, 1999). By 
contrast, electrical synapses are typically less sensitive to 
repeated stimulation (Jaslove and Brink 1987) and the use 
of electrical synapses in a high-frequency motor circuitry 
appears to be obvious. It is thus surprising that in blow-
flies chemical and electrical components of the MN.b1′s 
excitatory postsynaptic potential (EPSP) show a frequency-
dependent decrement in size, although the electrical com-
ponent of the haltere nerve is larger and apparently more 
robust (Fayyazuddin and Dickinson 1999).

An alternative explanation for the dominance of electri-
cal synapses is that timing precision of MN.b1 spikes likely 
increases with decreasing EPSP length. For example, the 
rise time of the electrical component of MN.b1-EPSP in 
blowflies is ~0.6 ms, compared to ~1.6 ms of the chemical 
component. This 1 ms difference is significant because it 
represents a relatively large fraction of the ~5 and ~6.7 ms 
wing stroke period in Drosophila and Calliphora, respec-
tively. Since the combined EPSP is significantly shorter 
following haltere nerve stimulation (~1.1 ms, time at 
half width response) compared to wing nerve stimulation 
(~3.8 ms), halteres likely deliver more accurate timing cues 

for spike initiation in the motoneuron than wing mecha-
noreceptors. This conclusion is also consistent with the 
finding that the temporal jitter in MN.b1-spiking during 
repeated haltere stimulation is less than during wing nerve 
stimulation (Fayyazuddin and Dickinson 1999).

Conclusions: precision of muscle activation

Exposed to aerial predation and little aerodynamic fric-
tion, flying insects such as Drosophila have evolved unique 
adaptations of their thoracic flight apparatus. The precise 
control of muscle mechanical forces is key for the extraor-
dinary flight performance in these animals and evolution 
has selected several unusual mechanisms for flight force 
control. The expression of stretch- and calcium sensitive 
muscle troponins, the development of neural circuitries 
that stabilize muscle activation patterns in narrow tem-
poral phase bands and the fusion of multimodal informa-
tion from the fly’s ocelli and compound eyes at the level 
of descending neurons are prominent achievements (Par-
sons et al. 2010). Recent work also affirms the principle of 
reafference for flight control on a cellular level, showing 
that lobula plate tangential neurons in Drosophila suppress 
the perception of self-generated visual motion during body 
turns (Kim et al. 2015). This suppression potentially allows 
spontaneous body saccades in flight by attenuation of opto-
motor reflexes. The required efference copies are thought 
to be either internally generated signals or proprioceptive 
sensory feedback from the turn mediated by the halteres.

In general, studies on how graded visual signaling from 
the compound eyes is fused with spiking proprioceptive 
feedback from halteres and wings tackle not only principles 
of neural coding and timing but address fundamental prob-
lems of sensory integration processes. It appears that fast 
and precise timing of flight muscle activation is achieved 
by sensory integration at the level of single motoneurons 
that circumvents unwanted temporal delays in spike trans-
mission, unavoidably occurring by the employment of 
more complex neural circuitries residing in the thoracic 
ganglia and the central brain. While haltere feedback varies 
depending on Coriolis forces caused by body movements, 
wing mechanoreceptors encode changes in aerodynamic 
and inertial forces acting locally on the wing during flap-
ping motion. According to the feedback of these sensory 
systems, the proprioceptive circuitry in Drosophila dynam-
ically changes the preferred phase value from stroke-to-
stroke, and consequently, the instantaneous force-phase 
gain of flight control muscles. Despite solely providing 
excitatory synaptic input to flight muscle motoneurons, 
sensory signals from wings and halteres cause opposing 
effects on visuomotor gain and flight control precision, 
implying that effective flight control is due to a complex 
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interplay between muscle-specific, nonlinear power gen-
eration and precise timing cues provided by mechanorecep-
tors. In conclusion, the neural control processes for flight 
muscle activation during flight of the fruit fly require tem-
poral precision within fractions of a millisecond, which 
makes Drosophila an ideal research model for high-perfor-
mance locomotor systems (Frye 2010) and also a paradigm 
for man-made, biomimetic aerial robotic systems (Stafford 
2007).
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