Skip to main content
Log in

Sound source localization on an axial fan at different operating points

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A generic fan with unskewed fan blades is investigated using a microphone array method. The relative motion of the fan with respect to the stationary microphone array is compensated by interpolating the microphone data to a virtual rotating array with the same rotational speed as the fan. Hence, beamforming algorithms with deconvolution, in this case CLEAN-SC, could be applied. Sound maps and integrated spectra of sub-components are evaluated for five operating points. At selected frequency bands, the presented method yields sound maps featuring a clear circular source pattern corresponding to the nine fan blades. Depending on the adjusted operating point, sound sources are located on the leading or trailing edges of the fan blades. Integrated spectra show that in most cases leading edge noise is dominant for the low-frequency part and trailing edge noise for the high-frequency part. The shift from leading to trailing edge noise is strongly dependent on the operating point and frequency range considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bamberger K, Carolus T (2012) Optimization of axial fans with highly swept blades with respect to losses and noise reduction. In: Proceedings of the international conference on fan noise, technology and numerical methods 2012, Senlis, France

  • Benedek T, Tóth P (2013) Beamforming measurements of an axial fan in an industrial environment. Period Polytech 57(2):37–46. doi:10.3311/PPme.7043

    Article  Google Scholar 

  • Benedek T, Vad J (2014) Concerted aerodynamic and acoustic diagnostic of an axial flow industrial fan, involving the phased array microphone technique. In: Proceedings of ASME Turbo Expo 2014

  • Blake WK (1986) Mechanics of flow-induced sound and vibration. Academic Press, Cambridge

    MATH  Google Scholar 

  • Carolus T (2013) Ventilatoren-Aerodynamischer Entwurf, Schallvorhersage, Konstruktion, vol 3. Springer

  • Chou SR (1990) A study of rotor broad band noise mechanisms and helicopter tail rotor noise. NASA-CR 177565 National Aeronautics and Space Administration

  • Dougherty R, Ramachandran R, Raman G (2013) Deconvolution of sources in aeroacoustic images from phased microphone arrays using linear programming. Int J Aeroacoust 12(7–8):699–718. doi:10.1260/1475-472X.12.7-8.699

    Article  Google Scholar 

  • Dougherty RP, Walker BE (2009) Virtual rotating microphone imaging of broadband fan noise. AIAA Paper 2009-3121

  • Herold G, Sarradj E (2015) Microphone array method for the characterization of rotating sound sources in axial fans. Noise Control Eng J 63(6):546–551

    Article  Google Scholar 

  • Herold G, Sarradj E (2016) Frequency domain deconvolution for rotating sources on an axial fan. In: Berlin Beamforming Conference BeBeC 2016

  • ISO (2007) ISO 5801:2007 industrial fans—performance testing using standardized airways

  • Kim JH, Ovgor B, Cha KH, Joo-Hyung K, Lee S, Kim KY (2014) Optimization of the aerodynamic and acoustic performance of an axial-flow fan. AIAA J 52(9):2031–2044. doi:10.2514/1.1052754

    Article  Google Scholar 

  • Lowis CR, Joseph PF (2006) Determining the strength of rotating broadband sources in ducts by inverse methods. J Sound Vib 295:614–632. doi:10.1016/j.jsv.2006.01.031

    Article  Google Scholar 

  • Minck O, Binder N, Cherrier O, Lamotte L, Budinger V (2012) Fan noise analysis using a microphone array. In: Proceedings of the international conference on fan noise, technology and numerical methods 2012, Senlis, France

  • Pannert W, Maier C (2014) Rotating beamforming - motion-compensation in the frequency domain and applications of high-resolution beamforming algorithms. J Sound Vib 333:1899–1912

    Article  Google Scholar 

  • Sarradj E (2012) Three-dimensional acoustic source mapping with different beamforming steering vector formulations. Adv Acoust Vib 2012:1–12. doi:10.1155/2012/292695

    Article  Google Scholar 

  • Sijtsma P (2007) CLEAN based on spatial source coherence. Int J Aeroacoust 6(4):357–374. doi:10.1260/147547207783359459

    Article  Google Scholar 

  • Sijtsma P (2010) Using phased array beamforming to identify broadband noise sources in a turbofan engine. Int J Aeroacoust 9(3):357–374. doi:10.1260/1475-472X.9.3.357

    Article  Google Scholar 

  • Sijtsma P, Oerlemans S, Holthusen H (2001) Location of rotating sources by phased array measurements. AIAA Paper 2001-2167

  • Underbrink J (2002) Aeroacoustic phased array testing in low speed wind tunnels. In: Aeroacoustic measurements. Springer, Berlin, pp 98–215

  • Wagner S, Bareiß R, Guidati G (1996) Wind turbine noise. Springer, Berlin

    Book  Google Scholar 

  • Wright SE (1976) The acoustic spectrum of axial flow machines. J Sound Vib 45(2):165–223. doi:10.1016/0022-460X(76)90596-4

    Article  Google Scholar 

  • Zenger F, Becher M, Becker S (2015) Influence of inflow turbulence on aeroacoustic noise of low speed axial fans with skewed and unskewed blades. In: Proceedings of the international conference on fan noise, technology and numerical methods 2015, Lyon, France

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian J. Zenger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenger, F.J., Herold, G., Becker, S. et al. Sound source localization on an axial fan at different operating points. Exp Fluids 57, 136 (2016). https://doi.org/10.1007/s00348-016-2223-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2223-8

Keywords

Navigation