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1  Introduction

Particles suspensions in turbulent flows can be found in a 
wide range of natural and industrial settings. The behavior 
of these particles depends on several parameters including 
their size and density ratio, the particle Reynolds number, 
the particle Stokes number and the Taylor Reynolds num-
ber of the carrier turbulent flow. Understanding how the 
dynamics of particles is influenced by these parameters 
is crucial to make predictions on global phenomena of 
interest such as pollutant transport, cloud formation, and 
mixing in industrial processes  (Toschi and Bodenschatz 
2009).

In many natural settings, particles can have a large size, 
and their density can be different from the carrier fluid. 
Theoretical studies often model such objects as passive, 
finite-sized particles advected by the flow  (Maxey and 
Riley 1983; Calzavarini et  al. 2009; Biferale et  al. 2005). 
These are applicable in the limit of vanishing particle and 
shear Reynolds numbers. However, in most practical situ-
ations, the density mismatch of particles with the fluid 
results in finite drift velocities, which leads to finite particle 
Reynolds numbers (Jimenez 1997; MacKenzie and Leggett 
1993; Skyllingstad et al. 1999; Mathai et al. 2015 etc). In 
such situations, particle dynamics can be strongly influ-
enced by the unsteady wake-induced forces. For instance, 
a large buoyant sphere freely rising through quiescent fluid 
displays rich variability in translational dynamics (Ern 
et  al. 2012; Horowitz and Williamson 2008, 2010). The 
forcing responsible for such varied dynamics is linked to 
the vorticity shed in the wake of the particle  (Achenbach 
1974; Govardhan and Williamson 2005). Since these forces 
may not act along the geometric center of the particle, it 
is possible that these could as well induce torques on the 
body. Little is known about the resulting translational and 
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rotational dynamics, particularly for the case of buoyant 
particles in turbulence, which motivates us to develop a 
reliable measurement technique for studying these issues.

In three dimensions, an object’s location and orientation 
can be fully described by six independent variables. Many 
physical experiments rely on image analysis to obtain these 
parameters from experimental data  (Bovik 2010; Meyer 
et al. 2013). Most of these systems capture translation and 
retrieve orientation from relative motion of translating 
nodes  (Klein et  al. 2013). In the more elementary forms, 
the translation of nodes could be used to determine the 
velocities of the particles. However, these methods were 
not accurate enough when higher derivatives of orientation 
were to be determined. Zimmermann et al. (2011b) intro-
duced a method based on the identification of possible ori-
entation candidates at each time step using projections of a 
pattern painted on the surface of a sphere. They found sur-
prisingly intermittent behavior in the acceleration statistics 
of a neutrally buoyant sphere of diameter of the order of the 
integral scale.

In the present work, we introduce buoyancy to the 
problem of spherical particle dynamics in turbulence. We 
recover the translation and rotation as a function of time. 
The core of the method, which is to compare experimental 
images to synthetic ones, is the same as proposed by Zim-
mermann et  al. (2011b). The novelty here lies in the way 
the pattern is generated (both physically on the surface of 
the particle and numerically for the comparison with actual 
images to match the orientation). Hence, the synthetic 
images for any given orientation are analytically known 
and do not need to be determined from static images. Fur-
thermore, the method is easily scalable using parallel pro-
cessing, which enables an accurate absolute orientation ref-
erence. These aspects are elucidated in Sect. 3. In addition, 
we describe a smoothing spline-based roughness-limiting 
technique that enables accurate representation of the higher 
derivatives of experimental data. Finally, in Sect. 5, we pre-
sent the main results of our investigation on translational 
and rotational dynamics.

2 � Experimental setup

The experiments were conducted in the Twente Water Tun-
nel facility (TWT), designed to study particle-laden flows 
(see Fig. 1 and Rensen et al. 2005). The measurement sec-
tion has dimensions 0.45× 0.45× 2 m3, with three glass 
walls providing optical access to perform particle track-
ing experiments. The setup houses an active grid above 
the measurement section, consisting of 24 independently 
rotating motors, which produce nearly homogeneous and 
isotropic turbulence with Re� up to 300 in the downstream 
section of the water tunnel. The flow in the measurement 

section was characterized using a cylindrical hot film 
probe (Dantec 55R11) by following the same methodol-
ogy as reported in Mercado et al. (2012). The experiment 
reported here was performed at Re� ≈ 300. The dissi-
pation rate ǫ = 505× 10−6 m2/s3, and the dissipation 
length and timescales were approximately 211µm and 44 
ms, respectively. The sphere used in the study has a diam-
eter, dp = 25 mm, with an effective mass ratio, m∗ ≈ 0.82 , 
where m∗ is the ratio of mass of sphere to mass of the 
sphere’s volume of water (see Govardhan and Williamson 
2005). The mass ratio was chosen such that the mean rise 
velocity of the sphere matched the mean downward flow 
velocity in the measurement section. This was necessary 
for obtaining sufficiently long sphere trajectories for well-
converged Lagrangian statistics. The spheres were designed 
as spherical shells with the MP300 resin, with a bulk den-
sity ≈1089 kg/m3. The angular inertia of the sphere was 
comparable to that of a homogeneous sphere of water, as 
was the case in the study by Zimmermann et al. (2011b). 
The spherical shells were made using a 3D printing tech-
nique, and the surface roughness was within 50  microns. 
The printing resolution depended on two factors. First, the 
resolution of the 3D printer used for making the stencil. In 
the present case, we could produce complex stencil designs 
with dimensions as small as a millimeter on a 25-mm 

Fig. 1   Sketch of the Twente Water Tunnel facility used for the meas-
urements reported in the present study
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sphere. The second limiting factor was the painting pro-
cedure itself. Once the stencil was fixed on the sphere, the 
pattern had to be spray painted. Here again, it was practical 
to spray paint patterns of 2 mm smaller dimension.

The recordings were made with two Photron PCI-1024 
high-speed cameras at 500 fps and megapixel resolu-
tion (see Fig. 2a, b). The cameras were positioned at a 90◦ 
angle between them and focused at the center of the test 
section on a 150× 150 mm2 area, which resulted in a spa-
tial resolution of 150µm/pixel. The images showed that 
perspective effects were negligible. This was done by plac-
ing a sphere of known orientation at the corners of the field 
of view. The retrieved orientation varied <3◦. The meas-
urement volume was lit by eight 20-W LED lamps from 
the sides. The flow velocity was tuned to ensure that the 
spheres stayed in the viewing window for considerable 
duration.

3 � Method

The position and orientation of the sphere are determined 
using image analysis methods. The background was 
painted gray for contrast between the black-and-white pat-
tern on the sphere. The sphere is separated from the back-
ground by subtracting the absolute difference in intensity 
from the background image. Subtracting the absolute dif-
ference yields a full dark circle with a brighter background. 
The sphere is then detected using the Circular Hough trans-
form  (CHT) technique, and the centroid of the detected 
circle gives its position. The accuracy of CHT varied with 
angle of view. Therefore, choosing a good pattern is one 
of the most important steps. We found that a pattern that 
contained almost equal fraction of dark and bright areas for 
most angles of view improved the circle detection accuracy. 
Additionally, we used the outputs from previous frames 
to improve and speed up the detection process. The CHT 
also returns the detected circle diameter Dc in pixels from 
the image. Since the sphere diameter (25  mm) is known, 
we use a calibration (25/Dc)  mm/pixels for the recorded 
images. This ensures a correction for the minor magnifi-
cation changes due to the sphere moving forward or back-
ward in the measurement section.

There are several approaches to obtaining the three-
dimensional trajectory of a particle. One approach is 
to reconstruct the spatial positions using multiple cam-
eras  (Ouellette et  al. 2006). Precise spatial reconstruction 
is needed when there are multiple particles in the image 
and identifying and separating particles can be a chal-
lenge. In the present work, there are only a few particles 
in the measurement volume. We use a different method 
using two orthogonal cameras to obtain the three-dimen-
sional trajectory. The camera arrangement is such that the 

magnification and field of view are comparable between 
the two cameras. The camera field of view covered the full 
width of the water tunnel. We first obtain two-dimensional 
trajectories of particles from both cameras. The redundant 
data corresponding to the vertical motion for two cameras 
is used to compare individual trajectories. In order to avoid 
ambiguities, we cross-correlate the vertical acceleration 
time series from the two cameras. A match is said to be 
found when the cross-correlation of two acceleration time 
series yields a coefficient greater than 98 %, even for long 
trajectories such as the one shown in Fig. 2b. This yields a 
simple yet robust three-dimensional track of the particles 
without needing to resort to complex spatial reconstruction 
algorithms.

Obtaining the rotation of the sphere is a more complex 
task compared to position tracking. Hence, the remainder 
of this section will be used to describe the method that is 
used to obtain the rotation. The method to determine the 

(a)

(b)

Fig. 2   a Measurement section of the Twente Water Tunnel with 
orthogonal camera experimental arrangement. A painted sphere is 
shown, which is viewed by both cameras. b The sphere and its trajec-
tory as recorded by one of the cameras
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rotation can be divided into four parts. Initially, a suitable 
Boolean surface pattern is created. This pattern can be 
described as a piecewise constant analytic function F(θ ,φ) 
such that, given a coordinate on the surface of the sphere, 
the function returns either a zero or a one depending on the 
color of its corresponding infinitesimally small surface ele-
ment. Here, θ and φ are the azimuthal and the polar angles, 
respectively, and F(θ ,φ) is radius independent. Second, 
the pattern is drawn onto a physical sphere. This is realized 
using a 3D-printed painting stencil and an airbrush system. 
It is imperative that F(θ ,φ) is painted as accurate as pos-
sible to decrease the introduced error in this step. Third, a 
synthetic 2D image is constructed from a projection of the 
surface of the sphere onto a plane. The synthetic image for 
any given orientation is analytically known and does not 
need to be determined from static images. The projection 
is a function of the angle of rotation of the sphere and can 
be conceptually understood as the analog of the projection 
of the physical sphere on the recording camera. Finally, the 
rotated and projected synthetic pattern is compared to an 
image of the physical sphere. The minimizing function can 
take different forms. For instance, a cross-correlation func-
tion between the synthetic pattern and the camera image 
could be used to find the best match. Alternately, a suit-
able cost function may be used to search for a match. Here, 
we use a cost function, defined as the sum of the absolute 
difference between the binarized image pixels and the cor-
responding pixels in the synthetic image. The orientation 
for which this comparison yields the best match is then 
determined using a Nelder–Mead minimization algorithm. 
These steps are illustrated in a flowchart in Fig. 3. The For-
tran90 code and the stl-file of the stencil used for painting 
the spheres have been included as supplemental material 
(Fig. 4).

The choice of painted pattern is an important step in the 
method of orientation detection. A necessary condition is 
that the projection of F(θ ,φ) onto a plane must be unique 
for each orientation of the sphere. Additionally, it is desir-
able that the pattern contains a minimum of edges and cor-
ners. The latter criterion is essential for fast convergence 
of the algorithm to the global minimum. Here, we use the 
axis-angle method to describe the orientation considering 
its straightforward and singularity-free definition. It allows 
for smooth and continuous rotation from any orientation 
including around the Euler angle singularities as it does not 
suffer from gimbal lock problems.

The pattern F(θ ,φ) represents a simply connected 
region, even then, some local minima may still arise due to 
the two-tone color limit. When the orientation is unknown, 
for instance in the first frame of a movie, a comparison of 
several initial orientation estimates solves this local minima 
problem. This yields the global minima. However, every 
initial estimate reduces the performance. Fortunately, given 

a sufficiently high ratio of frame rate over rotation rate, any 
frame in a sequence may use the outcome of the previous 
frame as initial estimate, reducing the number of initial esti-
mates required to just one. This causal method is the pre-
ferred method for analyzing large sequential datasets. The 
computational performance of the method is approximately 
30 frames per second on a contemporary computer, sug-
gesting that processing of large datasets is straightforward.

To determine the numerical accuracy of the method, sev-
eral sets of 1024 projections are created using pseudo-random 
generated orientations. These synthetic images are used as 
input to our algorithm. A probability density function of the 
difference between the actual orientation and the orientation 

Fig. 3   Orientation detection method flowchart

(a)

(b)

(c)

Fig. 4   a Several viewpoints of the synthetic pattern. Here, the syn-
thetic projection is defined in the axis-angle convention as front: 
ρ = (1, 0, 0, 0◦), left: ρ = (0, 0, 1,−90◦), top: ρ = (0, 1, 0,−90◦) and 
back: ρ = (0, 0, 1, 180◦). b Experimental images of the sphere with 
the painted pattern for arbitrary orientations. c Synthetic image equiv-
alents as found by the orientation detection program corresponding to 
the experimental images in b
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as found by the algorithm is shown in Fig. 5a, b, and the cor-
responding scaling of the standard deviation as function of 
the image width N (in pixels) is shown in Fig. 6. The stand-
ard deviation of accuracy scales as O(N−2), and assuming 
a Gaussian error distribution, this means that <1  % of the 
measured data showed an error larger than 1◦ for N ≥ 50. 
Also, Fig. 6 shows that noise decreases the accuracy to some 
extent but does not affect the reliability of the algorithm. In 
the experiment, most image artifacts arise due to shadows and 
glare, which may be reduced by using diffuse light sources 
and a matte-paint finish on the surface of the sphere.

The axis-angle output, ρ ≡ (kx , ky, kz,α), is defined with 
respect to a reference orientation in the camera coordi-
nate system (see leftmost image in Fig. 4a). A typical out-
put obtained from a buoyant sphere in a turbulent flow is 
given in Fig. 9a. This output has little physical significance. 
Quantities of greater relevance to a rotating sphere are its 
rotational kinetic energy Iω2 and the net torque exerted on 
it by the surrounding fluid Iα, where I is the moment of 
inertia of the sphere, and ω and α are the angular veloc-
ity and acceleration, respectively. We adopt the following 

approach to compute ω and α in the laboratory coordinate 
system. Firstly, a high framing rate is used for accurate 
estimation of the time derivatives. In the present case, a 
frame rate of 500  fps ensures about 30 recordings in one 
Kolmogorov time. Therefore, within the inter-frame time 
interval �t = 1/500  s, the particle’s angular velocity may 
be assumed constant.

According to Euler’s theorem, the angular velocity is linked 
to the inter-frame axis-angle, ρ� ≡ (k�x, k�y, k�z,�α), by 
the relation 

Now ρ� may be obtained from the reference orientation-
based axis-angle output  (ρ) through a few transformations. 
Firstly, the axis-angle output is converted to rotation matrix using 
Rodrigues formula. Let [R0,i] and [R0,(i+1)] represent the rota-
tion matrices corresponding to rotations from the reference ori-
entation to the orientations in ith and (i + 1)th images, respec-
tively. Then [R0,i] × [Ri,(i+1)] = [R0,(i+1)] and consequently, 
the inter-frame rotation matrix [Ri,(i+1)] = [R0,i]

T × [R0,(i+1)] . 
This follows from the identity that [R]−1 = [R]T for rotation 
matrices. From [Ri,(i+1)], ρ� ≡ ρi,(i+1) may be obtained, and 
Eq. 1 gives the angular velocity ω(t) in the laboratory coordinate 
system.

The accuracy of the detection in a real experiment needs 
to be verified by other methods. We use a two-camera 
arrangement for this. If the orientations determined by 
the two cameras are comparable, then the method can be 
regarded accurate. Figure  9b shows the three orientation 
angles obtained from Camera 1 for a long particle trajec-
tory. The same sphere was captured by Camera  2, which 
was placed at a 90◦ angle with Camera 1. The difference in 
orientation prediction is plotted in Fig. 9c. The maximum 
deviation is within 2.5◦. These differences are due to exper-
imental noise and may be filtered out in the data smoothing 
step, to be explained in the following section.

(1)ω(t) =
�α

�t

(

k�x î + k�yĵ + k�zk̂
)

.

(a)

(b)

Fig. 5   PDFs of the difference between actual orientation and orienta-
tion as found by the orientation detection method for different signal-
to-noise ratios (SNR). a  SNR = ∞ and b  SNR = 2. Here N is the 
width of the sphere in the image in pixels. N takes on values 50, 70 ad 
100 in the three cases shown. With increasing resolution N, the width 
of the PDF decreases

Fig. 6   Numerical error scaling R2 of linear fits are 0.87 and 0.96 for 
the SNR = ∞ and SNR = 2, respectively
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4 � Evaluating higher derivatives 
from experimental data

Evaluating the forces and torques is an important step in 
understanding any dynamical system. One way to do this is 
by using accelerometers. However, this may not always be 
convenient since a direct measurement of acceleration usu-
ally requires attaching devices to the body. Moreover, the 
method is intrusive in nature and often leads to variations in 
the mass and center of gravity of the system (Zimmermann 
et al. 2013). In such situations, it may be suitable to numer-
ically compute the acceleration from the second derivative 
of position of the body. This approach is the basis of our 
present study, where we determine both the position and 
orientation of a large buoyant sphere in turbulence using 
recordings from a high-speed camera.

Estimating the derivatives from experimentally deter-
mined position and orientation data is a nontrivial task. 
The difficulty arises because data obtained from experi-
ments will have inherent noise due to measurement uncer-
tainties. Historically, there have been two popular methods 
for smoothing particle trajectories in turbulent flows. One 
method involves fitting parts of the particle trajectory to a 
polynomial of second order or higher. Voth et  al. (2002) 
used a second-order polynomial, Lüthi et  al. (2005) and 
Mercado et al. (2012) used a third-order polynomial. Other 
researchers have used a Gaussian kernel for smoothing 
(Mordant et al. 2004; Volk et al. 2011). Both the mentioned 
methods employ piecewise discontinuous fitting of ana-
lytical functions to smooth out the noise. The effectiveness 
of these methods in filtering out the experimental noise 
depends on the fitting parameters chosen. In spite of the 
extensive literature on smoothing methods, there still pre-
vails a general lack of consensus on the method of finding 
the optimal fitting parameter. Existing guidelines for the 
choice of the fitting parameters, such as those suggested by 
Mordant et  al. (2004), require knowledge of the smallest 
timescales in the flow a priori, and therefore are likely to 
introduce a bias into the analysis.

In this paper, we explore an alternate method using 
smoothing splines to filter out the experimental noise. 
The method is based roughly on the work by Epps (2010). 
While this was originally used to estimate the transla-
tional accelerations experienced by a water-entering 
object  (Truscott et  al. 2012; Truscott 2009), the method 
may be applied to particle trajectories in turbulence. Con-
sider a general set of experimental data y(t) acquired at 
high temporal resolution. We use a smoothing spline-based 
roughness-limiting method to reduce the experimental 
noise in the data for obtaining higher derivatives. The func-
tion spaps in Matlab is defined by two fitting parameters: 
the order of the smoothing spline and the error tolerance, 

E(s) =
∫ tN
t1

|y(t)− s(t)|2dt. We use a quintic smoothing 
spline, which ensures that the second derivatives are prop-
erly represented. This leaves us with one fitting param-
eter, the error tolerance. We use a roughness estimate, 
R(s) =

∫ tN
t1

| d
3s
dt3

|2dt, to scan for the most suitable fit to the 
experimental data. This is based on the assumption that the 
true function does not have very large changes in accelera-
tion, which typically are due to noise in the data. In Fig. 7, 
we demonstrate the step to determine the optimal fit from 
experimental data. Increasing the error tolerance beyond 
Ecrit does not reduce the roughness of the curve. For error 
tolerances below Ecrit, the roughness of the fits is increased 
significantly, indicating that the noise contained in the data 
is not properly removed. Therefore, the fit corresponding to 
the kink can be thought to best represent the true curve.

We test the sensitivity of the velocity and acceleration 
to the choice of the spline. For this, we use a sample ana-
lytical function defined as a combination of sine functions, 
y = a sin x + b sin 2x + c sin 4x + d sin 10x, where a, b, 
c and d were generated randomly in the [0  1] range. We 
introduce random noise to the signal with signal-to-noise-
ratio ≈ 4. The true function and noisy input are shown 
in Fig.  8a. In Fig.  8c–h, we compare the velocity and 
acceleration estimates for critical  (Ecrit), subcritical  (E1 ) 
and super-critical  (E2) error tolerances. The subcritical 
error tolerance  (Fig.  8f) yields very high accelerations, 
while the super-critical error tolerance over-smoothes the 
curve (Fig. 8h). Clearly, the acceleration estimate for criti-
cal error tolerance was obtained without prior knowledge 
of the timescales of the flow or the particle, and it compares 
fairly well with the analytical second derivative.

Another interesting feature of the present method is that 
the kink (Figs. 7, 8b) flattens out for experimental data with 
low signal-to-noise-ratios. Thus, the method also serves 

Fig. 7   Roughness versus error frontier for a family of candidate 
smoothing splines. The kink marks the critical error tolerance of the 
optimal smoothing spline. Inset shows log(C(s)) versus log(E(s)). The 
optimal fit corresponds to the maximum curvature point indicated by 
the red star symbol
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Fig. 8   a Analytical function 
and the noisy data with SNR ≈ 
4. Inset shows a zoom-in of the 
noisy data. b Roughness versus 
error frontier for the noisy data. 
First and second derivatives 
(velocity and acceleration) esti-
mated for c and d E = Ecrit,  
e and f E = E1, and g and h 
E = E2. E = Ecrit gives an 
accurate estimate of even the 
second derivative, except at the 
endpoints

-

-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9   a Axis-angle output 
obtained for a long trajectory of 
a buoyant sphere in a turbulent 
flow. b Orientation (θx , θy, θz)  
obtained from Camera 1. c 
Absolute difference between 
independent orientation meas-
urements from Camera 1 and 
Camera 2. The maximum devia-
tion is within 2.5◦. Mean of the 
difference is within 0.2◦

(a)
(b)

(c)



	 Exp Fluids (2016) 57:51

1 3

51  Page 8 of 10

as a check for the quality of data, which can be difficult 
to estimate for standard smoothing methods. Alternately, 
the spline fit guess for the particle acceleration from a few 
representative tracks could be used to determine the opti-
mal parameters for Gaussian Kernel smoothing  (Ouellette 
2006). This can speed up the fitting process when sampling 
large datasets, while ensuring that the fitting windows are 
properly chosen (Fig. 9).

5 � Results and discussion

We present results on the translational and rotational motion 
of a large buoyant sphere in nearly homogeneous and iso-
tropic turbulence. We first address the question of how the 
particle’s translational velocity and acceleration decorrelate 
in time. In Fig.  10a, we plot the Lagrangian autocorrela-
tion function for the horizontal  (x and z directions) veloc-
ity and accelerations. The particle response scale is fairly 
well predicted from the relation τv = dp/(St × Ur), where 
St—Strouhal number ≈ 0.2, and Ur is the measured mean 
rise velocity relative to the flow. Interestingly, both velocity 
and acceleration decorrelate in the same time ∼0.5  s, and 

they both display periodicity. This decorrelation behavior 
is fundamentally different from that of a passive finite-size 
particle in turbulence, for which the acceleration decorre-
lates in much shorter time than the velocity (Ishihara et al. 
2009). Therefore, in the present case, the dominant veloci-
ties and accelerations originate from vortices with the same 
timescale. 

Figure  10b shows the angular velocities and accel-
erations in the horizontal direction. The time axis is 
normalized with the particle-sized eddy timescale, 
τd = (d2p/ǫ)

1/3 ∼ 1  s. The angular acceleration crosses 
the first minima in approximately 1 τd, which is four times 
longer compared to the minima crossing time for trans-
lational acceleration. The angular velocity components 
decorrelate even slower than the angular acceleration, and 
they show only a weak periodicity. The angular veloci-
ties and translational accelerations are weakly correlated, 
with a correlation coefficient ≈ 0.05 . Surprisingly, we do 
not find any preferential orientation of the angular velocity 
vector with the translational acceleration vector, as found 
by  Zimmermann et  al. (2011a). Therefore, in the present 
case, particle rotation does not appear synchronized with 
its translational motion, and we find no strong evidence 
suggesting a lift force. More detailed studies are to be con-
ducted to gain further insights into the underlying phys-
ics. In future, we also aim to look into the flow structure 
around the sphere along with its motion.

In Fig.  11a, b, we show the probability density func-
tions (PDFs) of the horizontal and vertical components of 
the velocity and acceleration. The horizontal velocity PDF 
shows a symmetric flat-head distribution with sub-Gauss-
ian tails. The behavior is notably different from the nearly 
Gaussian velocity PDFs found for neutrally buoyant parti-
cles  (Mercado et  al. 2012). The flat top of the PDF may 
be explained from a typical time series of velocity of the 
sphere. We observe that the particle undergoes repeated 
cyclic motions, weakly disturbed by the carrier flow. The 
velocities in these cycles lie in the ±1.5 

〈

a2
〉1/2

 range. 
More extreme accelerations are less frequent and contrib-
ute to the low probability tails of the PDFs. The horizon-
tal acceleration PDF is Gaussian. The vertical velocity and 
accelerations have positively skewed distributions, clearly 
indicating a directional dependence. This strong anisot-
ropy is not inherent in the carrier turbulent flow. The water 
tunnel flow was reported to be nearly isotropic in earlier 
studies  (Mercado et  al. 2012). Therefore, the anisotropy 
here is expected to originate from the up-down asymmetry 
set up by the vortex-shedding downstream of the sphere. 
The PDFs of the rotational quantities reveal a different 
story  (Fig.  11c, d). Both horizontal and vertical angular 
velocities follow a nearly Gaussian distribution. The angu-
lar acceleration PDFs show symmetric distributions but 
with wide tails compared to the translational acceleration 

(a)

(b)

Fig. 10   a Lagrangian autocorrelation function of a translational and 
b rotational velocities and accelerations for the buoyant sphere in tur-
bulence
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PDFs. It may be noted that Re� and particle size ratio 
� = dp/η are comparable to the experiment of Zimmer-
mann et al. (2011b). Thus, changing only the particle–fluid 
density ratio brings in these new effects, leading to observ-
able differences in particle dynamics in turbulence. Future 
experiments will be aimed at tracking simultaneously the 
particle and the flow around it.

6 � Conclusions

We have conducted experimental measurements of the 
dynamics of a large buoyant sphere in a turbulent flow 
and described the methods and procedures to track simul-
taneously its position and orientation. A fast, accurate and 
adaptable method that determines the absolute orientation 
of the sphere in 3D space is described and validated. The 
standard deviation of error for this method is approximately 
0.2◦. Distortion using salt-and-pepper noise with SNR = 2 
increases the standard deviation of error to 0.7◦, however 
without impacting the reliability of the method.

We followed the approach of using the experimentally 
determined data to calculate time derivatives (velocity and 
acceleration) of position and orientation. To this end, we 
employed a smoothing spline-based roughness-limiting 
technique, which enables an accurate estimation of higher 
derivatives. The method has the advantage that it yields an 
optimal fit that is continuous and differentiable.

Our results on the velocity and acceleration statistics 
reveal that buoyant spheres have very different dynamics 

from the well-explored class of neutrally buoyant parti-
cles in turbulence (Zimmermann et  al. 2011b; Toschi and 
Bodenschatz 2009; Homann and Bec 2010). We detect the 
influence of trailing wake, resulting in periodicity in the 
Lagrangian autocorrelations and anisotropy in the transla-
tional dynamics. The rotational velocity and acceleration 
PDFs show wide tails, however without any observable 
skewness in the streamwise and transverse directions. The 
present measurements provide clues about how a buoyant 
particle interacts with a turbulent flow. The methods pre-
sented here open up a new direction in the exploration of 
particle dynamics in turbulence.
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