Skip to main content
Log in

Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Magnetic resonance velocimetry (MRV) is a non-invasive technique capable of measuring the three-component mean velocity field in complex three-dimensional geometries with either steady or periodic boundary conditions. The technique is based on the phenomenon of nuclear magnetic resonance (NMR) and works in conventional magnetic resonance imaging (MRI) magnets used for clinical imaging. Velocities can be measured along single lines, in planes, or in full 3D volumes with sub-millimeter resolution. No optical access or flow markers are required so measurements can be obtained in clear or opaque MR compatible flow models and fluids. Because of its versatility and the widespread availability of MRI scanners, MRV is seeing increasing application in both biological and engineering flows. MRV measurements typically image the hydrogen protons in liquid flows due to the relatively high intrinsic signal-to-noise ratio (SNR). Nonetheless, lower SNR applications such as fluorine gas flows are beginning to appear in the literature. MRV can be used in laminar and turbulent flows, single and multiphase flows, and even non-isothermal flows. In addition to measuring mean velocity, MRI techniques can measure turbulent velocities, diffusion coefficients and tensors, and temperature. This review surveys recent developments in MRI measurement techniques primarily in turbulent liquid and gas flows. A general description of MRV provides background for a discussion of its accuracy and limitations. Techniques for decreasing scan time such as parallel imaging and partial k-space sampling are discussed. MRV applications are reviewed in the areas of physiology, biology, and engineering. Included are measurements of arterial blood flow and gas flow in human lungs. Featured engineering applications include the scanning of turbulent flows in complex geometries for CFD validation, the rapid iterative design of complex internal flow passages, velocity and phase composition measurements in multiphase flows, and the scanning of flows through porous media. Temperature measurements using MR thermometry are discussed. Finally, post-processing methods are covered to demonstrate the utility of MRV data for calculating relative pressure fields and wall shear stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahn CB, Cho ZH (1991) Analysis of eddy currents in nuclear-magnetic-resonance imaging. Magn Res Med 17(1):149–163

    Google Scholar 

  • Ahn CB, Kim JH, Cho ZH (1986) High-speed spiral-scan echo planar NMR imaging: 1. IEEE Trans Med Imaging 5(1):2–7

    Google Scholar 

  • Amar A, Gross-Hardt E, Khrapitchev AA, Stapf S, Pfennig A, Blumich B (2005) Visualizing flow vortices inside a single levitated drop. J Magn Reson 177(1):74–85

    Google Scholar 

  • Amin MHG, Hanlon AD, Hall LD, Marriott C, Ablett S, Wang W, Frith WJ (2003) A versatile single-screw-extruder system designed for magnetic resonance imaging measurements. Meas Sci Technol 14(10):1760–1768

    Google Scholar 

  • Amin MHG, Hall LD, Wang W, Ablett S (2004) In situ quantitation of the index of mixing in a single-screw extruder by magnetic resonance imaging. Meas Sci Technol 15(9):1871–1876

    Google Scholar 

  • Balcom B-J, MacGregor RP, Beyea SD, Green DP, Armstrong RL, Bremner TW (1996) Single-point ramped imaging with T1 enhancement (SPRITE). J Magn Reson Ser A 123(1):131–134

    Google Scholar 

  • Bammer R, Schoenberg SO (2004) Current concepts and advances in clinical parallel magnetic resonance imaging. Top Magn Reson Imaging 15(3):129–158

    Google Scholar 

  • Bammer R, Hope TA, Aksoy M, Alley MT (2007) Time-resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5 T and 3.0 T in combination with parallel imaging. Mag Reson Med 57(1):127–140

    Google Scholar 

  • Batchelor GK (1949) Diffusion in a field of homogeneous turbulence, Eulerian analysis. Aust J Sci Res 2:437–450

    MathSciNet  Google Scholar 

  • Bencsik M, Ramanathan C (2001) Method for measuring local hydraulic permeability using magnetic resonance imaging. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 63(6 II):065302/1–065302/15

    Google Scholar 

  • Bernstein MA, Shimakawa A, Pelc NJ (1992) Minimizing TE in moment-nulled or flow-encoded 2-dimensional and 3-dimensional gradient-echo imaging. JMRI J Magn Resonance Imaging 2(5):583–588

    Google Scholar 

  • Bernstein MA, Zhou XHJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH (1998) Concomitant gradient terms in phase contrast MR: Analysis and correction. Magn Reson Med 39(2):300–308

    Google Scholar 

  • Bertsch F, Mattner J, Stehling MK, Müller-Lisse U, Peller M, Loeffler R, Weber J, Messmer K, Wilmanns W, Issels R, Reiser M (1998) Non-invasive temperature mapping using MRI: Comparison of two methods based on chemical shift and T1-relaxation. Magn Res Imaging 16(4):393–404

    Google Scholar 

  • Beyea SD, Altobelli SA, Mondy LA (2003) Chemically selective NMR imaging of a 3-component (solid–solid–liquid) sedimenting system. J Magn Reson 161(2):198–203

    Google Scholar 

  • Bloch F, Hansen WW, Packard M (1946) Nuclear induction. Phys Rev 69(3–4):127–127

    Google Scholar 

  • Block KT, Frahm J (2005) Spiral imaging: a critical appraisal. J Magn Res Imaging 21(6):657–668

    Google Scholar 

  • Boese JM, Bock M, Schoenberg SO, Schad LR (2000) Estimation of aortic compliance using magnetic resonance pulse wave velocity measurement. Phys Med Biol 45(6):1703–1713

    Google Scholar 

  • Botnar R, Rappitsch G, Scheidegger MB, Liepsch D, Perktold K, Boesiger P (2000) Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J Biomech 33(2):137–144

    Google Scholar 

  • Boulby P, Moore R, Gowland P, Spiller RC (1999) Fat delays emptying but increases forward and backward antral flow as assessed by flow-sensitive magnetic resonance imaging. Neurogastroenterol Motil 11(1):27–36

    Google Scholar 

  • Box FMA, Rutten MCM, van Buchem MA, Doornbos J, van der Geest RJ, de Koning PJH, Schaap J, van de Vosse FN, Reiber JHC (2002) Quantitative methods for comparisons between velocity encoded MR-measurements and finite element modeling in phantom models. Lect Notes Comput Sci 2331:255–264

    Google Scholar 

  • Buyens F, Jolivet O, De Cesare A, Bittoun J, Herment A, Tasu JP, Mousseaux E (2005) Calculation of left ventricle relative pressure distribution in MRI using acceleration data. Magn Reson Med 53(4):877–884

    Google Scholar 

  • Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon Press, Oxford

    Google Scholar 

  • Candela D, Ding A, Yang XY (2000) Applications of NMR to transport in random systems. Physica B Condens Matter 279(1–3):120–4

    Google Scholar 

  • Chang S, Elkins C, Iaccarino G, Alley M, Eaton JK, Monismith S (2007) Personal communication

  • Chen CN, Hoult DI (1989) Biomedical magnetic resonance technology. A. Hilger, Bristol, New York

    Google Scholar 

  • Chen Q, Kinzelbach W, Oswald S (2002) Nuclear magnetic resonance imaging for studies of flow and transport in porous media. J Environ Qual 31(2):477–486

    Google Scholar 

  • Cheng CP, Parker D, Taylor CA (2002) Quantification of wall shear stress in large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Ann Biomed Eng 30(8):1020–1032

    Google Scholar 

  • Cheng CP, Schwandt DF, Topp EL, Anderson JH, Herfkens RJ, Taylor CA (2003) Dynamic exercise imaging with an MR-compatible stationary cycle within the general electric open magnet. Magn Reson Med 49(3):581–585

    Google Scholar 

  • Conturo TE, Smith GD (1990) Signal-to-noise in phase-angle reconstruction: dynamic-range extension using phase reference offsets. Magn Reson Med 15(3):420–437

    Google Scholar 

  • De Gennes PG (1969) Theory of spin echoes in a turbulent field. Phys Lett A 29(1):20–21

    Google Scholar 

  • Didier D (2003) Assessment of valve disease: qualitative and quantitative. Magn Reson Imaging Clin North Am 11(1):115–134, vii

    Google Scholar 

  • Du YPP, Parker DL, Davis WL, Cao G (1994) Reduction of partial-volume artifacts with zero-filled interpolation in 3-dimensional MR-angiography. JMRI 4(5):733–741

    Google Scholar 

  • Dumoulin CL, Souza SP, Walker MF, Wagle W (1989) 3-dimensional phase-contrast angiography. Magn Reson Med 9(1):139–149

    Google Scholar 

  • Dyverfeldt P, Sigfridsson A, Kvitting JP, Ebbers T (2006) Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magn Reson Med 56(4):850–858

    Google Scholar 

  • Ebbers T, Wigstrom L, Bolger AF, Wranne B, Karlsson M (2002) Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J Biomech Eng 124(3):288–293

    Google Scholar 

  • Edelman RR, Wielopolski P, Schmitt F (1994) Echo-planar MR imaging. Radiology 192(3):600–612

    Google Scholar 

  • Elkins CJ, Markl M, Pelc N, Eaton JK (2003) 4D magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows. Exp Fluids 34(4):494–503

    Google Scholar 

  • Elkins CJ, Markl M, Iyengar A, Wicker R, Eaton JK (2004) Full-field velocity and temperature measurements using magnetic resonance imaging in turbulent complex internal flows. Int J Heat Fluid Flow 25(5):702–710

    Google Scholar 

  • Elkins CJ, Iyengar AS, Draney MT, Medina F, Wicker RB (2005) Rapid in-vitro MRV and PIV measurements in anatomically accurate human thoracic aorta phantoms, 2005 ASME summer bioengineering conference, June 22–26, Vail Cascade Resort, Vail, Colorado

  • Elkins CJ, Alley M, Saetran L, Eaton JK (2007) A three-dimensional magnetic resonance velocimetry method for measuring turbulence quantities in flow through complex geometries. Exp Fluids (in review)

  • Farzaneh F, Riederer SJ, Pelc NJ (1990) Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 14(1):123–139

    Google Scholar 

  • Fatouraee N, Amini AA (2000) Recovery of flow patterns in an abdominal aortic aneurysm phantom from phase contrast MRI. IEEE workshop on mathematical methods in biomedical image analysis

  • Firmin DN, Nayler GL, Kilner PJ, Longmore DB (1990) The application of phase-shifts in NMR for flow measurement. Magn Reson Med 14(2):230–241

    Google Scholar 

  • Frakes D, Smith M, de Zelicourt D, Pekkan K, Yoganathan A (2004) Three-dimensional velocity field reconstruction. J Biomech Eng 126(6):727–735

    Google Scholar 

  • Frayne R, Rutt BK (1995) Understanding acceleration induced displacement artifacts in phase-contrast MR velocity-measurements. JMRI 5(2):207–215

    Google Scholar 

  • Fukushima E (1999) Nuclear magnetic resonance as a tool to study flow. Annu Rev Fluid Mech 31:95–123

    Google Scholar 

  • Gach HM, Lowe IJ (1998) Characterization of flow emerging from a stenosis using MRI. Magn Reson Med 40(4):559–570

    Google Scholar 

  • Gach HM, Lowe IJ (2000) Measuring flow reattachment lengths downstream of a stenosis using MRI. JMRI 12(6):939–948

    Google Scholar 

  • Gao JH, Gore JO (1991) Turbulent flow effects on NMR imaging: Measurement of turbulent intensity. Med Phys 18(5):1045–1051

    Google Scholar 

  • Gatenby JC, Gore JC (1994) Mapping of turbulent intensity by magnetic resonance imaging. J Magn Reson B 104(2):119–126

    Google Scholar 

  • Gatenby JC, Gore JC (1996) Echo-planar-imaging studies of turbulent flow. J Magn Reson A 121:193–200

    Google Scholar 

  • Gladden LF (2003) Magnetic resonance: Ongoing and future role in chemical engineering research. AIChE J 49(1):2–9

    Google Scholar 

  • Gladden LF, Lim MHM, Mantle MD, Sederman AJ, Stitt EH (2003) MRI visualisation of two-phase flow in structured supports and trickle-bed reactors. Catalys Today 79–80:203–210

    Google Scholar 

  • Gladden LF, Anadon LD, Lim MHM, Sederman AJ, Stitt EH (2005) Insights into the mechanism of the trickle-to-pulse transition in trickle-bed reactors. Ind Eng Chem Res 44(16):6320–6331

    Google Scholar 

  • Glor FP, Westenberg JJM, Vierendeels J, Danilouchkine M, Verdonck P (2002) Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend. Artif Organs 26(7):622–635

    Google Scholar 

  • Glover GH, Pauly JM (1992) Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 28(2):275–289

    Google Scholar 

  • Glover GH, Pelc NJ (1986) Method for correcting image distortion due to gradient nonuniformity. U.S., General Electric Company

  • Glover GH, Pelc NJ (1987) Method for magnetic field gradient eddy current compensation. U.S., General Electric Company

  • Glover GH, Pelc NJ, Bradshaw KM (1990) Gradient and polarizing field compensation. U.S., General Electric Company

  • Golman K, Petersson JS (2006) Metabolic imaging and other applications of hyperpolarized 13C1. Acad Radiol 13(8):932–942

    Google Scholar 

  • Gore JC (2001) The relationship of problems in biomedical MRI to the study of porous media. Magn Reson Imaging 19(3/4):295–300

    Google Scholar 

  • Gotz J, Zick K (2003) Local velocity and concentration of the single components in water/oil mixtures monitored by means of MRI flow experiments in steady tube flow. Chem Eng Technol 26(1):59–68

    Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (grappa). Mag Reson Med 47(6):1202–1210

    Google Scholar 

  • Haacke M, Brown R, Thompson M, Venkatesan R (1999) Magn Reson Imaging. Wiley-Liss, New York

    Google Scholar 

  • Harel E, Granwehr J, Seeley JA, Pines A (2006) Multiphase imaging of gas flow in a nanoporous material using remote-detection NMR. Nat Mater 5(4):321–327

    Google Scholar 

  • Heese F, Robson P, Hall L (2005) Magnetic resonance imaging velocimetry of fluid flow in a clinical blood filter. AIChE J 51(9):2396–2401

    Google Scholar 

  • Henkelman RM, Bronskill MJ (1987) Artifacts in magnetic-resonance-imaging. Med Phys 14(3):506–507

    Google Scholar 

  • Hennig J (1999) K-space sampling strategies. Eur Radiol 9(6):1020–1031

    Google Scholar 

  • Hindman JC (1966) Proton resonance shift of water in the gas and liquid states. J Chem Phys 44(12):4582–4592

    Google Scholar 

  • Hoult DI, Richards RE (1976) Signal-to-noise ratio of nuclear magnetic-resonance experiment. J Mag Reson 24(1):71–85

    Google Scholar 

  • Hu XP, Norris DG (2004) Advances in high-field magnetic resonance imaging. Annu Rev Biomed Eng 6:157–184

    Google Scholar 

  • Iaccarino G, Elkins C (2006) Towards rapid analysis of turbulent flows in complex internal passages. Flow Turbul Combust 77:27–39

    MATH  Google Scholar 

  • Iaccarino G, Kalitzin G, Elkins C (2003) Numerical and experimental investigation of the turbulent flow in a ribbed serpentine passage. Center for Turbulence Research Annual Research Briefs, Stanford, CA

    Google Scholar 

  • Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34(6):814–823

    Google Scholar 

  • Isoda H, Hirano M, Takeda H, Kosugi T, Alley MT, Markl M, Pelc NJ, Sakahara H (2006) Visualization of hemodynamics in a silicon aneurysm model using time-resolved, 3D, phase-contrast MRI. AJNR 27(5):1119–1122

    Google Scholar 

  • Jackson JI, Meyer CH, Nishimura DG, Macovski A (1991) Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imaging 10(3):473–478

    Google Scholar 

  • Kadlecek SJ, Emami K, Fischer MC, Ishii M, Yu JS, Woodburn JM, NikKhah M, Vahdat V, Lipson DA, Baumgardner JE, Rizi RR (2005) Imaging physiological parameters with hyperpolarized gas MRI. Prog Nucl Magn Reson Spectrosc 47(3–4):187–212

    Google Scholar 

  • Khrapitchev AA (2002) NMR visualization of displacement correlations for flow in porous media. Physical Rev E Stat Nonlinear Soft Matter Phys 66(5):1–14

    Google Scholar 

  • Klarhofer M, Csapo B, Balassy C, Szeles JC, Moser E (2001) High-resolution blood flow velocity measurements in the human finger. Magn Reson Med 45(4):716–719

    Google Scholar 

  • Koptyug IV, Sagdeev RZ (2002) Applications of NMR tomography to mass transfer studies. Russ Chem Rev 71:789–835

    Google Scholar 

  • Koptyug IV, Altobelli SA, Fukushima E, Matveev AV, Sagdeev RZ (2000) Thermally polarized 1H NMR microimaging studies of liquid and gas flow in monolithic catalysts. J Magn Reson 147(1):36–42

    Google Scholar 

  • Koptyug I, Lysova AA, Kulikov A, Kirillov VA, Parmon VN, Sagdeev RZ (2004) Functional imaging and NMR spectroscopy of an operating gas-liquid-solid catalytic reactor. Appl Catal A Gen 267(1–2):143–148

    Google Scholar 

  • Kortright E, Doyle M, Anayiotos AS, Walsh EG, Fuisz AR, Pohost GM (2001) Validation of rapid velocity encoded cine imaging of a dynamically complex flow field using turbo block regional interpolation scheme for k space. Ann Biomed Eng 29(2):128–134

    Google Scholar 

  • Kose K (1991) Instantaneous flow-distribution measurements of the equilibrium turbulent region in a circular pipe using ultrafast NMR imaging. Phys Rev A 44(4):2495–2504

    Google Scholar 

  • Ku DN, Biancheri CL, Pettigrew RI, Peifer JW, Markou CP, Engels H (1990) Evaluation of magnetic resonance velocimetry for steady flow. J Biomech Eng 112(4):464–472

    Google Scholar 

  • Ku JP, Elkins CJ, Taylor CA (2005) Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann Biomed Eng 33(3):257–269

    Google Scholar 

  • Kuehne T, Saeed M, Reddy G, Akbari H, Gleason K, Turner D, Teitel D, Moore P, Higgins CB (2001) Sequential magnetic resonance monitoring of pulmonary flow with endovascular stents placed across the pulmonary valve in growing swine. Circulation 104(19):2363–2368

    Google Scholar 

  • Kuethe DO (1989) Measuring distributions of diffusivity in turbulent fluids with magnetic-resonance imaging. Phys Rev A 40(8):4542–4551

    Google Scholar 

  • Kuethe, Gao (1995) NMR signal loss from turbulence: Models of time dependence compared with data. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 51(4):3252–3262

  • Kuethe DO, Caprihan A, Gach HM, Lowe IJ, Fukushima E (2000) Imaging obstructed ventilation with NMR using inert fluorinated gases. J Appl Physiol 88(6):2279–2286

    Google Scholar 

  • Kuroda K (2005) Non-invasive MR thermography using the water proton chemical shift. International Journal of Hyperthermia 21(6):547–560

    MathSciNet  Google Scholar 

  • Lagerstrand KM, Lehmann H, Starck G, Vikhoff-Baaz B, Ekholm S, Forssell-Aronsson E (2002) Method to correct for the effects of limited spatial resolution in phase-contrast flow MRI measurements. Magn Reson Med 48(5):883–889

    Google Scholar 

  • Langerak SE, Kunz P, Vliegen HW, Jukema JW, Zwinderman AH, Steendijk P, Lamb HJ, van der Wall EE, de Roos A (2002) MR flow mapping in coronary artery bypass grafts: a validation study with Doppler flow measurements. Radiology 222(1):127–135

    Google Scholar 

  • Larkman DJ, Nunes RG (2007) Parallel Magnetic Resonance Imaging. Phys Med Biol 52:R15–R55

    Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic-resonance. Nature 242(5394):190–191

    Google Scholar 

  • Lee AT, Pike GB, Pelc NJ (1995) 3-point phase-contrast velocity-measurements with increased velocity-to-noise ratio. Magn Reson Med 33(1):122–126

    Google Scholar 

  • Leuprecht A, Kozerke S, Boesiger P, Perktold K (2003) Blood flow in the human ascending aorta: a combined MRI and CFD study. J Eng Math 47(3–4):387–404

    MATH  MathSciNet  Google Scholar 

  • Li TQ, Seymour JD, Powell RL, McCarthy KL, Odberg L, McCarthy MJ (1994) Turbulent pipe flow studied by time-averaged NMR imaging: measurements of velocity profile and turbulent intensity. Magn Reson Imaging 12(6):923–934

    Google Scholar 

  • Liang Z-P, Boada FE, Constable RT, Haacke EM, Lauterbur PC, Smith MR (1992) Constrained reconstruction methods in MR imaging. Rev Magn Reson Med 4:67–185

    Google Scholar 

  • Likes, R.S., (1981) Moving gradient zeugmatography, U.S. Patent 4307343

  • Locke BR, Acton M, Gibbs SJ (2001) Electro-osmotic flow in porous media using magnetic resonance imaging. Langmuir 17(22):6771–6781

    Google Scholar 

  • Madio DP, Gach HM, Lowe IJ (1998) Ultra-fast velocity imaging in stenotically produced turbulent jets using RUFIS. Magn Reson Med 39(4):574–580

    Google Scholar 

  • Mair RW, Walsworth RL (2002) Novel MRI applications of laser-polarized noble gases. Appl Magn Reson 22(2):159–173

    Article  Google Scholar 

  • Mair RW, Tseng CH, Wong GP, Cory DG, Walsworth RL (2000) Magnetic resonance imaging of convection in laser-polarized xenon. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 61(3):2741–2748

    Google Scholar 

  • Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys 10(3):L55–L58

    Google Scholar 

  • Mantle MD, Sederman AJ (2003) Dynamic MRI in chemical process and reaction engineering. Prog Nucl Magn Reson Spectrosc 43(1–2):3–60

    Google Scholar 

  • Manz B, Volke F, Goll D, Horn H (2003) Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI). Biotechnol Bioeng 84(4):424–432

    Google Scholar 

  • Markl M, Bammer R, Alley MT, Elkins CJ, Draney MT, Barnett A, Moseley ME, Glover GH, Pelc NJ (2003) Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med 50(4):791–801

    Google Scholar 

  • Markl M, Draney MT, Hope MD, Levin JM, Chan FP, Alley MT, Pelc NJ, Herfkens RJ (2004) Time-resolved 3-dimensional velocity mapping in the thoracic aorta: Visualization of 3-directional blood flow patterns in healthy volunteers and patients. J Comput Assist Tomogr 28(4):459–468

    Google Scholar 

  • Markl M, Draney MT, Miller DC, Levin JM, Williamson EE, Pelc NJ, Liang DH, Herfkens RJ (2005) Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J Thorac Cardiovasc Surg 130(2):456–463

    Google Scholar 

  • Marshall I, Zhao SZ, Papathanasopoulou P, Hoskins P, Xu XY (2004) MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J Biomech 37(5):679–687

    Google Scholar 

  • Martin BA, Kalata W, Loth F, Royston TJ, Oshinski JN (2005) Syringomyelia hydrodynamics: an in vitro study based on in vivo measurements. J Biomech Eng 127(7):1110–1120

    Google Scholar 

  • Masood S, Yang GZ, Pennell DJ, Firmin DN (2000) Investigating intrinsic myocardial mechanics: the role of MR tagging, velocity phase mapping, and diffusion imaging. J Magn Reson Imaging 12(6):873–883

    Google Scholar 

  • McVeigh E, Atalar E (1993) Balancing contrast, resolution, and signal-to-noise ratio in magnetic resonance imaging. In: Sprawls P, Bronskill MJ (eds) The physics of MRI: 1992 AAPM summer school proceedings. Published for the American Association of Physicists in Medicine by the American Institute of Physics, Woodbury, pp 234–267

    Google Scholar 

  • Mertens D, Heinen C, Hardy EH, Buggisch HW (2006) Newtonian and non-Newtonian low Re number flow through bead packings. Chem Eng Technol 29(7):854–861

    Google Scholar 

  • Meyer CH, Pauly JM, Macovski A, Nishimura DG (1990) Simultaneous spatial and spectral selective excitation. Magn Reson Med 15(2):287–304

    Google Scholar 

  • Meyer CH, Hu BS, Nishimura DG, Macovski A (1992) Fast spiral coronary-artery imaging. Magn Reson Med 28(2):202–213

    Google Scholar 

  • Middleton H, Black RD, Saam B, Cates GD, Cofer GP, Guenther R, Happer W, Hedlund LW, Johnson GA, Juvan K, Swartz J (1995) MR-imaging with hyperpolarized He-3 gas. Magn Reson Med 33(2):271–275

    Google Scholar 

  • Möller HE, Chen XJ, Saam B, Hagspiel KD, Johnson GA, Altes TA, de Lange EE, Kauczor H-U (2002) MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 47(6):1029–1051

    Google Scholar 

  • Moraczewski T, Tang HY, Shapley NC (2005) Flow of a concentrated suspension through an abrupt axisymmetric expansion measured by nuclear magnetic resonance imaging. J Rheol 49(6):1409–1428

    Google Scholar 

  • Moran PR (1982) A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1(4):197–203

    Google Scholar 

  • Moser KW, Georgiadis JG (2004) Extraction and validation of correlation lengths from interstitial velocity fields using diffusion-weighted MRI. Magn Reson Imaging 22(2):257–268

    Google Scholar 

  • Moser KW, Kutter EC, Georgiadis IG, Buckius RO, Morris HD, Torczynski JR (2000) Velocity measurements of flow through a step stenosis using magnetic resonance imaging. Exp Fluids 29(5):438–447

    Google Scholar 

  • Moser KW, Raguin LG, Georgiadis JG (2001) Tomographic study of helical modes in bifurcating Taylor–Couette–Poiseuille flow using magnetic resonance imaging. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 64(1II)

  • Moser KW, Raguin LG, Georgiadis JG (2003) Synchronized EPI phase contrast velocimetry in a mixing reactor. Magn Reson Imaging 21(2):127–133

    Google Scholar 

  • Nasiraei-Moghaddam A, Behrens G, Fatouraee N, Agarwal R, Choi ET, Amini AA (2004) Factors affecting the accuracy of pressure measurements in vascular stenoses from phase-contrast MRI. Magn Reson Med 52(2):300–309

    Google Scholar 

  • Nayak KS, Hu BS, Nishimura DG (2003) Rapid quantitation of high-speed flow jets. Magn Reson Med 50(2):366–372

    Google Scholar 

  • Newling B, Poirier CC, Zhi Y, Rioux JA, Coristine AJ, Roach D, Balcom BJ (2004) Velocity imaging of highly turbulent gas flow. Phys Rev Lett 93(15):154503–154504

    Google Scholar 

  • Nguyen NL, Reimert R, Hardy EH (2006) Application of magnetic resonance imaging (MRI) to determine the influence of fluid dynamics on desulfurization in bench scale reactors. Chem Eng Technol 29(7):820–827

    Google Scholar 

  • Nishimura DG, Jackson JI, Pauly JM (1991) On the nature and reduction of the displacement artifact in flow images. Magn Reson Med 22(2):481–492

    Google Scholar 

  • Noll DC, Cohen JD, Meyer CH, Schneider W (1995) Spiral k-space MR imaging of cortical activation. J Magn Reson Imaging 5(1):49–56

    Google Scholar 

  • Nott KR, Hall LD (2005c) Heating of foods studied by magnetic resonance imaging. Can J Chem Eng 83(1):78–82

    Article  Google Scholar 

  • Nott KP, Hall LD, Bows JR, Hale M, Patrick ML (2000) MRI phase mapping of temperature distributions induced in food by microwave heating. Magn Reson Imaging 18(1):69–79

    Google Scholar 

  • Nott KP, Heese FP, Hall LD, Macaskie LE, Paterson-Beedle M (2005a) Measurement of flow field in biofilm reactors by 3-D magnetic resonance imaging. AIChE J 51(11):3072–3079

    Google Scholar 

  • Nott KP, Heese FP, Paterson-Beedle M, Macaskie LE, Hall LD (2005b) Visualization of the function of a biofilm reactor by magnetic resonance imaging. Can J Chem Eng 83(1):68–72

    Google Scholar 

  • Oelhafen M, Schwitter J, Kozerke S, Luechinger R, Boesiger P (2006) Assessing arterial blood flow and vessel area variations using real-time zonal phase-contrast MRI. JMRI 23(3):422–429

    Google Scholar 

  • Ogawa K, Tobo M, Iriguchi N, Hirai S, Okazaki K (2000) Simultaneous measurement of temperature and velocity maps by inversion recovery tagging method. Magn Reson Imaging 18(2):209–216

    Google Scholar 

  • Ogawa K, Matsuka T, Hirai S, Okazaki K (2001) Three-dimensional velocity measurement of complex interstitial flows through water-saturated porous media by the tagging method in the MRI technique. Meas Sci Technol 12(2):172–180

    Google Scholar 

  • Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6(3):156–167

    Google Scholar 

  • Oros AM, Shah NJ (2004) Hyperpolarized xenon in NMR and MRI. Phys Med Biol 49(20):R105–R153

    Google Scholar 

  • Oshinski JN, Ku DN, Bohning DE, Pettigrew RI (1992) Effects of acceleration on the accuracy of MR phase velocity measurements. JMRI 2(6):665–670

    Google Scholar 

  • Ozturk C, Derbyshire JA, McVeigh ER (2003) Estimating motion from MRI data. Proc IEEE 91(10):1627–1648

    Google Scholar 

  • Paterson-Beedle M (2001) Study of biofilm within a packed-bed reactor by three-dimensional magnetic resonance imaging. Methods Enzymol 337:285–305

    Article  Google Scholar 

  • Pelc NJ (1995) Flow quantification and analysis methods. Magn Reson Imaging Clin North Am 3(3):413–424

    MathSciNet  Google Scholar 

  • Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR (1991a) Phase contrast cine magnetic resonance imaging. Magn Reson Q 7(4):229–254

    Google Scholar 

  • Pelc NJ, Bernstein MA, Shimakawa A, Glover GH (1991b) Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging 1(4):405–413

    Google Scholar 

  • Pelc NJ, Sommer FG, Li KCP, Brosnan TJ, Herfkens RJ, Enzmann DR (1994) Quantitative magnetic-resonance flow imaging. Magn Reson Q 10(3):125–147

    Google Scholar 

  • Pelc NJ, Alley MT, Listerud J, Atlas SW (2002) Fundamentals of flow and hemodynamics. Magnetic Resonance Imaging of the Brain and Spine. S. W. Atlas. Philadelphia, Lippincott Williams & Wilkins 1:101–126

  • Poustchi-Amin M, Mirowitz SA, Brown JJ, McKinstry RC, Li T (2001) Principles and applications of echo-planar imaging: a review for the general radiologist. Radiographics 21(3):767–779

    Google Scholar 

  • Prado PJ, Balcom BJ, Mastikhin IV, Cross AR, Armstrong RL, Logan A (1999) Magnetic resonance imaging of gases: a single-point ramped imaging with t1 enhancement (sprite) study. J Magn Reson 137(2):324–332

    Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Google Scholar 

  • Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69(1–2):37–38

    Google Scholar 

  • Raguin LG, Honecker SL, Georgiadis JG (2005) MRI velocimetry in microchannel networks IEEE/EMBS special topical conference on microtechnology in medicine and biology

  • Rebergen SA, Vanderwall EE, Doornbos J, Deroos A (1993) Magnetic-resonance measurement of velocity and flow-technique, validation, and cardiovascular applications. Am Heart J 126(6):1439–1456

    Google Scholar 

  • Ren XH, Stapf S, Blumich B (2005) Magnetic resonance visualisation of flow and pore structure in packed beds with low aspect ratio. Chem Eng Technol 28(2):219–225

    Google Scholar 

  • Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, Butts K (2004) Referenceless PRF shift thermometry. Magn Reson Med 51(6):1223–1231

    Google Scholar 

  • Ringgaard S, Oyre SA, Pedersen EM (2004) Arterial MR imaging phase-contrast flow measurement: improvements with varying velocity sensitivity during cardiac cycle. Radiology 232(1):289–294

    Google Scholar 

  • Robertson MB, Köhler U, Hoskins PR, Marshall I (2001) Quantitative analysis of PC MRI velocity maps: pulsatile flow in cylindrical vessels. Magn Reson Imaging 19(5):685–695

    Google Scholar 

  • de Rochefort L, Maitre X, Fodil R, Vial L, Louis B, Isabey D, Croce C, Darrasse L, Apiou G, Caillibotte G, Bittoun J, Durand E (2006) Phase-contrast velocimetry with hyperpolarized He-3 for in vitro and in vivo characterization of airflow. Magn Reson Med 55(6):1318–1325

    Google Scholar 

  • Sakuma H, Higgins CB (2004) Magnetic resonance measurement of coronary blood flow. Acta Pediatr Suppl 93(446):80–85

    Google Scholar 

  • Samson RS, Thornton JS, McLean MA, Williams SCR, Tofts PS (2006) 1H-MRS internal thermometry in test-objects (phantoms) to within 0.1 K for quality assurance in long-term quantitative MR studies. NMR Biomed 19(5):560–565

    Google Scholar 

  • Schiemann M, Bakhtiary F, Hietschold V, Koch A, Esmaeili A, Ackermann H, Moritz A, Vogl TJ, Abolmaali ND (2006) MR-based coronary artery blood velocity measurements in patients without coronary artery disease. Eur Radiol 16(5):1124–1130

    Google Scholar 

  • Schreiber WG, Eberle B, Laukemper-Ostendorf S, Markstaller K, Weiler N, Scholz A, Buerger K, Heussel CP, Thelen M, Kauczor H-U (2001) Dynamic 19F-MRI of pulmonary ventilation using sulfur hexafluoride (SF6) gas. Magn Reson Med 45(4):605–613

    Google Scholar 

  • Sederman AJ, Mantle MD, Gladden LF (2003) Single excitation multiple image rare (SEMI-RARE): ultra-fast imaging of static and flowing systems. J Magn Reson 161(1):15–24

    Google Scholar 

  • Sederman AJ, Mantle MD, Buckley C, Gladden LF (2004) MRI technique for measurement of velocity vectors, acceleration, and autocorrelation functions in turbulent flow. J Magn Reson 166(2):182–189

    Google Scholar 

  • Seymour JD, Callaghan PT (1997) Generalized approach to NMR analysis of flow and dispersion in porous media. AIChE J 43(8):2096–2111

    Google Scholar 

  • Seymour JD, Manz B, Callaghan PT (1999) Pulsed gradient spin echo nuclear magnetic resonance measurements of hydrodynamic instabilities with coherent structure: Taylor vortices. Phys Fluids 11(5):1104–1113

    MATH  Google Scholar 

  • Shaarani SM, Nott KP, Hall LD (2006) Combination of NMR and MRI quantitation of structure and structure changes for convection cooking of fresh chicken meat. Meat Sci 72(3):398–403

    Google Scholar 

  • Siegel JM, Oshinski JN, Pettigrew RI, Ku DN (1996) The accuracy of magnetic resonance phase velocity measurements in stenotic flow. J Biomech 29(12):1665–1672

    Google Scholar 

  • Song IH, Stapf S, Blumich B (2001) NMR imaging of falling water drops. Phys Rev Lett 87(14):144501–144504

    Google Scholar 

  • Stefansic JD, Paschal CB (1998) Effects of acceleration, jerk, and field inhomogeneities on vessel positions in magnetic resonance angiography. Magn Reson Med 40(2):261–271

    Google Scholar 

  • Stehling MJ, Howseman AM, Ordidge RJ, Chapman B, Turner R, Coxon R, Glover P, Mansfield P, Coupland RE (1989) Whole-body echo-planar MR imaging at 0.5 T. Radiology 170(1 Pt 1):257–263

    Google Scholar 

  • Sun L, Hall LD (2001) An experimental solution of the Graetz problem in heat exchangers. Int Commun Heat Mass Transf 28(4):461–466

    Google Scholar 

  • Tang C, Blatter DD, Parker DL (1993) Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. JMRI 3(2):377–385

    Google Scholar 

  • Tasu JP, Mousseaux E, Delouche A, Oddou C, Jolivet O, Bittoun J (2000) Estimation of pressure gradients in pulsatile flow from magnetic resonance acceleration measurements. Magn Reson Med 44(1):66–72

    Google Scholar 

  • Taylor CA, Draney MT (2004) Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech 36:197–231

    MathSciNet  Google Scholar 

  • Thompson RB, McVeigh ER (2003) Fast measurement of intracardiac pressure differences with 2D breath-hold phase-contrast MRI. Magn Reson Med 49(6):1056–1066

    Google Scholar 

  • Thunberg P, Wigstrom L, Wranne B, Engvall J, Karlsson M (2000) Correction for acceleration-induced displacement artifacts in phase contrast imaging. Magn Reson Med 43(5):734–738

    Google Scholar 

  • Tseng CH, Wong GP, Pomeroy VR, Mair RW, Hinton DP, Hoffmann D, Stoner RE, Hersman FW, Cory DG, Walsworth RL (1998) Low-field MRI of laser polarized noble gas. Phys Rev Lett 81(17):3785–3788

    Google Scholar 

  • Tsushima S, Hasegawa A, Suekane T, Hirai S, Tanaka Y, Nakasuji Y (2003) Velocity measurement of clay intrusion through a sudden contraction step using a tagging pulse sequence. Magn Reson Imaging 21(6):673–677

    Google Scholar 

  • Tyszka JM, Laidlaw DH, Asa JW, Silverman JM (2000) Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. JMRI 12(2):321–329

    Google Scholar 

  • Tyszka JM, Fraser SE, Jacobs RE (2005) Magnetic resonance microscopy: recent advances and applications. Curr Opin Biotechnol 16(1):93–99

    Google Scholar 

  • Varaprasathan GA, Araoz PA, Higgins CB, Reddy GP (2002) Quantification of flow dynamics in congenital heart disease: applications of velocity-encoded cine MR imaging. Radiographics 22(4):895–905; discussion 905

    Google Scholar 

  • Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K (2001) 7 T vs. 4 T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46(1):24–30

    Google Scholar 

  • Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP (1993) Semiautomated method for noise-reduction and background phase error correction in MR phase-velocity data. JMRI 3(3):521–530

    Google Scholar 

  • Walsh EG, Holton AD, Brott BC, Venugopalan R, Anayiotos AS (2005) Magnetic resonance phase velocity mapping through NiTi stents in a flow phantom model. J Magn Reson Imaging 21(1):59–65

    Google Scholar 

  • Waters EA, Caruthers SD, Wickline SA (2005) Correlation analysis of stenotic aortic valve flow patterns using phase contrast MRI. Ann Biomed Eng 33(7):878–887

    Google Scholar 

  • Westenberg JJM, Danilouchkine MG, Doornbos J, Bax JJ, van der Geest RJ, Labadie G, Lamb HJ, Versteegh MIM, de Roos A, Reiber JHC (2004) Accurate and reproducible mitral valvular blood flow measurement with three-directional velocity-encoded magnetic resonance imaging. J Cardiovasc Magn Reson 6(4):767–776

    Google Scholar 

  • Wigström L, Ebbers T, Fyrenius A, Karlsson M, Engvall J, Wranne B, Bolger AF (1999) Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn Reson Med 41(4):793–799

    Google Scholar 

  • Windt CW, Vergeldt FJ, De Jager PA, Van As H (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ 29(9):1715–1729

    Google Scholar 

  • Wise RG, Newling B, Gates AR, Xing D, Carpenter TA, Hall LD (1996) Measurement of pulsatile flow using MRI and a Bayesian technique of probability analysis. Magn Reson Imaging 14(2):173–185

    Google Scholar 

  • Wise RG, Al-Shafei AIM, Carpenter TA, Hall LD, Huang CLH (2005) Simultaneous measurement of blood and myocardial velocity in the rat heart by phase contrast MRI using sparse q-space sampling. JMRI 22(5):614–627

    Google Scholar 

  • Wlodarczyk W, Hentschel M, Wust P, Noeske R, Hosten N, Rinneberg H, Felix R (1999) Comparison of four magnetic resonance methods for mapping small temperature changes. Phys Med Biol 44(2):607–624

    Google Scholar 

  • Wood ML, Xiang Q-S (1993) Motion artifacts and remedies. In: Sprawls P, Bronskill MJ (eds) The physics of MRI: 1992 AAPM summer school proceedings. Published for the American Association of Physicists in Medicine by the American Institute of Physics, Woodbury, pp 383–411

    Google Scholar 

  • Wu SP, Ringgaard S, Oyre S, Hansen MS, Rasmus S, Pedersen EM (2004) Wall shear rates differ between the normal carotid, femoral, and brachial arteries: an in vivo MRI study. JMRI 19(2):188–193

    Google Scholar 

  • Xing D, Gibbs SJ, Derbyshire JA, Fordham EJ, Carpenter TA, Hall LD (1995) Bayesian-analysis for quantitative NMR flow and diffusion imaging. J Magn Reson Ser B 106(1):1–9

    Google Scholar 

  • Yang G-Z, Kilner PJ, Mohiaddin RH, Firmin DN (2000) Transient streamlines: Texture synthesis for in vivo flow visualisation. Int J Cardiac Imaging 16(3):175–184

    Google Scholar 

  • Yokosawa S, Nakamura M, Wada S, Isoda H, Takeda H, Yamaguchi T (2005) Quantitative measurements on the human ascending aortic flow using 2D cine phase-contrast magnetic resonance imaging. JSME Int J Ser C Mech Syst Mach Elements Manuf 48(4):459–467

    Google Scholar 

  • Zhang HS, Halliburton SS, White RD, Chatzimavroudis GP (2004) Fast measurements of flow through mitral regurgitant orifices with magnetic resonance phase velocity mapping. Ann Biomed Eng 32(12):1618–1627

    Google Scholar 

  • Zhang ZH, Ouriadov AV, Willson C, Balcom BJ (2005) Membrane gas diffusion measurements with MRI. J Magn Reson 176(2):215–222

    Google Scholar 

  • Zhao SZ, Papathanasopoulou P, Long Q, Marshall I, Xu XY (2003) Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom. Ann Biomed Eng 31(8):962–971

    Google Scholar 

  • Zhu XH (2005) In vivo O-17 NMR approaches for brain study at high field. NMR Biomed 18(2):83–103

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor John K. Eaton and Professor Norbert Pelc for their helpful discussions. Support for Christopher J. Elkins was provided by a grant from General Electric Aircraft Engines as part of the GE-University Strategic Alliance. Support for Marcus Alley came from a National Institutes of Health grant (P41 RR09784). Both authors were also supported by the National Science Foundation under grants CTS-0432478 and OCE-0425312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Elkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkins, C.J., Alley, M.T. Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43, 823–858 (2007). https://doi.org/10.1007/s00348-007-0383-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0383-2

Keywords

Navigation