Skip to main content
Log in

Measurement of soot morphology by integrated LII and elastic light scattering

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A compact experimental setup that integrates laser-induced incandescence (LII) and one-angle elastic light scattering (1A-ELS) to measure the size of polydisperse soot aggregates is described. A 532 nm laser and a detection angle of 35 degrees were employed, which provided sensitivity for aggregate radius of gyrations (R g) of R g≤200 nm. Both lognormal and self-preserving distribution functions are compared with width parameters derived from both aggregation theory and transmission electron microscopy (TEM) measurements. Using these distributions, mean aggregate sizes derived from the scattering measurements are compared. The LII+1A-ELS technique is validated with a two-angle elastic light scattering (2A-ELS) approach with an additional detection angle at 145 deg. Unlike LII+1A-ELS, the 2A-ELS technique has the advantage of not requiring knowledge of soot optical properties. Good agreement is found between the two techniques for a given distribution. A fundamental discrepancy exists between distributions derived from TEM and those according to aggregation theory, limiting the accuracy of both 2A-ELS and LII+1A-ELS. The dependence of both techniques on laser fluence and hence soot temperature is examined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  2. C.M. Sorensen, J. Cai, N. Lu, Appl. Opt. 31, 6547 (1992)

    Article  ADS  Google Scholar 

  3. S.S. Iyer, T.A. Litzinger, S.-Y. Lee, R.J. Santoro, Combust. Flame 149, 206 (2007)

    Article  Google Scholar 

  4. J. Reimann, S.A. Kuhlmann, S. Will, Appl. Phys. B 96, 583 (2009)

    Article  ADS  Google Scholar 

  5. H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schon, T. Streibel, R. Suntz, Phys. Chem. Chem. Phys. 4, 3780 (2002)

    Article  Google Scholar 

  6. C.M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001)

    Google Scholar 

  7. S. Gangopadhyay, I. Elminyawi, C.M. Sorensen, Appl. Opt. 30, 4859 (1991)

    Article  ADS  Google Scholar 

  8. Ü.Ö. Köylü, G.M. Faeth, J. Heat Transf. 116, 971 (1994)

    Article  Google Scholar 

  9. C. Oh, C.M. Sorensen, J. Aerosol Sci. 28, 937 (1997)

    Article  Google Scholar 

  10. S. DeIuliis, F. Cignoli, S. Benecchi, G. Zizak, Appl. Opt. 37, 7865 (1998)

    Article  ADS  Google Scholar 

  11. R.A. Dobbins, C.M. Megaridis, Appl. Opt. 30, 4747 (1991)

    Article  ADS  Google Scholar 

  12. Ü.Ö. Köylü, Combust. Flame 109, 488 (1997)

    Article  Google Scholar 

  13. R. Puri, T.F. Richardson, R.J. Santoro, R.A. Dobbins, Combust. Flame 92, 320 (1993)

    Article  Google Scholar 

  14. G.M. Faeth, Ü.Ö. Köylü, Combust. Sci. Technol. 108, 207 (1995)

    Article  Google Scholar 

  15. S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Transf. 123, 331 (2001)

    Article  Google Scholar 

  16. Y.W. Teng, U.O. Koylu, Appl. Opt. 45, 4396 (2006)

    Article  ADS  Google Scholar 

  17. J. Cai, N. Lu, C.M. Sorensen, Langmuir 9, 2861 (1993)

    Article  Google Scholar 

  18. S.K. Friedlander, C.-S. Wang, J. Colloid Interface Sci. 22, 126 (1966)

    Article  Google Scholar 

  19. C.-S. Wang, S.K. Friedlander, J. Colloid Interface Sci. 24, 170 (1967)

    Article  Google Scholar 

  20. P.G.J. van Dongen, M.H. Ernst, Phys. Rev. Lett. 54, 1396 (1985)

    Article  ADS  Google Scholar 

  21. K. Tian, F.S. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D.S. Wang, Combust. Flame 138, 195 (2004)

    Article  Google Scholar 

  22. P.E. Bengtsson, M. Alden, Appl. Phys. B 48, 155 (1989)

    Article  ADS  Google Scholar 

  23. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)

    Article  ADS  Google Scholar 

  24. S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 2, 2277 (1996)

    Google Scholar 

  25. H. Oltmann, J. Reimann, S. Will, Combust. Flame 157, 516 (2010)

    Article  Google Scholar 

  26. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005)

    Article  ADS  Google Scholar 

  27. D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96, 657 (2009)

    Article  ADS  Google Scholar 

  28. D.R. Snelling et al., Society of Automotive Engineers, PA (1999). doi:10.4271/1999-01-3653

  29. D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38, 2478 (1999)

    Article  ADS  Google Scholar 

  30. A. Bucholtz, Appl. Opt. 34, 2765 (1995)

    Article  ADS  Google Scholar 

  31. A.D.P. Rao, Shardanand, Absolute Rayleigh scattering cross sections of gases and freons of stratospheric interest in the visible and ultraviolet regions. Tech. Rep. TN D-8442 (National Aeronautics and Space Administration, Wallops Island, VA, USA, 1977)

  32. R.R. Rudder, D.R. Bach, Rayleigh scattering of ruby laser light in neutral gases. Tech. Rep. (Michigan Univ. Ann Arbor Dept. of Nuclear Engineering, Ann Arbor, MI, USA, 1967)

  33. R.B. Barat, J.P. Longwell, A.F. Sarofim, S.P. Smith, E. Bar-Ziv, Appl. Opt. 30, 3003 (1991)

    Article  ADS  Google Scholar 

  34. T.M. Dyer, AIAA J. 17, 912 (1979)

    Article  ADS  Google Scholar 

  35. R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987)

    MATH  Google Scholar 

  36. G.M. Wang, C.M. Sorensen, Aerosol Sci. Technol. 34, 297 (2001)

    Google Scholar 

  37. F. Pierce, C.M. Sorensen, A. Chakrabarti, Phys. Rev. E 7402, Nil_432 (2006)

    Google Scholar 

  38. Ü.Ö. Köylü, G.M. Faeth, J. Heat Transf. 115, 409 (1993)

    Article  Google Scholar 

  39. R.K. Chakrabarty et al., Appl. Opt. 46, 6990 (2007)

    Article  ADS  Google Scholar 

  40. T.L. Farias, Ü.Ö. Köylü, M.G. Carvalho, Appl. Opt. 35, 6560 (1996)

    Article  ADS  Google Scholar 

  41. O. Link, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Proc. Combust. Inst. (2010)

  42. C.M. Sorensen, J. Cai, N. Lu, Langmuir 8, 2064 (1992)

    Article  Google Scholar 

  43. D.R. Snelling, K.A. Thomson, G.J. Smallwood, O.L. Gulder, E.J. Weckman, R.A. Fraser, AIAA J. 40, 1789 (2002)

    Article  ADS  Google Scholar 

  44. H. Bladh, P.E. Bengtsson, Appl. Phys. B 78, 241 (2004)

    Article  ADS  Google Scholar 

  45. M. Charwath, R. Suntz, H. Bockhorn, Appl. Phys. B 83, 435 (2006)

    Article  ADS  Google Scholar 

  46. T. Dreier, B. Bougie, N. Dam, T. Gerber, Appl. Phys. B 83, 403 (2006)

    Article  ADS  Google Scholar 

  47. B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79 (2006)

    Article  Google Scholar 

  48. A. Leipertz, S. Dankers, Part. Part. Syst. Charact. 20, 81 (2003)

    Article  Google Scholar 

  49. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355 (2006)

    Article  ADS  Google Scholar 

  50. C.M. Megaridis, R.A. Dobbins, Combust. Sci. Technol. 66, 1 (1989)

    Article  Google Scholar 

  51. C.M. Megaridis, R.A. Dobbins, Combust. Sci. Technol. 71, 95 (1990)

    Article  Google Scholar 

  52. L. Madler, S.K. Friedlander, Aerosol Air Qual. Res. 7, 304 (2007)

    Google Scholar 

  53. F.G. Pierce, Aggregation in colloids and aerosols. PhD thesis, Kansas State University, Manhattan, Kansas, 2007

  54. K. Tian, K.A. Thomson, F.S. Liu, D.R. Snelling, G.J. Smallwood, D.S. Wang, Combust. Flame 144, 782 (2006)

    Article  Google Scholar 

  55. A.M. Brasil, T.L. Farias, M.G. Carvalho, J. Aerosol Sci. 30, 1379 (1999)

    Article  Google Scholar 

  56. C.M. Sorensen, G.D. Feke, Aerosol Sci. Technol. 25, 328 (1996)

    Article  Google Scholar 

  57. F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623 (2009)

    Article  ADS  Google Scholar 

  58. B.M. Crosland, M.R. Johnson, K.A. Thomson, Appl. Phys. B 1 (2010)

  59. G.D. Yoder, P.K. Diwakar, D.W. Hahn, Appl. Opt. 44, 4211 (2005)

    Article  ADS  Google Scholar 

  60. H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48, 2175 (2010)

    Article  Google Scholar 

  61. P.O. Witze, S. Hochgreb, D. Kayes, H.A. Michelsen, C.R. Shaddix, Appl. Opt. 40, 2443 (2001)

    Article  ADS  Google Scholar 

  62. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  63. T.C. Bond, R.W. Bergstrom, Aerosol Sci. Technol. 40, 1 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Snelling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snelling, D.R., Link, O., Thomson, K.A. et al. Measurement of soot morphology by integrated LII and elastic light scattering. Appl. Phys. B 104, 385–397 (2011). https://doi.org/10.1007/s00340-011-4394-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4394-6

Keywords

Navigation