Skip to main content
Log in

Raman spectroscopy study of compositional inhomogeneity in lithium tantalate crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Raman spectra of LiTaO3 single crystals with various stoichiometries were measured to investigate the compositional uniformity of these crystals. Raman spectra mapping demonstrates a spatial variation of the widths of the phonon bands for stoichiometric, congruent, and quasi-congruent samples. A significant radial compositional inhomogeneity is found to be a common feature of commercially available wafers having a near-congruent crystal composition (i.e., x c ={[Li2O]/([Li2O]+[Ta2O5])}×100%=47.85–48.50%) grown by the single-crucible Czochralski method. A maximum value of the composition gradient x c for a radial inhomogeneity of 0.163 and 0.036%/cm is measured for thin wafers diced from so-called congruent (vendors’ value of x c =48.50%) and quasi-congruent (x c =47.88%) crystals, respectively. In crystals grown from highly Li-rich melts (starting composition 54.5 mol% Li2O), a drastic spatial dependence of Raman bandwidths, indicating a significant gradual compositional inhomogeneity throughout the crystal, is found, which is due to a change of the melt composition during crystal growth. In contrast, the Raman bandwidths of near-stoichiometric crystals fabricated by a vapor transport equilibrium (VTE) technique are found to be constant, i.e. these crystals are practically compositionally uniform. This conclusion has been confirmed by mapping the photoluminescence intensity, evidencing x c ≤0.006%/cm in near-stoichiometric VTE-treated crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Gopalan, N. Sanford, J.A. Aust, K. Kitamura, Y. Furukawa, Recent advances in the crystal growth characterization and domain studies in Lithium Niobate and Lithium Tantalate ferroelectrics, in Handbook of Advanced Electronic and Photonic Materials, ed. by H. Singh (Academic Press, San Diego, 2000), p. 53

    Google Scholar 

  2. P.F. Bordui, R.G. Norwood, C.D. Bird, J.T. Carella, J. Appl. Phys. 78, 4647 (1995)

    Article  ADS  Google Scholar 

  3. Yu.S. Kuz’minov, Lithium Niobate and Lithium Tantalate Crystals (Nauka Ed., Moscow, 1975)

    Google Scholar 

  4. D.B. Maring, R.F. Tavlykaev, R.V. Ramaswamy, S.M. Kostritskii, J. Opt. Soc. Am. B 19, 1575 (2002)

    Article  ADS  Google Scholar 

  5. B.A. Scott, G. Burns, J. Am. Ceram. Soc. 55, 225 (1972)

    Article  Google Scholar 

  6. S.M. Kostritskii, P. Bourson, M. Aillerie, M.D. Fontana, D. Kip, Appl. Phys. B 82, 423 (2006)

    Article  ADS  Google Scholar 

  7. S.M. Kostritskii, O.G. Sevostyanov, P. Bourson, M. Aillerie, M.D. Fontana, D. Kip, Ferroelectrics 352, 61 (2007)

    Article  Google Scholar 

  8. C. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, M. Wöhlecke, J. Appl. Phys. 93, 3102 (2003)

    Article  ADS  Google Scholar 

  9. C. Bäumer, C. David, H. Hesse, K. Betzler, K. Lengyel, L. Kovacs, M. Wöhlecke, Phys. Stat. Sol. (a) 201, R13 (2004)

    Article  Google Scholar 

  10. M. Nakamura, S. Takekawa, Y. Furukawa, K. Kitamura, J. Cryst. Growth 245, 267 (2002)

    Article  ADS  Google Scholar 

  11. S. Kim, V. Gopalan, K. Kitamura, Y. Furukawa, J. Appl. Phys. 90, 2949 (2001)

    Article  Google Scholar 

  12. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, M. Wöhlecke, Appl. Phys. A56, 311 (1993)

    ADS  Google Scholar 

  13. Lithium Tantalate: Specification list. Crystal Technology, Inc. (1994)

  14. Lithium Tantalate: Select published technical data. Deltronic Crystal Industries, Inc. (1999)

  15. S. Miyazawa, H. Iwasaki, J. Cryst. Growth 10, 276 (1971)

    Article  ADS  Google Scholar 

  16. D.S. Hum, R.K. Route, G.D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R.L. Bauer, M.M. Fejer, J. Appl. Phys. 101, 093108 (2007)

    Article  ADS  Google Scholar 

  17. P.F. Bordui, R.G. Norwood, D.H. Jundt, M.M. Fejer, J. Appl. Phys. 71, 875 (1992)

    Article  ADS  Google Scholar 

  18. A. Ródenas, A.H. Nejadmalayeri, D. Jaque, P. Herman, Opt. Express 16, 13980 (2008)

    Article  Google Scholar 

  19. Y. Zhang, L. Guilbert, P. Bourson, K. Polgar, M.D. Fontana, J. Phys. Condens. Matter 18, 957 (2006)

    Article  ADS  Google Scholar 

  20. F. Jermann, M. Simon, R. Böwer, E. Krätzig, O.F. Schirmer, Ferroelectrics 165, 319 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aillerie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostritskii, S.M., Aillerie, M., Bourson, P. et al. Raman spectroscopy study of compositional inhomogeneity in lithium tantalate crystals. Appl. Phys. B 95, 125–130 (2009). https://doi.org/10.1007/s00340-009-3442-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3442-y

PACS

Navigation