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Abstract In this paper we present a mathematical proce-
dure to analytically calculate the output signal of a pulsed
atom interferometer in an inertial field. Using the well-
known ABCDξ method we take into account the full wave
dynamics of the atoms with a first order treatment of the
wavefront distortion by the laser pulses. Using a numeri-
cal example we study the effect of both the length of the
beam splitting laser pulses and of the width of the initial
spatial distribution of the atoms. First, we find that in a gen-
eral inertial field the interferometer only has a limited win-
dow in terms of the initial width (centered around 100 µm
in the example calculation) in which interference fringes are
visible at all. This effect is caused by the inevitable statis-
tical spread in atomic parameters, such as initial position
and momentum, and the dependence of the interferometer
phase on these. In the optimum case, the useful range of
the initial width is formed by the range in which both the
spatial distribution and the diffraction limited momentum
spread are small enough to avoid large phase differences
over the atomic wavefunction. As a second result we find
that the interferometer phase depends strongly on the length
of the laser pulses and, to a smaller extent, on the initial
width of the atomic cloud. This spatial dependency is rela-
tively small (∼10−5 rad) and justifies semiclassical approxi-
mations, as used in other calculations, for most experiments.
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New high-accuracy experiments, however, will come in the
range where this effect is no longer negligible.
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1 Introduction

Atom interferometers have proven to be an accurate and
versatile tool for measuring a large range of physical phe-
nomena [1, 2], ranging from gravity [3, 4] and rotation
[5–7] to atomic properties like transition frequencies [8–10]
and electric polarizabilities [11, 12]. Building upon the suc-
cesses of the past, new and even more precise interferom-
eters are being built that are designed specifically to test:
fundamental constants, such as the fine structure constant
[13] and the gravitational constant [14, 15], principles of
physics, such as the equivalence principle [16], and general
relativistic effects, like the Lense–Thirring and geodetic ef-
fects [17].

As the precision of the measurements is increased, how-
ever, more and more effects have to be taken into account
[18] that influence the interferometer signal and thereby dis-
tort the outcome of the measurement (for beamsplitter ef-
fects see, e.g., [19, 20]). Usually, the interferometer phase
is calculated only for the center of the atomic wave using a
very simplified model of the atom beam splitters. These sim-
plifications then ignore the wavefront distortion (dispersive
effect) by the beamsplitter on the atomic wave. However, it
is well known that a deformation of the wavefront can lead
to imperfections in the interference signal and an effective
phase shift of the fringes. The goal of this paper is to do a
full quantum mechanical calculation of the interference sig-
nal that does include this dispersion by the beamsplitter. For
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this we will largely follow the methods that have been de-
scribed in, e.g., [21] and [22], but with additions to improve
the validity range and the possibility of obtaining analytical
expressions.

In this paper we will consider two parameters that af-
fect the final interferometer phase: the laser pulse length
τ and the width of the initial atomic wavefunction σr,0.
The effect of τ has been studied in the past (see, e.g., [4,
19, 20, 22, 23]) for cases that wavefront distortion effects
are neglected. However, the dynamics change if dispersion
is present and the final interferometer phase is different.
The effect of σr,0, or the shape of the initial wavefunc-
tion in general, has not been calculated systematically be-
fore. We now show that the choice of the initial atomic
cloud does have an effect on the measured interferometer
phase at a level that may be detectable with proposed exper-
iments. Although non-dispersion theories have worked very
well so far, the calculations in this paper show that the full
atomic wavefront distorting effect of the laser pulses can no
longer be neglected for future high-precision interferome-
ters.

The layout of the paper is as follows. We start, in Sect. 2,
by calculating the quantum mechanical propagator of the
atomic wave. The setup that we consider in this paper is a
pulsed Mach–Zehnder configuration in a rotating reference
frame (corresponding to a frame fixed to the rotating sur-
face of the Earth) and a quadratic potential. As an example
of such a potential we will use the second order expansion
of the local gravitational field. First, we perform a series
of transformations to an interaction picture with respect to
the inertial motion and the unperturbed Rabi oscillations of
the atom beamsplitters. The resulting Schrödinger equation
only contains the cross terms that are caused by the chirped
Doppler shift during the interaction with the lasers. These
effects are usually very small because of the short lengths of
the laser pulses and the relatively slow chirp and we can use
a series expansion of the final evolution operator. Then, in
Sect. 3, we explain how the resulting propagator is evaluated
and how the interferometer phase is obtained. Although the
solution is analytical, in principle, it is very extensive and
we use a numerical example based on the proposal in [16].
The results of the calculations are given in Sect. 4, where we
show the behavior of both the interference contrast and the
phase as a function of the pulse length and the size of the
initial atomic sample. We will show that there is a limited
range of initial atom cloud sizes that actually give visible in-
terference fringes and that the measured phase does depend
on both the length of the laser pulses and the initial cloud
size.

2 Theory

2.1 Framework

In this work we will describe the interference signal in the
case that the evolution of the atomic wavepacket is deter-
mined by a Hamiltonian that has three contributions:

Ĥtot = Ĥ0 + Ĥext(r̂, p̂) + Ĥlaser(r̂, t), (1)

where r̂ is the (3D) position operator and p̂ is the momen-
tum operator. Another approach that has been very success-
ful in calculating interferometer phases is the use of pathin-
tegrals [24–26]; however, it is very difficult to describe the
effect of laser pulses in this formalism. The internal en-
ergy levels are given by Ĥ0 and the interaction with the
laser pulses by Ĥlaser(r̂, t). The center of mass motion is
described by [27]:

Ĥext = p̂2

2m
− mg · r̂ − m

2
r̂· ⇒

Γ r̂ − (r̂ + R)· ⇒
Ω p̂, (2)

where we limit ourselves to a Hamiltonian that is maximally
quadratic in momentum and position. In the case of gravity,
g is the gravitational acceleration, but, in general, mg is the
gradient or the first order expansion term of the potential
field around the origin of the coordinate system. The sec-
ond order expansion terms of the potential are described by

m
⇒
Γ /2, where the matrix

⇒
Γ can, e.g., represent the gravity

gradient. Equation (2) is the Hamiltonian in a rotating coor-
dinate system that has an origin which is separated by the
vector R from a point on the axis of rotation (see Fig. 1).
An example of such a situation is a setup that is fixed to the
surface of the rotating earth. The rotation term is described

by the matrix
⇒
Ω :

⇒
Ω=

⎛
⎝

0 Ωz −Ωy

−Ωz 0 Ωx

Ωy −Ωx 0

⎞
⎠ , (3)

such that

r· ⇒
Ω p = −r · Ω × p = Ω · r × p (4)

gives the usual rotational energy term. We use this matrix
notation instead of the usual vector notation because matrix
multiplications are easier to perform and handle than vector
cross-products.

We will model the atom as a two-state system. The laser
pulses are modeled to have a single frequency and uniform
intensity in space. Then in the interaction picture with re-
spect to Ĥ0 and using the rotating wave approximation

Ĥ0 + Ĥlaser(r̂, t)

= �

2
ΩR(t)

(
0 ei(k·r̂+�lt+φl)

e−i(k·r̂+�lt+φl) 0

)
, (5)
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Fig. 1 Schematic representation of the used coordinate system. The
origin is located at the entrance of the interferometer which is fixed to
the surface of the rotating Earth

where ΩR(t) is the (space independent) Rabi frequency, k

is the laser wavevector, �l = ωl − ω0 is the laser detuning
and ωl and φl , respectively, are the frequency and the offset
phase of the laser. The energy difference of the upper state
with the lower state is �ω0 and we ignore any spontaneous
emission. This model can be used whenever the energy dif-
ferences with all other states are large in comparison with
the laser detuning. One example is the case when the laser is
tuned to resonance with an atomic transition. However, of-
ten multi-photon processes, like Raman transitions [28] and
Bragg scattering [29], can also be described as an effective
two-level system.

2.2 ABCDξ transformations

Because the laser pulses are short compared to the total time
lapse of the interferometer sequence, the largest contribu-
tion to the interferometer phase originates from Ĥext. We can
then simplify the calculations by switching to an interaction
picture with respect to this part of the Hamiltonian. Bordé
showed [21, 30, 31] that the resulting total Hamiltonian in
this picture can be written as:

Ĥ ′
tot = Ĥ0 + Ĥlaser

(⇒
A (t)r̂+ ⇒

B (t)p̂ + ξ(t), t
)
, (6)

where the (3 × 3) matrices
⇒
A (t),

⇒
B (t),

⇒
C (t), and

⇒
D (t) are

the solution to the differential equation

d

dt

(⇒
A

⇒
B⇒

C
⇒
D

)
=⇒

M

(⇒
A

⇒
B⇒

C
⇒
D

)
(7)

with the initial condition
(⇒

A
⇒
B⇒

C
⇒
D

)

t=0

=
(

1 0
0 1

)
(8)

and where
⇒
M is the 6 × 6 matrix

⇒
M≡

( ⇒
Ω 1
⇒
Γ

⇒
Ω

)
. (9)

The vectors ξ(t) and ζ (t) follow the differential equations

d

dt

(
ξ

ζ/m

)
= ⇒

M

(
ξ

ζ/m

)
+

( ⇒
Ω R

g

)
,

(10)(
ξ

ζ/m

)

t=0
=

(
0
0

)
.

We would like to note that the classical trajectories are given
by

xcl(t) =⇒
A (t)x0+

⇒
B (t)p0 + ξ(t). (11)

Transformation (6) is thus the quantum-mechanical equiv-
alent of a reference frame that moves along the classical
atomic trajectory. The classical momentum in the rotating
coordinate system is given by

p = m
(
v− ⇒

Ω (r + R)
)
, v = dr

dt
. (12)

If
⇒
Ω and

⇒
Γ are time-independent, it is possible to find an

exact solution to (7), (8) and (10). Furthermore, the rotation
rate and the gravity gradient are usually sufficiently small

compared to the time scale T of the experiment (‖ ⇒
Ω ‖T �

1,‖ ⇒
Γ ‖T 2 � 1) to allow a series expansion in time [32]. In

that case
(⇒

A
⇒
B⇒

C
⇒
D

)
= e

⇒
Mt = 1+ ⇒

M t + 1

2!
⇒
M

2
t2 + · · · , (13)

(
ξ

ζ/m

)
= ⇒

M
−1 (

e
⇒
Mt − 1

)( ⇒
Ω R

g

)

=
(

t + 1

2!
⇒
M t2 + 1

3!
⇒
M

2
t3 + · · ·

)( ⇒
Ω R

g

)
.(14)

2.3 Laser interaction

With the transformations of the previous section we get the
Hamiltonian in the interaction picture with respect to Ĥext

and Ĥ0:

H ′
tot = �

2

(
0 ΩReiφ̂(t)

ΩRe−iφ̂(t) 0

)
, (15)
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with

φ̂(t) = k · (⇒
A (t)r̂+ ⇒

B (t)p̂ + ξ(t)
) − �lt + φ0. (16)

If we can derive a propagator from this Hamiltonian, we can
easily write down the evolution operator of the entire multi-
pulse interferometer sequence. Unfortunately, except for the
simple case of a linear potential [33, 34], this is impossi-
ble because of the fact that the operator φ̂(t) involves the
two non-commuting operators r̂ and p̂. Therefore, we will
have to make some approximations to calculate the interfer-
ence signal. We will assume that the phase change during the
pulses is very small and that the effect of the pulses is well
approximated by an unperturbed Rabi oscillation. We then
move to an interaction picture with respect to this unper-
turbed Rabi oscillation and calculate the (small) deviation
from this in a perturbative manner.

There are two characteristic features about the Rabi os-
cillations: the oscillation of the atomic population between
ground and excited state and the imprint of the laser phase
on the wavefunction of the excited state [28]. We will treat
these features separately, for clearer notation further on. We
account for the laser phase imprint using the transformation

Û1(t) =
(

eiφ̂(t) 0
0 1

)
, (17)

which leaves the Hamiltonian

Ĥ1 = �

(
dφ̂(t)

dt
ΩR/2

ΩR/2 0

)
. (18)

Next we go to a system that rotates with the unperturbed
Rabi oscillation, starting when the laser pulse is turned on at
t0 (t ′ = t − t0, which we will mostly evaluate at the end of
the pulse t ′ = τ )

Û2(t
′) = e

− i
2

(
0 ΩR

ΩR 0

)
t ′

=
(

cos(ΩRt ′/2) −i sin(ΩRt ′/2)

−i sin(ΩRt ′/2) cos(ΩRt ′/2)

)
(19)

⇓

Ĥ2 = �
dφ̂(t)

dt

(
cos2(ΩR

2 (t − t0)) − i
2 sin(ΩR(t − t0))

i
2 sin(ΩR(t − t0)) sin2(ΩR

2 (t − t0))

)
.

(20)

The changes by this remaining Hamiltonian are very small
(τdφ̂/dt � 1) and we approximate the remaining evolution
by

Û3(t0, t
′) = 1 + 1

i�

∫ t0+t ′

t0

Ĥ2(t) dt + · · · . (21)

Fig. 2 Schematic representation of the pulse sequence in the
Mach–Zehnder configuration. Inertial effects, such as gravity and rota-
tion, are omitted from the trajectories for clarity. Two paths that form
an interference signal are indicated by the thick lines

The effect of one single laser pulse is then given by 1

Ûlaser(t0, τ ) = Û1(t0 + τ)Û2(τ )Û3(t0, τ )Û−1
2 (0)Û−1

1 (t0),

(22)

which for the moment we will write as
(

eiφ̂(t0+τ)Ûee(t0, τ )e−iφ̂(t0) eiφ̂(t0+τ)Ûeg(t0, τ )

Ûge(t0, τ )e−iφ̂(t0) Ûgg(t0, τ )

)
. (23)

In this form only the main contributions of the phases are
written down explicitly and the transition amplitudes com-
bined with the corrections to the phase are summarized in
the operators Ûij . Note that this is all still written in terms of
operators that do not commute, so that the two exponentials
in the upper diagonal element cannot be simply combined.

2.4 Atom interferometer

In this work we consider a perfectly symmetric Mach–
Zehnder interferometer (see Fig. 2). The atoms enter the in-
terferometer in the ground state with some initial velocity.
The first laser pulse (π/2) with length τ excites the atoms to
an equal superposition of the excited and the ground state.
The excited state has acquired a momentum difference of �k

and spatially separates from the ground state. At the point of
maximum separation, at t = T + τ , a second laser (π ) pulse
of length 2τ inverts the distribution over the internal states
and the associated momentum. The two spatially separated
parts of the wavefunction get back together. At t = 2T +3τ ,
a third pulse of length τ is given, which mixes the two parts
of the wavefunction. The fraction of atoms in the ground
state is then a measure of the phase difference between the

1Note that we use the interaction picture of Û1 and Û2 only temporarily
and transform back at the end of each laser pulse.
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two paths. When all phase shifts of, e.g., gravity and rotation
as well as the dispersive effects of the laser pulses are ne-
glected, all atoms will exit the interferometer in the ground
state.

As indicated in the figure, the total interferometer signal
is actually an interference of 4 different paths (per internal
level). However, the second π pulse can be tuned very ac-
curately so that the occupation of the two “extreme” paths
(upper and lower paths at the end of the interferometer in
Fig. 2) is very small. Furthermore, these two paths are spa-
tially separated from the two classically overlapping paths.
If the spatial wavefunctions are located sufficiently, there is
no overlap and the interference effects from these two paths
can be neglected. The two extreme paths then only introduce
an offset in the signal, which we will ignore in the following
calculations.

With the propagator during the laser pulses (cf. (23)) we
can calculate the atomic wavefunction at the end of the inter-
ferometer sequence. Because in the interaction picture with
respect to Ĥext the wavefunction does not change between
pulses, the final wavefunction is simply given by the evolu-
tion during the laser pulses. The total interferometer propa-
gator is then a product of several matrices Ûlaser with the ap-
propriate starting time and pulse length. If one is interested
in the actual spatial structure of the wavefunction, one has to
apply the inversion of the transformations in Sect. 2.2. How-
ever, in a pulsed atom interferometer, the number of atoms
in an internal state is usually measured, averaging over a
large detection region. In that case, information on the spa-
tial distribution is lost and we do not need these inverted
transformations.

The total interferometer signal of a Mach–Zehnder con-
figuration is given by the propagator:

ÛMZ = Ûlaser(2T + 3τ, τ )Ûlaser(T + τ,2τ)Ûlaser(0, τ ).

(24)

In the two-path approximation, we manually set the diago-
nal terms of the second matrix to zero, resulting in, e.g., the
lower diagonal element (see Appendix A):

ÛMZ,gg = e−iφ̂0
3 eiφ̂+

2
(
ĝ1 + e−iφ̂MZ ĝ2

)
, (25)

where

φ̂MZ = φ̂+
1 − φ̂0

2 − φ̂+
2 + φ̂0

3

− i

2

([
φ̂+

2 , φ̂0
3

] + [
φ̂0

2 , φ̂+
1

] − [
φ̂+

2 − φ̂0
3 , φ̂+

1 − φ̂0
2

])
,

(26)

ĝ1 = Û3
ge

(
r̂ + �

(⇒
B

0

3 − ⇒
B

+
2

)T
k, p̂ − �

(⇒
A

0

3 − ⇒
A

+
2

)T
k
)

× Û2
eg(r̂, p̂)Û1

gg(r̂, p̂), (27)

ĝ2 = Û3
gg

(
r̂ + �

(⇒
B

0

2 − ⇒
B

+
1

)T
k, p̂ − �

(⇒
A

0

2 − ⇒
A

+
1

)T
k
)

× Û2
ge

(
r̂ + �

(⇒
B

0

2 − ⇒
B

+
1

)T
k, p̂ − �

(⇒
A

0

2 − ⇒
A

+
1

)T
k
)

× Û1
eg(r̂, p̂). (28)

Here, the lower indices of φ̂ indicate the number of the laser
pulse, and the upper indices indicate whether the time at the
beginning of the pulse (“0”) or at the end of the pulse (“+”)
should be taken, for example, φ̂+

3 = φ̂(2T + 4τ). For Û the
associated laser pulse is given by the upper index.

This expression can be simplified if the “reshaping” ef-
fect of the laser pulse can be neglected. In that case the two
components of the wavefunction follow two well-defined
trajectories (Borrmann effect, [22]) and the operators r̂ and
p̂ in Ûij can be replaced by their mean value, in which case
the operators ĝi are reduced to mere numerical values.

In the case where all atoms were initially in the ground
state with wavefunction |Ψ0,g〉, the fraction of atoms that
are still in the ground state at the end of the interferometer
sequence can be calculated as:

Pgg = 〈Ψ0,g|Û†
MZ,ggÛMZ,gg|Ψ0,g〉

= 〈Ψ0,g|ĝ†
1 ĝ1 + ĝ

†
1eiφ̂MZ ĝ2 + ĝ

†
2e−iφ̂MZ ĝ1

+ ĝ
†
2 ĝ2|Ψ0,g〉. (29)

This is the detection signal, where 〈Ψ0,g|ĝ†
1eiφ̂MZ ĝ2|Ψ0,g〉+

c.c. describes the interference fringes and the two terms
g

†
i gi give the offset.

2.5 Short pulse limit

In the short pulse limit τ → 0, we can drop the superscripts 0
and + in the phase operators and simplify the interferometer
phase to

φ̂MZ,sp = φ̂1 + φ̂3 − 2φ̂2 − i

2
[φ̂1, φ̂3 − 2φ̂2]. (30)

This can be simplified further by filling in the expression for

φ̂ (see (16)). Then, using
⇒
A1= 1 and

⇒
B1= 0, we get for the

total phase

φ̂MZ,sp = k · (⇒
A1 −2

⇒
A2 + ⇒

A3
)
r̂

+ k · (⇒
B1 −2

⇒
B2 + ⇒

B3
)(

p̂ + �k

2

)

+ k · (ξ1 − 2ξ2 + ξ3
) + (θ1 − 2θ2 + θ3). (31)

In the case of a Gaussian initial spatial distribution with
an overall momentum, the phase is simply obtained by re-
placing the operators r̂ and p̂ with their initial expectation
value. This is the result that was obtained in [32] where it is
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shown that this expression evaluates to the familiar expres-
sions for the gravimeter and gyroscope configurations. This
short pulse limit is completely equivalent to an approach
based on the classical trajectories [24, 35].

3 Phase calculations

The full interference signal can be calculated from (29).
From this equation we define the interferometer phase Φint

and the amplitude of the interference fringes Aint as follows:

Φint = arg
(〈Ψ0,g|ĝ†

1eiφ̂MZ ĝ2|Ψ0,g〉
)
, (32)

Aint = 2
∣∣〈Ψ0,g|ĝ†

1eiφ̂MZ ĝ2|Ψ0,g〉
∣∣. (33)

In the case of a Gaussian initial wavefunction, it is possible
to find an analytic expression for this phase and amplitude.
However, even in this simplified example the solution is, in
general, unmanageable and we will limit ourselves to a nu-
merical example.

3.1 Parameters

We calculate the phases for a 10 m high gravimeter [16]
where we only include the gravitational field and rotation of
the Earth. The gravitational acceleration g (g = 9.8 m/s2) is
along the z-axis, and the x-axis is chosen such that Ωx = 0
(see Fig. 1, Ωy = 5.5 × 10−5 s−1, Ωz = 4.8 × 10−5 s−1 at

41◦ latitude). For the gravitational gradient
⇒
Γ we take the

field of a perfectly spherical earth 2Γxx = 2Γyy = −Γzz =
2gz/R, where R = 6.38 × 106 m is the radius of the Earth

and all other components of
⇒
Γ are zero. For the atomic pa-

rameters we will take the values of rubidium (m = 1.44 ×
10−25 kg).

The atoms interact with two counterpropagating lasers
with slightly different frequencies that are tuned so that two
ground state levels are resonantly coupled through a far
detuned upper level (Raman transition). This way we still
have an effective two level system but can transfer the mo-
mentum of two photons. The total transferred momentum
corresponds to a single photon transition with wavelength
λeff = 390 nm. The direction of the laser wavevector is along
the z-axis. We will assume that the intensity of the pulses is
perfectly matched to their length so that ΩR = π/2τ . The
atoms are launched with a velocity vz0 = −gzT . Then, with
a separation between pulses T = 1.43 s, the atoms reach a
maximum height of 10 m. The general expression for the
initial momentum is

p0 = m
(
v0−

⇒
Ω (r0 + R)

); (34)

however, in this work we set the initial offset position r0 to
zero.

The Raman laser pulses are exactly on resonance (effec-
tive detuning �l = 0) at the beginning of the interferome-
ter sequence. Because of the curved trajectory, however, the
Doppler shift gives a continuous chirp to the effective detun-
ing and quickly brings the atoms out of resonance. Without
adjustment of the laser frequency, the (effective) laser detun-
ing at the second pulse would be too large, there would be no
momentum transfer and hence the interferometer would not
work. To minimize this effect, it is assumed that at the begin-
ning of each pulse the laser frequency is adjusted to compen-
sate for the Doppler shift that is associated with the classical
velocity at that moment. In this example, we compensate for
the unperturbed classical trajectory (free fall without lasers)
of the atoms (the dot indicates a time derivative):

�i = �l − k · ( ⇒̇
A(ti)r0 + ⇒̇

B(ti)p0 + ξ̇(ti)
)
. (35)

Changing the laser frequency during the interferometer se-
quence keeps the effective detuning small and the used
Dyson expansion (see (21)) of the interferometer propaga-
tor valid. However, it also changes the laser offset phase φ0

from pulse to pulse. It can readily be shown that this adds a
phase to the interferometer signal:

φtune =
∫ T +τ

τ

�l(t) dt −
∫ 2T +3τ

T +3τ

�l(t) dt. (36)

This phase is independent of the laser frequency during the
pulses and we will omit this phase from further calculations.
In the experiment, however, this phase has to be known as
precisely as the intended resolution of the measurement and
thus requires careful tracking of the laser phase.

3.2 Full wavefunction integral

In this section, we will calculate the interferometer signal as
given by (32) and (33). To calculate these expectation val-
ues we write the operators ĝ1, ĝ2, and φ̂MZ in terms of lin-
ear combinations of r̂ and p̂ and use known eigenvectors
of such combinations (see Appendix B). Next we insert the
identity

1 ≡
∫ ∞

∞
dp3

∣∣φ(p)
〉〈
φ(p)

∣∣ (37)

in front of each combination of r̂ and p̂, where |φ(p)〉 is
an associated eigenvector, to transform the wavefunction to
the basis of these eigenvectors. With this transformation we
can treat the subsequent operators as normal functions of
the vectors p. The cost of these transformations is the in-
troduction of overlap integrals, but these evaluate to simple
Gaussians (Appendix B, (63)).

To limit the number of these transformations, we approx-
imate the phase derivatives that we need to evaluate the laser
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Table 1 Estimates of the change in laser phase during a laser pulse,
broken up into terms of the series expansion in pulse length and in

the contributions from
⇒
A,

⇒
B , and ξ . Values are given for 100 µs pulse

lengths, position r = σr = 50 µm, and momentum p = σp = �/σr

Expansion
∫ τ

0 |
⇒̇
AT k|σr dt

∫ τ

0 |
⇒̇
BT k|σp dt

∫ τ

0 k · ξ̇ dt

order in τ

1 4.4 × 10−7 2.3 × 10−3 2.3 × 103

2 2.5 × 10−13 2.6 × 10−12 1.6 × 10−2

3 3.5 × 10−13

transformation matrices (see Ĥ2, (20)):

dφ̂

dt
(t) ≈ k · ( ⇒̇

A(ti)r̂ + ⇒̇
B(ti)p̂ + ξ̇(ti)

)

+ k · ξ̈(ti)(t − ti ), (38)

where we have added the second derivative of ξ because of
its relative size (ξ̈ ≈ g).

The explicit expression for the time derivative of the
phase is only used for the correction terms to the laser inter-
action. The actual contribution to the interferometer phase
is given by the time integral during the pulse length τ .
Because the pulses are short compared to the total length
of the interferometer sequence, this lower order series ex-
pansion of the phase evolution during the pulses suffices
for the same accuracy of the calculation. To check the va-
lidity of this approximation, Table 1 gives numerical esti-
mates of the contribution of expansion coefficients (with re-
spect to τ ) to the correction terms of the laser interaction
(≈ ∫

dφ/dt (T ) dt = φ(T )+dφ/dt (T )τ +· · ·). In this table
each expansion coefficient of the phase is broken up in con-

tributions from
⇒
A,

⇒
B , and ξ . Although the maximum values

of the
⇒
A and

⇒
B terms are at infinite position and momentum,

the contribution from these large offset position and momen-
tum parts of the wavefunction is minimal and we consider
the phase difference at the RMS value of the position and
momentum. The numerical values are for an interaction time
of 100 µs and an atomic cloud of RMS size σr = 50 µm with
an associated momentum spread σp = �/2σr . The lowest
entries indicate the terms that are omitted in the approxima-
tion of (38). The table shows that for τ = 10−4 s the phase
error for all three components is smaller than 10−11 rad,
making this approximation highly valid. Obviously, the ap-
proximation gets even better for shorter τ .

The overall phase φ̂MZ (see (31)) can always be written
as a linear combination of r̂ and p̂. The evaluation of this
phase then requires only one transformation of eigenvectors

regardless of the expansion order of the functions
⇒
A (t),

⇒
B

(t), and ξ(t), and in this respect there is no gain in truncating
the expansion in t .

The contribution from ξ̇ would give a very large phase
if it were not exactly compensated for by the laser detun-
ing (see (35)). The second term k · ξ̈ ≈ k · g, however, also
gives a phase that is relatively close to unity, indicating that
pulse length τ = 10−4 s is at the limit of the validity of the
Dyson expansion (see (21)). Sometimes (e.g., in [36]), the
laser frequency is chirped during the pulses to compensate
for this large phase term. A very complicated phase evolu-
tion of the laser could even compensate the entire k · ξ term,
thereby greatly improving the validity of the used expan-

sion. The k· ⇒
A r̂ and k· ⇒

B p̂ terms, however, vary over the
wavefunction and cannot be compensated by a chirped laser
frequency. These therefore remain as limiting factors for the
accuracy.

With the approximation of the phase derivative (see (38)),
the expression for the interferometer phase has 7 operators
that are linear combinations of r̂ and p̂. Together with the
transformation equation (37) we get a 21-fold integration of
a Gaussian times a polynomial. In terms of the unevaluated
laser matrix elements and the unevaluated overlap integrals,
this has the form:

〈Ψ0,g|ĝ†
1eiφ̂MZ ĝ2|Ψ0,g〉

=
∫

dp3
1

∫
dp3

2

∫
dp3

3

∫
dp3

4

∫
dp3

5

∫
dp3

6

∫
dp3

7

× U1
gg(rC,p1)

∗ × U2
eg(rC,p2)

∗

× U3
ge

(
rC + �

(⇒
B

0

3 − ⇒
B

+
2

)T
k,p3 − �

(⇒
A

0

3 − ⇒
A

+
2

)T
k
)∗

× eiφMZ(rC,p4)

× U3
gg

(
rC + �

(⇒
B

0

2 − ⇒
B

+
1

)T
k,p5 − �

(⇒
A

0

2 − ⇒
A

+
1

)T
k
)

× U2
ge

(
rC + �

(⇒
B

0

2 − ⇒
B

+
1

)T
k,p6 − �

(⇒
A

0

2 − ⇒
A

+
1

)T
k
)

× U1
eg(rC,p7)

× 〈
Ψ0,g|φ̇(t1),p1

〉〈
φ̇(t1),p1|φ̇(t2),p2

〉

× 〈
φ̇(t2),p2|φ̇(t3),p3

〉〈
φ̇(t3),p3|φMZ,p4

〉

× 〈
φMZ,p4|φ̇(t3),p5

〉〈
φ̇(t3),p5|φ̇(t2),p6

〉

× 〈
φ̇(t2),p6|φ̇(t1),p7

〉〈
φ̇(t1),p7|Ψ0,g

〉
, (39)

where the asterisk denotes the complex conjugate. By writ-
ing this expectation value in terms of the eigenfunctions (see
Appendix B), we can replace r̂ with an arbitrary, but fixed
offset position rC (we take rC = 0) and p̂ with the run-
ning integration variable pi . The phase term φMZ is ob-
tained from (26). The eigenfunctions |φ̇(ti ),pj 〉 are calcu-

lated with (58) and (61), taking v = ⇒̇
A

T (ti)k, w = ⇒̇
B

T (ti)k,
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and pc = pj . A similar recipe is applied for |φMZ,p4〉. Fi-
nally, the initial wavefunction is a 3D-Gaussian

〈r|Ψg,0〉 =
(

2

πw2
0

) 3
4

e−(r−r0)
2/w2

0+ip0·r/�, (40)

with waist w0 = 2σr,0, momentum p0 (see (34)) and a pos-
sible offset position r0 which in this work is usually taken as
zero. This is the optimal initial wavefunction that has min-
imum uncertainty in r and p. In practice, this form is very
difficult to obtain and the actual atomic wavefunction has a
more complicated form. In that case, the following results
that are based on this Gaussian shape can be considered as a
limiting case for an optimal interference signal.

4 Results

Although, in principle, (39) can be solved analytically, the
solution is too extensive to handle in full symbolic form. We
therefore calculated the exact solution of the integral only
with numerical values of the parameters. We would like to
stress that, although we only performed numerical evalua-
tions of the interferometer signal, the solution is still exact
and these calculations should not be confused with numer-
ical approximating algorithms that use some form of dis-
cretization.

We repeated this calculation for various values of the
pulse length and the initial RMS cloud radius σr,0. The am-
plitude and the phase (see (32) and (33)) were then evaluated
from the result using symbolic algebra software. The result
of the integration is in the form of a large phase in an ex-
ponential term (φMZ), multiplied with a complex number
with small phase (product of the terms Ui

jk). The calcula-
tions were performed with 50 digits accuracy and a 5th order

expansion of
⇒
A,

⇒
B , and ξ in t (see (13) and (14)).

The resulting amplitude Aint is drawn in Fig. 3 as a func-
tion of the initial RMS cloud size σr,0. It turns out that the
contrast hardly changes with the interaction time and that
the graphs are indistinguishable up to 100 µs where the ap-
proximations (Expansion (21)) lose their validity. Instead of
dependence on τ , the contrast depends much more strongly
on σr,0 with two boundaries above and below which the
amplitude quickly drops to zero. These boundaries corre-
spond to the maximum allowed position spread σr,max and
maximum allowed Heisenberg limited momentum spread
σp,max = �/2σr,min and can be estimated from the expres-
sion of φ̂MZ (see, e.g., [32] or [35]). They are given by the
change in initial position or momentum over which the inter-
ferometer phase varies by π . From a leading terms estimate

of
⇒
A and

⇒
B we get

σr,max = π

2kΓ T 2
= 1.6 × 10−2 m, (41)

Fig. 3 Amplitude of the interference signal as a function of the initial
RMS cloud size σr,0

σr,min = �

2σp,max
= 2�kΩT 2

mπ
= 1.1 × 10−6 m. (42)

In this case, the criterion on the maximum spread in position
originates in the difference in gravity that acts on atoms on
opposite sides of the cloud. The other criterion traces back
to the difference in Sagnac phase between two atoms that
have opposite initial velocity perpendicular to the laser. The
numerical values are in good agreement with the graph. Al-
though usually σr,min < σr,max, it is possible that the restric-
tions on both the momentum and the position spread are so
strong that σr,min > σr,max, in which case there is no range in
which interference fringes can be observed. Note that these
limits are obtained from a semiclassical argument, i.e., a
straightforward statistical spread of phases over an atomic
ensemble. These limits therefore apply as well for a non-
coherent and non-Gaussian cloud. In those cases, of course,
the momentum spread is not equal to �/σr,0 and the first
equality of (42) is not valid.

Since in this case the loss of contrast can be explained in
a semiclassical way, one can use and expression of the short-
pulse phase (like in [35]), which greatly dominates over ef-
fects from laser pulse lengths, and estimate the maximum
values of most parameters from this.

The phases that are obtained from (39) are plotted in
Fig. 4, relative to an offset of approximately 3.2 × 108 rad,
as a function of the interaction time τ for several values of
σr,0. The offset was determined from a linear extrapolation
to τ = 0. In this plot, the total time lapse of the interferom-
eter sequence 2T + 4τ was kept constant by compensating
the value of T . The actual dependence of the interferome-
ter phase on τ and T is quite complicated and depends on
the choice of the laser frequency compensation [22]. For our
choice (compensated in steps between laser pulses) that pa-
per predicts a phase in a homogeneous gravitational field of

�φ = k · g(
T (T + 2τ) + τ 2/π

)

= k · g(T + τ)2 + O
(
τ 2). (43)
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Fig. 4 Double logarithmic plot of the interferometer phase relative to
an extrapolated offset phase at τ = 0 s as a function of τ

Since the dominant effect in our example is gravity, the τ

dependence of the phase should closely match this equa-
tion. Comparing (43) with a linear fit through the full cal-
culations indicates that the relative difference in the slope
(dφ/dτ = 4.50 × 108 s−1) is only 2 × 10−3, indicating that
the model of [22] is indeed a very good approximation for
this example. The difference in the phase at τ = 0 is rela-
tively large because of the rotation and the gravity gradient.
The remaining difference in the effect of τ between the cal-
culations and (43) is 7 rad for 10 µs pulse length which gives
a relative error of 10−7. This difference is mostly caused by
presence of rotation during the laser pulses [23].

Equation (43) suggests that the interferometer phase is
(approximately) constant if we compensate the length be-
tween pulses such that T + τ is constant. This was veri-
fied in a separate set of calculations where we changed the
compensation T + ετ = constant and indeed found that the
phase did no longer change with τ if ε = 1.0 ± 0.2.

The behavior of the phase as a function of τ for other
values of σr,0, within the explored range (1 m to 50 nm), is
indistinguishable from Fig. 4. Therefore, we will take the in-
terferometer phase φ0.5 mm(τ ) for an initial waist of 0.5 mm
as a reference for the following graphs and consider the dif-
ferences with this reference only. This value is arbitrary, in
principle, but was chosen for plotting convenience.

In Fig. 5 the interferometer phase relative to the refer-
ence φ0.5 mm(τ ) is plotted as a function of σr,0 for various
values of the interaction time τ . The plot shows that there is
a minimum in the phase at σr,0 = 0.5 mm for all interaction
times τ . For larger initial clouds the interferometer phase
increases with σ 2

r,0 and for smaller σr,0 the phase goes with

1/σ 2
r,0. We can understand both the existence of the shift and

the quadratic behavior by considering the average value of a
phase operator over a symmetric wavefunction. Because of
the spatial (and momentum) dependence of the phase there
will be a larger phase difference if the wavefunction is broad

Fig. 5 Interferometer phase relative to the phase for σr,0 = 0.5 mm
(Fig. 4)

Fig. 6 Interferometer phase relative to the phase for σr,0 = 0.5 mm
(Fig. 4). As a reference the phase error from a semiclassical approxi-
mation is plotted as well

(narrow). The large phase variation over the cloud will then
introduce an average phase shift. Because the wavefunction
is symmetric, all contributions that are odd in position will
cancel out in the average and the dominant contribution to
the phase shift is quadratic in position/momentum spread.
The phase minimum is at the point where the contributions
from the size and the momentum spread are equal. Experi-
mentally, this cloud size is the best to choose because then
the sensitivity to changes in cloud size is minimal.

The graph also clearly shows that a shorter interaction
time gives less effect of σr,0 on the phase. In the limit τ → 0,

we return to the short pulse limit in which there is no effect
of the initial cloud size at all. This is further illustrated by
Fig. 6 where the same data is now plotted as a function of τ .
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According to this graph, the phase (relative to the reference
φ0.5 mm(τ )) grows approximately with τ 3 for all values of
the initial RMS cloud size and over the entire plotted range
of τ . At τ = 100 µs the phase term k · gτ 2 ≈ 1. Then the
used expansion (see (21)) is no longer valid which causes
the jumps in phase and the missing points (in the logarithmic
scale).

As a reference, we also calculated the phase that results
from (29) if the operators r̂ and p̂ are simply replaced
by their initial expectation value r0 and p0. In effect this
means substituting the classical trajectories and neglecting
the wavefront distortion by the beamsplitter (Borrmann ef-
fect). The difference between this and the full quantum cal-
culation for σr,0 = 5 × 10−4 m is also plotted in Fig. 6.
Again, this reference is arbitrary as the semiclassical phase
does not depend on the shape of the initial wavefunction.
The plot shows that the error in the semiclassical approxima-
tion increases approximately linear with τ . For typical ex-
perimental parameters this simplified calculation introduces
an of ∼10−5 rad.

5 Outlook

In this work, we were able to calculate the interferometer
signal with a very high precision using a series of transfor-
mations. These calculations are very general and can be ap-
plied or straightforwardly extended to a large number of sit-
uations. The generality lies mostly in the fact that it accounts
for a large range of inertial fields and potentials, rotation and
even space–time curvature [37]. The only assumption that
we made was that the resulting change in Doppler shift dur-
ing the pulses were small compared to the Rabi frequency.
We have shown the result for a perfectly symmetric Mach–
Zehnder interferometer, but the effect of errors in timing
can easily be evaluated with different numerical values of
the parameters. The presented method is not valid (with the
same accuracy) for spatial interferometers, which require a
different approach [38]. However, the signal of many more
complicated interferometer configurations or the inclusion
of spontaneous emission between laser pulses can be cal-
culated by straightforward introduction of additional laser
pulse operators.

In the calculations presented here we took the Rabi fre-
quency constant and homogeneous. If this is not the case, for
example, because of finite switching time or a spatially finite
(Gaussian) laser beam, one can no longer take an interaction
picture relative to an unperturbed Rabi oscillation (see (20))
and the Rabi oscillations will have to be evaluated in a per-
turbative way (e.g., Dyson expansion). In that case, however,
the accuracy of the calculations will be strongly limited as
ΩRτ ∼ 1 (π/4 in the ideal case) such that τ can no longer
be used as an expansion parameter. Similarly, higher order

terms in the potential/intertial field can be added in a pertur-
bative way. These effects, however, are integrated over long
times T and must be very small to have a converging expan-
sion.

Under the assumption that the total population of one
atomic level over the entire space is measured, it is not nec-
essary to transform the final wavefunction back to the origi-
nal reference frame. If one is interested in the spatial profile
of the final wavefunction, e.g., because of a finite detection
area, the result after application of ÛMZ,gg has to be mul-
tiplied with another transformation operator. Evaluation of
the wavefunction then requires an expansion into Hermite–
Gaussians [30].

The big advantage of the used method is that for a sim-
ple Gaussian initial wave equation (39) can be solved ex-
actly. This avoids the use of approximating/discretizing nu-
merical algorithms that reduce the accuracy of the result and
for which it may be difficult to get a converging result be-
cause of the fast spatial oscillation (momentum). This solv-
ability is lost quickly if the initial state is more complicated.
However, there are some examples that do have an analytic
solution. One can think, for example, of an MOT with a
Gaussian position and momentum distribution. This would
require calculating the interference signal as described in
this work and then average this signal (incoherently) over
the momentum distribution. This adds one more integration
to (39). Similarly, the signal of a wavefunction with two co-
herent Gaussians can be calculated. This, however, requires
calculating the cross terms between the two final states as
well which adds a second integration/summation step to the
calculation.

6 Conclusions

We have calculated the interferometer phase in a realistic in-
terferometer, taking into account the finite length of the laser
pulses and the associated distortion of the atomic wavefunc-
tion. Comparison with existing expressions shows a discrep-
ancy of approximately 1 rad, which in the considered setup
is a relative error of 10−8. Although it is interesting to see
how accurate these existing expressions are, it is no surprise
that there is a difference as they are based on first-order ex-
pansions. Likely, the accuracy of these models can straight-
forwardly be improved by including higher orders, as illus-
trated by the semiclassical calculations in Fig. 6.

The main result of this work, however, is the effect of the
shape of the initial wavefunction on the final interferometer
phase. We have shown that this effect can shift the interfer-
ometer phase by 10−5 rad (10−13 relative error), or more,
for typical experimental parameters. Table 2 shows the ac-
curacy of some state of the art interferometers. These have
various configurations and measure different quantities, so
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Table 2 Some relative uncertainties in atom interferometer experi-
ments

Measured effect Relative

uncertainty

Gravitational acceleration [3] 10−9

Equivalence principle, proposal [16] 10−15

Newtonian gravitational constant [14, 15] 10−3

Rotation [7] 10−4 (in 1 s)

Electric polarizability [11, 12] 10−3

Transition frequency [9, 10] 10−16

it is difficult to compare these among each other or with the
example in this work. The table does show, however, that
some of these experiments are in the range of the calculated
phase errors and have to take the wavefront distortion by the
laser pulses into account with the interpretation of their sig-
nal.
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Appendix A: Atom interferometer

In the two-path approximation the total interferometer evo-
lution operator is given by

ÛMZ = Ûlaser(2T + 3τ, τ )Ûlaser(T + τ,2τ)Ûlaser(0, τ )

=
(

eiφ̂+
3 Û3

eee
−iφ̂0

3 eiφ̂+
3 Û3

eg

Û3
gee

−iφ̂0
3 Û3

gg

)

×
(

0 eiφ̂+
2 Û2

eg

Û2
gee

−iφ̂0
2 0

)

×
(

eiφ̂+
1 Û1

eee
−iφ̂0

1 eiφ̂+
1 Û1

eg

Û1
gee

−iφ̂0
1 Û1

gg

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiφ̂+
3 Û3

eee
−iφ̂0

3 eiφ̂+
2 eiφ̂+

3 Û3
eee

−iφ̂0
3

× Û2
egÛ

1
gee

−iφ̂0
1 × eiφ̂+

2 Û2
egÛ

1
gg

+ eiφ̂+
3 Û3

egÛ
2
gee

−iφ̂0
2 + eiφ̂+

3 Û3
egÛ

2
ge

× eiφ̂+
1 Û1

eee
−iφ̂0

1 × e−iφ̂0
2 eiφ̂+

1 Û1
eg

Û3
gee

−iφ̂0
3 eiφ̂+

2 Û3
gee

−iφ̂0
3 eiφ̂+

2

× Û2
egÛ

1
gee

−iφ̂0
1 × Û2

egÛ
1
gg

+ Û3
ggÛ

2
gee

−iφ̂0
2 + Û3

ggÛ
2
gee

−iφ̂0
2

× eiφ̂+
1 Û1

eee
−iφ̂0

1 × eiφ̂+
1 Û1

eg

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(44)

t1 = 0, t2 = T + τ, t3 = 2T + 3τ, (45)

τ1 = τ3 = τ, τ2 = 2τ, (46)

Û k
ij = Ûij (tk, τk, r̂, p̂), (47)

φ̂0
k = φ̂(tk, r̂, p̂), φ̂+

k = φ̂(tk + τk, r̂, p̂). (48)

The operator that describes the transition from ground state
to ground state is the lower right element:

ÛMZ,gg = Û3
ge(r̂, p̂)e−iφ̂0

3 eiφ̂+
2 Û2

eg(r̂, p̂)Û1
gg(r̂, p̂)

+ Û3
gg(r̂, p̂)Û2

ge(r̂, p̂)e−iφ̂0
2 eiφ̂+

1 Û1
eg(r̂, p̂), (49)

where we have added the r̂ and p̂ dependence in the func-
tions Ûij explicitly because they have to be replaced when
the exponentials in ÛMZ,gg are rearranged. To get one single
phase operator we combine the exponential terms using the
relations [39, 40]

eÂB̂e−Â = B̂ + [Â, B̂] + 1

2!
[
Â, [Â, B̂]] + · · · , (50)

eÂ+B̂ = eÂeB̂e− 1
2 [Â,B̂]

if
[
Â, [Â, B̂]] = [

B̂, [Â, B̂]] = 0 (51)

between two operators Â and B̂ , and the derived relation

ev·r̂+w·p̂f (r̂, p̂) = f (r̂ − i�w, p̂ + i�v)ev·r̂+w·p̂ (52)

for a general function f . We obtain
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× Û2
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2 − ⇒
A

+
1

)T
k
)

× Û2
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≡ e−iφ̂0
3 eiφ̂+

2 ĝ1 + e−iφ̂0
2 eiφ̂+

1 ĝ2, (53)
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A

0

k=
⇒
A (tk),

⇒
A

+
k =⇒

A (tk + τk), (54)

⇒
B

0

k=
⇒
B (tk),

⇒
B

+
k =⇒

B (tk + τk). (55)
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The operators ĝ1 and ĝ2, as defined by (53), describe the
amplitudes and small phase corrections of the two paths of
the interferometer. Using (51) we get an expression for the
interferometer propagator

ÛMZ,gg = e−iφ̂0
3 eiφ̂+

2
[
ĝ1 + e−iφ̂MZ ĝ2

]
, (56)

with the total phase operator

φ̂MZ = φ̂+
1 − φ̂0

2 − φ̂+
2 + φ̂0

3

− i

2

[[
φ̂+

2 , φ̂0
3

] + [
φ̂0

2 , φ̂+
1

] − [
φ̂+

2 − φ̂0
3 , φ̂+

1 − φ̂0
2

]]
.

(57)

Appendix B: Eigenfunctions

According to (29), the interferometer signal is the expecta-
tion value of a function of several operators that are a linear
combination of r̂ and p̂. To evaluate this signal it is thus very
useful to take a look at the eigenvectors of such an operator
φ̂ = v · r̂ + w · p̂. In the r representation the eigenfunctions,
φ(r) = 〈r|φ〉 of this operator are described by a complex
valued 3D-Gaussian:

φ(r) = (2π�)(3/2)ei(r−rc)·
⇒
W(r−rc)+ipc·r/�, (58)

if

v + 2�
⇒
W

T

w = 0 (59)

with eigenvalues

Φ = −2�w· ⇒
W rc + w · pc = v · rc + w · pc. (60)

In the special case that the initial wavefunction is exactly
equal to one of these eigenfunctions, the expectation value
of any operator that is a function of φ̂ can thus be obtained
by simply replacing the operators r̂ and p̂ with their initial
expectation value rc and pc. In all other cases, one has to av-
erage over all eigenfunctions with the appropriate weighting
factors.

The matrix
⇒
W , as set by (59), can be obtained from

2�
⇒
W

T = −v ⊗ wT

w · w + α1 ⊗ wT⊥,1 + α2 ⊗ wT⊥,2, (61)

where the notation ⊗ is used for a direct product only to
emphasize the difference with the inner product. The vectors
w⊥,i are perpendicular to w, and the vectors αi have to be

chosen so that
⇒
W is symmetric.

One can create a complete set of eigenfunctions with the
free parameter pc so that any function can be expanded in
terms of these eigenfunctions with coefficients

f̃ (pc) =
∫ ∞

−∞
dr3f (r)e−i(r−rc)

⇒
W(r−rc)−ipc·r/�. (62)

For the calculations of the interferometer signal, we will
be mostly interested in the transformation of one basis func-
tion |φ1〉 to the set of eigenfunctions {|φ2〉} of a different

operator φ̂ with different width
⇒
W 2. For this transforma-

tion, we have to calculate the overlap between all of these
eigenfunctions, which is done by using the r representation
(see (58)). There is no restriction on the parameter rc , so we
will take this to be zero in the following (this has no effect
on the overlap integral):
〈
φ1(p1)|φ2(p2)

〉

=
∫ ∞

−∞
dr3〈φ1(p1)|r

〉〈
r|φ2(p2)

〉

=
∫ ∞

−∞
dr3eir

⇒
W1r+ip1·r/�e−ir

⇒
W 2r−ip2·r/�

=
∫ ∞

−∞
dr3eir

⇒
W 12r+ip12·r/�

=
∫ ∞

−∞
dr3ei(r+⇒

W
−1

12 p12/2�)
⇒
W 12(r+⇒

W
−1

12 p12/2�)

× e−ip12
⇒
W

−1

12 p12/4�
2

= e−ip12
⇒
W

−1

12 p12/4�
2
∫ ∞

−∞
dr ′3eir ′ ⇒

W 12r
′

= e−ip12
⇒
W

−1

12 p12/4�
2(

det
⇒
W 12

)−1/2
∫ ∞

−∞
dr ′′3eir ′′·r ′′

= e−ip12
⇒
W

−1

12 p12/4�
2(

det
⇒
W 12

)−1/2
(iπ)

3
2 , (63)

where the index 12 indicates the difference 1 − 2 and det is
the determinant of the matrix.
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