
Vol.:(0123456789)1 3

Applied Physics A (2023) 129:229 
https://doi.org/10.1007/s00339-023-06481-9

S.I. : 50TH ANNIVERSARY OF APPLIED PHYSICS

Broadband circular dichroism in chiral plasmonic woodpiles

Bilel Abdennadher1 · René Iseli1 · Ullrich Steiner1 · Matthias Saba1

Received: 12 December 2022 / Accepted: 2 February 2023 / Published online: 2 March 2023 
© The Author(s) 2023

Abstract
The circular dichroism (CD) of a material is the difference in optical absorption under left- and right-circularly polarized 
illumination. It is crucial for a number of applications, from molecular sensing to the design of circularly polarized thermal 
light sources. The CD in natural materials is typically weak, leading to the exploitation of artificial chiral materials. Layered 
chiral woodpile structures are well known to boost chiro-optical effects when realized as a photonic crystal or an optical 
metamaterial. We here demonstrate that light scattering at a chiral plasmonic woodpile, which is structured on the order of the 
wavelength of the light, can be well understood by considering the fundamental evanescent Floquet states within the structure. 
In particular, we report a broadband circular polarization bandgap in the complex band structure of various plasmonic wood-
piles that spans the optical transparency window of the atmosphere between 3 and 4 μ m and leads to an average CD of up to 
90% within this spectral range. Our findings could pave the way for an ultra-broadband circularly polarized thermal source.

Keywords  Complex bandstructure · Circular dichroism · Plasmonic crystal · Chiral woodpile · Thermal emission

1  Introduction

The manipulation of light through optical elements such as 
lenses, color filters, and polarizers goes back to ancient times 
and can ubiquitously be found in the living world [1, 2]. 
The limits that naturally available materials impose on light 
manipulation can be overcome by nano-structuring matter in 
form of for example photonic crystals, dielectric geometries 
that are structured on the order of the wavelength of the light 
and lead to interference effects [3, 4]. A different strategy 
to obtain new optical materials employs plasmonic met-
als structured on a deeply sub-wavelength scale, so-called 
metamaterials [5]. A vast number of chiral photonic crystal 
and metamaterial designs [6] have been suggested to yield 
custom-designed chiro-optical effects, such as strong circu-
lar dichroism [7–12], optical activity [13–18], and orbital 
angular momentum generation [19–21]. Next to a number of 
applications in sensing, catalysis, and chiral light generation, 
when realized on a micrometer length scale, these chiral 
geometries can be engineered to yield circularly polarized 
thermal emission by application of Kirchhoff’s law [22–32].

A particularly promising and relatively easy to manufac-
ture (down to sub-micrometer length scales) geometry is 
the chiral woodpile [34–38] as illustrated in Fig. 1. When 
realized as a classical deeply sub-wavelength metamaterial, 
the chiral woodpile, which is evidently not based on local 
meta-atoms, does not show a strong chiro-optical response 
due to the mismatch between the screw-axis pitch and the 
vacuum wavelength. A hexagonal chiral woodpile realized 
as a lossy photonic crystal with big index contrast (using a 
semiconductor with �= 8.9 ), on the other hand, is predicted 
to produce circularly polarized thermal emission within 
a broad band (gap-to-midgap ratio Δ�∕⟨�⟩ ≈ 1∕6 ) [22]. 
While a more sophisticated fully three-dimensional geom-
etry with �= 12 is predicted to improve the bandwidth to a 
gap-to-midgap ratio of 1/3 [12], we here instead consider a 
plasmonic hexagonal woodpile structured on the order of 
the wavelength that leads to a strongly circularly polarized 
thermal emission within a band with a gap-to-midgap ratio 
≳ 2∕7 , focusing on the optical transparency window of the 
atmosphere between 3 and 4 μ m. A similar structure has 
been previously considered to engineer linearly polarized 
thermal emission [36]. Since the spatial periodicity of such 
a plasmonic crystal (PC) is on the order of the wavelength, 
standard metamaterial homogenization techniques cannot be 
applied. Looking at the field patterns can shed some light 
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on the chiral plasmonic excitations, as for example done for 
a helix PC [39].

The simulated scattering of an outside source, however, 
always corresponds to an a-priory unknown superposition of 
self-consistent modal solutions within the PC. A physically 
inspired set of such modal solutions is provided through eva-
nescent Floquet states [40–42]. These states can be thought 
of as a natural complex generalization of the Bloch modes 
discussed in the canonical band structure picture employed 
in the photonic crystal theory [3]. They thus allow to account 
for base materials with general optical permittivity and per-
meability and span the solution space of the monochromatic 
Maxwell equations within finite slab-like geometries with 
periodicity. While the calculation of evanescent Floquet 
modes is not implemented in standard simulation tools based 
on the finite element or finite difference methods, they can 
be naturally obtained through a plane-wave approach [40] 
for photonic crystals. For plasmonic materials, such an 
approach is, however, very inefficient as the generally poor 
convergence behavior of the plane-wave basis becomes a 
particularly big problem at metal-dielectric interfaces [41], 
where the permittivity changes its sign. In simple geom-
etries, which are homogeneous in the propagation direction, 
such as the lamellar grating [43], the fishnet structure [42], 
or hyperbolic aligned wire media [44, 45], the computation 

simplifies to an essentially one- or two-dimensional prob-
lem. More generally, in a geometry that is made by a number 
of slices that are individually homogeneous in the propaga-
tion direction, the evanescent Floquet modes are efficiently 
calculated as the eigen-solutions of the corresponding trans-
fer matrix through the unit cell [46–50].

We here show that the fundamental Floquet modes 
responsible for propagating energy through (and absorbing 
it within) a single lamellar grating layer are sufficient to 
calculate the two fundamental Floquet modes of a hexago-
nal chiral woodpile made of a sequence of equal lamellar 
grating layers, copied through a C62

 screw rotation, as illus-
trated in Fig. 1d. These fundamental Floquet states of the 
chiral woodpile in turn describe the scattering physics well 
and reveal the origin of a broad circularly polarized stop 
band in the absorption spectrum, which is induced through 
a circularly polarized pseudo-bandgap. We use these two 
Floquet modes as a scattering basis within the fundamental 
Bragg order to efficiently optimize the broadband circular 
dichroism and derive general design principles based on the 
thickness of the dielectric region d1 and the chiral pitch c 
only (Fig. 1). We show that the obtained absorption spectra 
are surprisingly accurate considering the strong approxima-
tions made and agree well with full-wave simulations. Our 
findings suggest experimental investigation of the designed 

Fig. 1   The hexagonal chiral woodpile plasmonic crystal. a Bird’s eye 
view onto the Wigner–Seitz cell with hexagonal lattice constant a and 
single layer pitch d. b Side view showing the vertical pitch c. c Each 
plasmonic bar with permittivity �

2
 has a width d

2
=� d and a height 

h= c∕3 . The dashed lines show the layer mirror planes in the center 

of the dielectric and the metal region. d The global C
62

 symmetry of 
the underlying P6

2
22 (180) space group [33] is generated through an 

active C
3
 (120◦ ) rotation of the coordinate frame R after each lamel-

lar layer. The unit cell transfer matrix is thus given by TUC = (RT)3 , 
with the transfer matrix through one lamellar grating layer T
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woodpiles for chiral thermal emission. More fundamentally, 
they demonstrate the power of the concept of evanescent 
Floquet states to understand light propagation in finite slabs 
of artificially structured materials.

2 � Methods

Evanescent Floquet states span the vector space of solutions 
of Maxwell’s equations within a finite slab of a periodic 
material [40]. While in theory, a countably infinite number 
of such modes exists at each frequency, a small number usu-
ally suffices in practice, making them an invaluable tool to 
not only predict but most importantly understand the physi-
cal origin of a scattering experiment. If a periodic optical 
material contains base materials with loss, such as plasmonic 
metals, even the fundamental Floquet modes do not fit into 
the standard band structure picture with real-valued wave 
vectors [3]. Instead, a complex band structure picture has 
to be adopted [40, 41]. Calculating these modes for general 
geometries remains challenging and is currently not possible 
with established software packages (based on for example 
finite differences or finite elements). We here present a semi-
analytical method to efficiently compute the complex band 
structure for the fundamental evanescent Floquet states of a 
hexagonal chiral woodpile. While our method cannot accu-
rately predict scattering observables, it instead 

1.	 reveals the main physical mechanism of scattering even 
for frequencies close to the first Wood anomaly substan-
tially above the homogenization regime, and

2.	 allows for easily optimizing a desired behavior (broad-
band circular dichroism in this manuscript) within a 
large parameter space.

2.1 � Single layer scattering

We start by calculating the Floquet states within each layer, 
which is homogeneous in z direction and whose local coor-
dinate frame is defined in Fig. 1c. The procedure is based on 
a symmetry simplification of the well-known lamellar grat-
ing equation [43]. At normal incidence, the electric (TE) or 
magnetic (TM) field points in y-direction, and is thus anti-
symmetric with respect to the mirror operation �y that maps 
y↦−y . The relevant scalar (monochromatic) field F(r) is the 
y-component of the electric (TE) or magnetic (TM) field. For 
the whole chiral slab, since we are interested in plane-wave 
excitation at normal incidence, we can characterize the field 
as odd with respect to the two-fold rotation symmetry around 
the z-axis at the center of the unit cell C2z , that coincides with 
and results from multiple application of the C62

-axis shown in 
cf. Fig. 1d. The scalar field F(r) is, therefore, symmetric under 

�x =C2z�y at the center of both the dielectric and the metal 
domain, shown as dashed lines in Fig. 1c.

Due to the homogeneity of the single layer in z-direction, 
the Floquet modes are plane-wave-like. The general mono-
chromatic solution of Maxwell’s equations that satisfies 
the symmetry requirements in the domain � = 1, 2 , where 
1≡ dielectric and 2≡metal , is hence (with � ∶=

√
−1)

Here, c� ∈ℂ is a complex coefficient, q∈ℂ the wave number 
in the propagation direction, x� the center of the domain, and 
k� = ±

√
��k

2
0
− q2 the lateral wave number given by the 

material dispersion relation, with k0 ∶=�∕c0 the vacuum wave 
number (with � the angular frequency and c0 the speed of 
light). The solution at the interface between the two domains 
additionally requires the tangential components of the electric 
and the magnetic field to be continuous, which leads to 

 with the wave impedance Z� = k�∕k0 (TE) and Z� = k�∕(��k0) 
(TM) and the (generally complex-valued) optical phase 
�� = k�d�∕2 . A countably infinite number of Floquet solu-
tions is thus obtained from solving the root equation

This is evidently a transcendental problem as all �� and Z� 
implicitly depend on q through the respective material dis-
persion relation. For the metal-dielectric structure and the 
wavelength range under consideration, however, a good 
guess can be obtained analytically. For this, let us first dis-
cuss the function �(q) in the complex plane. It inherits two 
branch points from the two root functions of k� at q� =

√
��k0

.
We now use the fact that these two roots are well separated 

(compared to k0 ) in the mid-infrared, where ‖q2‖ ≫ ‖k0‖ for 
all metals. Due to the impedance mismatch between the two 
regions, the intensity of the low-order Floquet modes is either 
concentrated in the dielectric or in the metal region. In other 
words, solutions will be either found relatively close to q1 or 
close to q2 (and far away from the other branch point). Let us 
start with the first case, where the intensity is concentrated in 
the dielectric. Since the solution is far away from q2 , the phase 
�2 has a large, positive imaginary part ℑ[𝜑2]≫ 1 . The root 
function thus simplifies to

(1)F�(r) = c� cos
[
k�(x − x�)

]
e�qz.

(2a)c1 cos
[
�1

]
= c2 cos

[
�2

]

(2b)Z1c1 sin
[
�1

]
= −Z2c2 sin

[
�2

]
,

(3)
0 = �(q)

∶= Z1 sin
[
�1

]
cos

[
�2

]
+ Z2 sin

[
�2

]
cos

[
�1

]
.

�(q) ≈ Z1 sin[�1] + �Z2 cos[�1].
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For TE polarization, ‖Z2‖≫ ‖Z1‖ , while for TM polariza-
tion, ‖Z1‖≫ ‖Z2‖ , so that we obtain

If the fields laterally concentrate in the metal domain, the 
phase �1 has a large, negative imaginary part ℑ[𝜑

1
]≪−1 , 

leading to

Since ‖k1‖≫ ‖k2‖ , and ‖𝜀1‖≪ ‖𝜀2‖ , we obtain ‖Z1‖≫ ‖Z2‖ 
irrespective of polarization. The approximate sequence of 
roots for both polarizations is thus

In the remainder of this paper, we only consider the fun-
damental TE/TM air mode with � = � = 0 , which is sufficient 
to qualitatively explain the observed scattering physics for 
small metal fill fractions1 and a lateral lattice constant below 
the first Wood anomaly ( a<𝜆 ). The successful application 
of this crude approximation can be understood by consid-
ering the following two facts: First, higher-order dielectric 
modes have little intensity in the fundamental Bragg scat-
tering order (the DC Fourier component in x). On the other 

(4)
q
(�)

1
=

√
�1k

2
0
−
(
k
(�)

1

)2

with k
(�)

1
≈

�

d1

{
(2� + 1) (TE)

2� (TM)
.

�(q) ≈ Z2 sin[�2] − �Z1 cos[�2].

(5)
q
(�)

2
=

√
�2k

2
0
−
(
k
(�)

2

)2

with k
(�)

2
≈

�

d2
(2� + 1).

hand, the metal modes exhibit a weak coupling to a vacuum 
plane wave due to the strong impedance mismatch. The 
exact roots of the fundamental mode can be found using a 
standard Newton procedure with (4) as an initial estimate. 
The fundamental and first-order modes of a platinum-air 
grating are shown in Fig. 2. Higher-order TE modes, where 
the Newton formalism does not converge with the analyti-
cal guess values, can be obtained using a global contour-
integral method on a disk in the complex plane around the 
approximate higher-order root positions [51]. We illustrate 
the behavior of �(q) , including the branch cuts, the position 
of the roots, and the contour integral method in Fig. 3.

2.2 � Chiral woodpile unit cell transfer matrix 
and complex band structure

We conveniently calculate the transfer matrix within one 
unit cell using the single layer transfer matrix T  and the 
rotation matrix R between neighboring layers, as illustrated 
in Fig. 1d. The layer transfer matrix connects the parallel 
components of the fields (Ex,Ey,Hx,Hy) at the top of the 
layer to those at its bottom in its native coordinate frame, 
shown in Fig. 1c, d.

We first introduce the impedance matrix Z that translates 
from the wave amplitudes of the Floquet states 
f ∶= (f

(+)

TE
, f

(+)

TM
, f

(−)

TE
, f

(−)

TM
) , containing the TE/TM amplitudes 

of the downward ( + , with group velocity in positive z direc-
tion) and upward (–) waves f (±)

TE∕TM
 , to the parallel field com-

ponents in the local coordinate frame.2 It is thus given by

Fig. 2   Floquet mode fields (1) for the single grating layer shown in 
Fig.  1c made of air and platinum with a lattice constant d= 2.4 μm 
and a metal fill fraction of �= 0.33 at vacuum wavelength �

0
= 3 μm . 

The unit cell is chosen such that x= 0 lies in the center of the dielec-
tric region with the metal domain shaded gray. The (a), (c) TE fields 

Ey and the (b), (d) TM fields Hy are normalized to 1 in the center of 
the (a), (b) dielectric and (c), (d) metal majority domain. Shown is 
the real part (solid line) and imaginary part (dashed line) of the fun-
damental (black) and the first order (red) field with the corresponding 
wave number q (in μm)

1  The model is expected to produce good results if the thickness of 
the metal domain is above the effective penetration depth of the fields 
on the order of 100 nm as seen in Fig. 2, but such that 𝜙≪ 1.

2  Note that this impedance matrix formally resembles that of a 
homogenized view, but the layer propagation constants and fields are 
exact so that the approximation lies in cutting the Fourier series in 
its fundamental order when matching the fields between neighboring 
layers, not within.
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with the qTE and qTM the respective wave number of the 
fundamental Floquet mode within the air region q(0)

1
 , see 

(4). The corresponding propagation matrix for the Floquet 
states is

with p(±)
TE∕TM

∶= exp{±�qTE∕TMh} . Using the impedance and 
the propagation matrix defined above, we thus obtain for the 
layer transfer matrix

The rotation matrix between neighboring layers is

with the 2 × 2 identity matrix 1 and the Kronecker product 
⊗ . The rotation angle is generally � = 2�∕N ( N ∈ℕ ), with 
N = 3 for the hexagonal woodpile with full crystallographic 
symmetry discussed here. The corresponding unit cell trans-
fer matrix is

The eigen decomposition

Z =

⎛
⎜⎜⎜⎜⎝

0
k0

qTM
0 −

k0

qTM

1 0 1 0

−
qTE

k0
0

qTE

k0
0

0 1 0 1

⎞
⎟⎟⎟⎟⎠
,

P ∶= diag(p
(+)

TE
, p

(+)

TM
, p

(−)

TE
, p

(−)

TM
),

(6)T= Z.P.Z−1.

(7)R = 1⊗

(
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

)

(8)TUC = (T.R)N .

(9)TUC =V .Λ.V−1,

with a diagonal matrix Λ= diag(��) , trivially yields the com-
plex Floquet band structure with the complex wave number

The corresponding eigenfield to the Floquet wave number 
�� is obtained through re-substituting the field components, 
given by the �-th column of Z−1.V  , into (1).

2.3 � Chiral woodpile scattering matrix

We here connect the Floquet states belonging to the complex 
band structure (10) to the scattering parameters reflectivity, 
transmissivity, and absorbance. We assume a slab of chiral 
woodpile on a substrate with isotropic (but generally fre-
quency dependent) refractive index ns , and a circularly polar-
ized plane-wave excitation at normal incidence from the top 
(assumed to be vacuum).

We first introduce the impedance matrix Z0(n) that trans-
lates from the circularly polarized plane-wave amplitudes 
(f++, f−+, f+−, f−−) within a background with refractive index 
n to the fields at an the interface at z= 0 in the native coordi-
nate frame, such that

The impedance matrix is thus given by

(10)�� =
1

�c
ln(��).

E =
∑
�1=±

∑
�2=±

f�1�2

(
ex + �

1
�ey

)
e��2nk0z and

H =
∑
�1=±

∑
�2=±

f�1�2�2n
(
−��

1
ex + �ey

)
e��2nk0z.

Fig. 3   Visualization of �(q) in (3) for the same parameters as in 
Fig. 2. The heatmap shows the logarithmic absolute value from zero 
(dark blue) to large values (red). � inherits two branch points (white 
dots), with corresponding branch cuts (white lines) from the k� root 
functions. The approximate solutions (4) and (5) are indicated by 

white crosses, while the exact roots are where the ℜ{�}= 0 (solid red 
line) and the ℑ{�}= 0 (dashed red line) contours cross. Numerically, 
the first two air roots were found at the green points using a contour 
integration along the dashed line
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Naively, the transfer matrix through a finite slab of M unit 
cells of chiral woodpile is thus given by

Using (8) for the unit cell transfer matrix, this expression 
cannot compute scattering at a semi-infinite slab without 
substrate, becomes highly inefficient for thick slabs, and 
most importantly does not reveal the relation to the complex 
band structure. Using the eigen decomposition (9), however, 
the slab transfer matrix becomes

and for a semi-infinite slab

To extract physical meaning, we need to translate these 
transfer matrices into the corresponding scattering matrices. 
For this, we first sort the 4 Floquet solutions in (9) with the 
permutation Π , such that the two waves propagating energy 
in positive z direction are stored first, and ΛΠ ∶=Π.Λ.Π⊺ and 
VΠ ∶=V .Π⊺.3 We re-express

in the sorted basis and can now subdivide all transfer matri-
ces into 2× 2 sub-blocks that connect downward ( + ) and 
upward (−) moving amplitudes, respectively:

For the scattering matrix we use the most efficient conven-
tion [52] to relate the incoming to the outgoing amplitudes:

Note that we have included the 2× 2 phase matrices that 
transport the incoming amplitudes from the other end of a 
finite slab to the interface in question for numerical stability 
[53, 54]. Since we are interested in intensities only, these 
are the identity matrices in the sub- and superstrate, and 
the respective sub-blocks of ΛM

Π
 within the chiral woodpile. 

(11)Z0(n) =

⎛⎜⎜⎜⎝

1 1 1 1

� − � � − �

−�n �n �n − �n

n n − n − n

⎞⎟⎟⎟⎠
.

(12)Tslab = Z−1
0
(ns).T

M
UC

.Z0(1).

(13)Tslab = Z−1
0
(ns).V .Λ

M .V−1.Z0(1),

Tinf = V−1.Z0(1).

(14)Tinf = V−1
Π
.Z0(1),

(15)
(
f
(2)
+

f
(2)
−

)
=

(
T++ T+−

T−+ T−−

) (
f
(1)
+

f
(1)
−

)
.

(16)
(
f
(1)
−

f
(2)
+

)
=

(
S11 S12

S21 S22

) (
P1 f

(1)
+

P2 f
(2)
−

)
.

We can thus express the scattering matrix in terms of the 
transfer matrix as 

 For the semi-infinite slab, we substitute Tinf and P1 =1 
into (17a) to obtain the reflectivity matrix in the circular 
polarization basis R= ‖S11‖2.4 Energy conservation yields 
the absorptivity A(�)

inf
= 1−

∑
�� R��� for left ( � =− ) and right 

( � =+ ) circularly polarized incoming light (from the point 
of view of the receiver).

For thick finite slabs, the transfer matrix Tslab in (12) 
becomes numerically ill-conditioned. This problem is well-
known [53], and even exists in the fundamental Bragg order 
here due to the possible strong evanescence of the funda-
mental Floquet modes (see Sect. 3). As a consequence, the 
application of (17) to the slab transfer matrix in (12) fails in 
practice. Instead, the scattering matrix St at the top interface 
between the vacuum and the woodpile is well behaved and 
obtained by substituting T=V−1

Π
.Z0(1) , P1 =1 , and P2 =Λ−M

Π,−
 

into (17). Similarly, the scattering matrix Sb between the 
woodpile and the substrate is obtained by substituting 
T= Z−1

0
(ns).VΠ , P1 =ΛM

Π,+
 , and P2 =1 into (17). The scat-

tering matrix through an arbitrary finite slab of chiral wood-
pile is hence obtained in a numerically well-behaved way 
through the application of the Redheffer star product [54, 57]

defined for 2N × 2N  matrices C=A⊛ B with N ×N  sub-
blocks as

The finite slab reflectivity matrix is then R= ‖(Sslab)11‖2 , 
while the transmissivity matrix is T = ns‖(Sslab)21‖2 . As 
for the semi-infinite woodpile, energy conservation yields 

(17a)S11 = −T−1
−−

.T−+.P1

(17b)S12 = T
−1
−−

.P2

(17c)S21 = T++.P1 + T+−.S11

(17d)S22 = T+−.S12.

(18)Sslab = St ⊛ Sb,

C11 ∶= A11 + A12

(
1 − B11A22

)−1
B11A21

C12 ∶= A12

(
1 − B11A22

)−1
B12

C21 ∶= B21

(
1 − A22B11

)−1
A21

C22 ∶= B22 + B21

(
1 − A22B11

)−1
A22B12.

3  Since energy is lost within the chiral woodpile, this simply requires 
sorting by ‖��‖ in ascending order.

4  This simple expression is a consequence of all waves in the circu-
larly polarized basis to be normalized such that their energy flow in 
propagation direction is twice the background index times the squared 
absolute value of the amplitude.
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the absorptivity. If the substrate is lossless, we obtain 
A
(�)

slab
= 1−

∑
��

�
R���+T���

�
 for left ( � =− ) and right ( � =+ ) 

circularly polarized incoming light. For a lossy substrate, 
we instead have A(�)

slab
= 1−

∑
�� R��� . We generally define the 

(spectral) circular dichroism, both for the slab and the semi-
infinite chiral woodpile, as

and the spectrally averaged circular dichroism, averaged 
over the frequency range Ω (from approximately 75THz to 
100THz) as

2.4 � full‑wave simulations and materials

The semi-analytical results have been compared to full-wave 
Maxwell simulations using COMSOL Multiphysics. The 
frequency domain simulations were performed on a lateral 
hexagonal unit cell, as shown in Fig. 1a, employing periodic 
boundary conditions and a tetrahedral finite element mesh 
with second order tetrahedral elements and a maximum edge 
length of a/10. We thus simulated a finite woodpile structure 
for optimized geometrical parameters and 15 unit cells slab 
thickness. An air domain and a substrate domain of 2c height 
were added above and below the woodpile, respectively. 
These vacuum and substrate domains were terminated by 
periodic ports, in which the system was excited through the 
vacuum port in the circularly polarized basis. The S-param-
eters were extracted from the Rayleigh components of the 
fields at these ports.

The material parameters for the different metals were 
taken from the refractive index database [58]. We spe-
cifically investigated the plasmonic metals summarized in 
Table 1. As the substrate, we used fused silica glass with 
ns ≈ 1.5 , silicon with ns ≈ 3.5 , which were approximated as 
non-dispersive and lossless materials, and the specific metal 
in question with strongly dispersive refractive index.

(19)CD(�) =
∑
�

� A(�),

(20)⟨CD⟩ = 1

∫
Ω
d� �Ω

d�CD(�).

3 � Results and discussion

3.1 � Complex band structure of the chiral plasmonic 
woodpile

To understand the guiding principle behind light propaga-
tion in the chiral plasmonic woodpile structures, we start 
analyzing the evanescent Floquet states calculated by the 
algorithm introduced in Sect. 2.2. For a broad range of geo-
metrical parameters, which will be discussed in more detail 
in Sect. 3.2, we find a polarization bandgap in the frequency 
range of interest Ω between 3 and 4 μ m wavelength: On 
the one hand, the two fundamental Floquet modes either 
predominantly couple to left (LCP-philic) or right (RCP-
philic) circular polarization. On the other hand, the LCP-
philic mode exhibits a band structure with weak dispersion 
and a small imaginary part, while the RCP-philic mode gives 
rise to a large bandgap with a relatively large imaginary 
part and a real part close to the Brillouin zone boundary at 
� ≈�∕c , as shown in Fig. 4.

While the polarization bandgap resembles that of a chiral 
high index photonic crystal, there are two distinct differ-
ences: First, the PC bandgap found here is above the fre-
quency k0 =�∕c , while in a photonic crystal, it is below 
that frequency, simplifying top-down fabrication as the cor-
responding structures for a mid-IR target frequency will be 
bigger. Second, the RCP-philic mode is not exactly pinned 
to the Brillouin zone boundary at � =�∕c , corresponding to 
a non-vanishing energy propagation and thus the expected 
finite energy loss of the strongly evanescent mode within the 
structure. Similarly, the LCP-philic mode has a small, but 
non-vanishing imaginary part of � , corresponding to a small 
evanescence or Beer–Lambert-like energy dissipation while 
propagating through the woodpile PC. As we will demon-
strate in Sect. 3.3, the attenuation is underestimated by our 
approximate theory, as we do not consider the higher-order 
Floquet modes that concentrate their energy in the metal 
domain and thus give rise to an additional loss in the PC.

Regarding the circular polarization discrimination, 
the field polarization of the two Floquet states resides 
close to the north and south poles of the Poincaré sphere, 

Table 1   Investigated metals for the chiral plasmonic woodpile, 
including their permittivity data sources. For each metal, we cal-
culated the maximum of the average CD over the spectral range Ω 
spanning from 75 to 100 THz, obtained for a semi-infinite PC of fixed 
layer pitch d= 2.4 μm , and variable volume fill fraction of the metal 

� and height of a single layer h (cf. Fig. 1). The average CD at the 
optimized position decreases for a finite slab of 15 unit cells on a sub-
strate made of glass ( ns = 1.5 ), silicon ( ns = 3.5 ), or the metal in ques-
tion (m)

Material Source d
1
[μm] h[μm] ⟨CD⟩inf ⟨CD⟩

1.5
⟨CD⟩

3.5
⟨CD⟩m

Platinum (Pt) [55] 1.94 0.68 0.84 0.58 0.73 0.71
Aluminum (Al) [56] 1.98 0.69 0.91 0.39 0.63 0.31
Iron (Fe) [56] 1.92 0.68 0.78 0.66 0.73 0.75
Tungsten (W) [56] 1.98 0.68 0.89 0.46 0.68 0.49
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respectively. We quantify the circular dichroism of the Flo-
quet states with the circular dichroism index [12, 59]

that considers the relative difference in coupling to the two 
circularly polarized plane waves and the Floquet field and 
ranges from 0 (no difference) to ±1 (maximum difference). 
The total in-coupling from the vacuum is similarly quantified 
through the coupling index

that ranges from 0 (no in-coupling) to 1 (maximum in-
coupling). The individual RCP and LCP couplings in these 
expressions are approximated by

where V (i)

Π
 ( i= 1, 2 ) is the ith sorted eigenvector of the unit 

cell transfer matrix, that is the ith column of VΠ , which con-
tains the lateral electromagnetic fields of the corresponding 
Floquet state on the C62

 axis at the top of the unit cell. As this 
definition considers both the electric and magnetic fields, it 
takes the impedance match into account.

We find that the circular dichroism index for the platinum 
structure corresponding to the band structure in Fig. 4 at 
wavelengths �

0
= (3, 3.5, 4) μm is C= (−0.84,−0.83,−0.81) 

(21)C =
C+ − C−

C+ + C−

,

(22)� = C+ + C−,

C± =
1

4‖V (i)

Π
‖2

���������

⎛
⎜⎜⎜⎝

1

∓�

±�

1

⎞
⎟⎟⎟⎠
⋅ V

(i)

Π

���������

2

,

for the LCP-philic mode and C= (0.98, 0.94, 0.89) for the 
RCP-philic mode. In other words, incoming LCP light 
couples almost exclusively into the blue, weakly attenu-
ated propagating Floquet state, while RCP light couples 
predominantly into the red, strongly evanescent state in 
Fig. 4a, justifying the color assignment. Further, the cou-
pling index is � = (0.99, 0.99, 0.98) into the LCP-philic 
mode, and � = (0.67, 0.52, 0.52) into the RCP-philic mode 
for �

0
= (3, 3.5, 4) μm . Even though the approximate theory 

is expected to overestimate the coupling, this suggests that 
almost all of the incoming LCP light is transmitted into the 
woodpile PC and absorbed through Beer attenuation within. 
On the other hand, a considerable amount of RCP light is 
expected to couple into the red, strongly evanescent Flo-
quet mode. Since this mode, however, propagates almost no 
energy into the structure within the bandgap region, RCP 
light is mainly reflected with little absorption.

3.2 � Optimizing broadband circular dichroism

While the qualitative chiro-optical behavior of the chiral 
woodpile PC is well understood within the band structure 
picture discussed in Sect. 3.1, we here perform a more quan-
titative analysis calculating the scattering matrix and the cir-
cular dichroism as outlined in Sect. 2.3.

Next to revealing the main physical scattering mecha-
nism, the semi-analytical Floquet mode algorithm comes 
at a very low numerical cost. The scattering parameters for 
one wavelength are calculated within 2 ms (in a non-opti-
mized Python implementation), compared to 5 min for the 

Fig. 4   Complex band structures of the two fundamental Floquet 
modes in an extended Brillouin zone for a chiral woodpile made 
of (a) platinum and air, and (b) aluminum and air, with d= 2.4 μm , 
metal fill fraction �= 0.2 , and h= 0.72 μm (Fig.  1). The solid lines 
show the real part of the wave number of the right (red) and left 
(blue) circular polarization-philic mode. The corresponding imagi-

nary parts are shown as dashed lines (note that the dashed blue line 
is invisible for Al as ℑ{𝜅}< 10−2 over the spectral range). The real 
parts of the modes propagating in −z direction (with a negative imagi-
nary part) are shown as dotted lines. The solid black line is the light 
line
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full-wave simulations (see Sect. 2.4 for details). This effi-
ciency enables a brute-force scan over geometrical param-
eters for different materials to extract the spectrally averaged 
circular dichroism ⟨CD⟩ , defined in (20). We find, that a 
strong CD can be generally observed for lattice constants 
below, but on the order of 3 μm , and have therefore fixed the 
single layer pitch to d= 2.4 μm ( a≈ 2.77 μm ) for the remain-
der of this manuscript.

For the four metals listed in Table 1, we have calculated 
the average CD of the semi-infinite metal-air PC with vary-
ing thickness of the in-plane air region d

1
∈ [1, 2] μm and 

the layer height h∈ [0.3, 1.5] μm . Note that the metal fill 
fraction and the chiral pitch are hence varied according 
to �= 1−d1∕d and c= 3h . The results illustrated in Fig. 5 
reveal a broad region within the parameter space, where a 
substantial CD can be observed, largely independent of the 
chosen metal. This region between 600 and 800 nm layer 
heights, where the spectrally averaged CD is above 0.5, 
spans almost all d1 , with a slight increase towards larger 
thicknesses. While aluminum and tungsten yield the strong-
est CD for the semi-infinite slab (cf. Table 1), their more 
strongly perfect plasmonic nature ( ℑ{n}≫ℜ{n} ) gives rise 
to very little field penetration into the metal region. This in 
turn makes them less efficient in more realistic finite slabs, 
since the attenuation of the LCP-philic mode (Sect. 3.1) 
and thus LCP absorption is much weaker. As discussed in 
Sect. 3.3, attenuation is, however, underestimated by our the-
oretical approximation. The chiral PC is expected to yield a 
substantial spectrally averaged CD, (20), of 70% for all met-
als, insensitive to fabrication imperfections. A specific metal 
alongside geometrical parameters within a broad region may 
hence be chosen depending on the limitations of a specific 
fabrication routine.

In summary, the CD mainly depends on d1 and h (and not 
explicitly on a) and is strongest within a specific region in Fig. 5, 
which is independent of the metal in question. To better under-
stand this behavior, we approximate the chiral woodpile even 
further by replacing it by a plasmonic version of a semi-contin-
uous Bouligand structure, as found in liquid crystals and biologi-
cal systems [60]. Since we expect the electromagnetic field to 
rotate with the smaller 60◦ rotation of the C6 screw rotation, and 
not the 120◦ of the C3 rotation used in Sect. 2.2 and illustrated in 
Fig. 1, we build the Bouligand structure such that it rotates in the 
opposite direction and has a pitch of 2c. The anisotropic lateral 
(x-y) permittivity matrix depending on �TE∕TM ∶= qTE∕TM∕k0 at 
height z is in the Bouligand picture expressed by:

The monochromatic Maxwell equations can be solved with 
the ansatz

for the lateral electric field (with Ez = 0 ). With the approxi-
mate solutions for the Floquet wave numbers (4), this pro-
cedure yields the following 2D quadratic eigenproblem in �:

with G1 ∶=�∕d1 . One can immediately see, that this approxi-
mate Bouligand equation only depends on the chiral pitch c 
(or layer height h) and thickness of the air region d1.

(23)

�(z) = R(z).diag(�TE, �TM).R
−1(z), with,

R(z) ∶=

(
cos(Gz) sin(Gz)

− sin(Gz) cos(Gz)

)

and G ∶= �∕c.

(24)R(z).E0 e
��z,

(25)
(
�2+G2+G2

1
−k2

0
−2�G�

2�G� �2+G2−k2
0

)
.E0 = 0

Fig. 5   ⟨CD⟩inf , as defined in (20), for four different semi-infinite 
metal-air chiral woodpile PCs with d= 2.4 μm as a function of dielec-
tric region width d

1
 and layer height h, see Fig. 1 c). The three lines 

indicate the theoretical limits of the high CD region based on the sim-
plified Bouligand model discussed in the main text
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Let us first discuss the solution to (25) for k0 =G , for 
which the characteristic equation yields eigenpairs (�,E0) 
for the downward propagating waves

The R branch corresponds to the lower end of the bandgap 
in Fig. 4 with �R ≈ 0.5 The mode is, however, linearly polar-
ized in y direction. On the other hand, the LCP-philic solu-
tion is indeed left elliptically polarized, if �L is real, that is 

if h< 2

3
d1 . At the upper end of the bandgap at k0 =

√
G2 + G2

1
 

we obtain a similar solution

The R branch is now linearly polarized in x direction. While 
the L branch is always left elliptically polarized, it 
approaches circular polarization if h≪ 2

3
d1 . These two 

branches are connected by the solution within the center of 
the gap at k0 =

√
G2 + G2

1
∕2:

Evidently, �− is purely imaginary, as expected in the center 
of the bandgap. It connects the �R solutions and is linearly 
polarized with polarization direction between x and y. On 
the other hand, �+ belongs to the �L branch and is left ellip-
tically polarized, quickly approaching circular polarization 
if h≪ 2

3
d1.

The Bouligand model thus identifies three main contribu-
tors that limit the region of high average spectral CD. First, 
the �R bandgap needs to reside within the spectral range of 
interest. To keep the lower band edge outside the spectral 
region of interest, we require G< 2𝜋∕𝜆l , with �l = 4 μm in 
our case. This yields h>𝜆l∕6≈ 0.67 μm , shown as brown 
line in Fig. 5, which explains the horizontal border at the 
bottom of the high CD domain. Similarly, keeping the upper 
bandgap edge outside the spectral region of interest requires

(
�R = 0,E0R = ey

)

and

(
�L =

√
4G2 − G2

1
,E0L = ex − �

2G

�L
ey

)
.

(
�R = 0,E0R = ex

)

and

(
�L =

√
4G2 + G2

1
,E0L = ex − �

�L

2G
ey

)
.

⎛⎜⎜⎜⎝
�± =

����
2G2 ±

�
4G4 +

G
4

1

4
, �

0± = �
x
− �

2G�±

�2

±
− G

2

1
∕2

�
y

⎞⎟⎟⎟⎠
.

h <
d1

3

√
4d2

1
∕𝜆2

0
− 1

,

(where the radicand is positive), shown as a red line in 
Fig. 5. Above this line, the red region in the heatmap indi-
cates a sign change in the average CD. This change is caused 
by a dichroic color switch [61], meaning that there is an 
additional bandgap of opposite optical chirality at higher 
frequencies, which also exists in chiral woodpile photonic 
crystals [38] and moves into the spectral region of interest.

Finally, the polarization of the �L mode needs to resem-
ble LCP polarization, i.e. it needs to be as close as possible 
to the pole of the Poincaré sphere, to yield a strong CD in 
the bandgap. This implies that we need to be as far as pos-
sible under the white h= 2

3
d1 line in Fig. 5, explaining the 

less sharp positively sloped upper termination of the high 
CD region. While the Bouligand model can thus explain 
the general shape of the high CD region, it predicts the red 
bandgap mode to be linearly polarized in contrast to the 
hexagonal chiral woodpile bandgap modes, which are clearly 
right circularly polarized as demonstrated by the CD index 
in Sec. 3.1.

3.3 � Comparison to full‑wave simulations

Considering the crude approximations made, the theory 
predicts the full spectral CD of all metals well. To demon-
strate this, we have calculated the RCP and LCP absorption 
through full-wave simulations as described in Sec. 2.4. The 
results for an iron-air woodpile PC on a glass substrate with 
d= 2.4 μm , �= 0.2 , and h1 = 0.7 μm , close to the optimal 
parameters of the semi-infinite slab, are shown in Fig. 6. 
Clearly, the position of the bandgap is predicted well, 
although the full-wave results seem to be slightly blue-
shifted compared to the theory. Generally, the theory under-
estimates the absorption for both polarizations within the 
bandgap region. This behavior is expected, as we do not con-
sider the single layer higher order fields that reside mainly in 
the metal domain. These lead to stronger absorption both in 
the evanescent Floquet mode (red spectrum), and the propa-
gating mode (blue spectrum). An additional indication that 
absorption and hence attenuation in the propagating Floquet 
mode is increased in the simulations is the absence of the 
Fabry–Pérot interference pattern that is clearly visible in 
the theoretical spectrum. At high wavelengths above 4 μm 
on the other hand, where iron begins to act more and more 
like a perfect electrical conductor, the inclusion of the higher 
order metallic modes is expected to lead to an underesti-
mated impedance mismatch between the incoming vacuum 
field and the Floquet states within. The theory, therefore, 
underestimates the reflection and overestimates the absorp-
tion for both polarizations alike.

While the theory cannot accurately predict the spectra, we 
have thus demonstrated that all qualitative physical predic-
tions made in the preceding chapters are accurate and can be 
used to tailor a chiral woodpile PC to a specific application 

5  Note that the boundary of the Brillouin zone is back-reflected to the 
Γ point at the center in the considered non-trivial unit cell with pitch 
2c.
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and fabrication procedure. These general principles can also 
help to further fine-tune the geometry to improve the non-
approximated CD. For example, the position of the band-
gap in Fig. 6 seems to be too far to the left. This suggests 
increasing the layer height h slightly, which is predicted 
to red-shift the right band edge towards 4 μ m, while only 
weakly affecting the left edge at 3 μ m. We demonstrate this 
effect by simulating the same structure with an increased 
h2 = 0.72 μm , shown as dotted line in Fig. 6.

4 � Conclusion

In conclusion, we have identified the underlying physical 
principles of broadband circular dichroism in chiral plas-
monic woodpile structures employing an approximate eva-
nescent Floquet mode picture. Focusing on the transparency 
window of the atmosphere between 3 and 4 μ m wavelength 
in the mid-infrared frequency region, we have found a broad 
circular polarization bandgap that exists within a large 
region of geometrical parameters and for a number of dif-
ferent metals used. Employing a semi-continuous Bouligand 
model, we extracted general design principles that predict 
the approximate size and shape of the region in the geo-
metrical parameter space, where large broadband circular 
dichroism is expected.

On the one hand, our findings demonstrate that evanes-
cent Floquet modes and the associated complex bandstruc-
ture form an invaluable tool to understand scattering at and 
wave propagation within slab-like plasmonic crystals, which 
combine interference-dominated physics known from pho-
tonic crystals and material-dispersion induced effects known 
from classical metamaterials. On the other hand, we pro-
vide a pathway to design a broadband, highly efficient cir-
cularly polarized thermal source in the mid-infrared region 
by application of Kirchhoff’s law. A large broadband CD 
can be engineered within a predictable, massive region in 

the geometrical parameter space. This region encompasses 
a variable aspect ratio of the metal bars, which ranges from 
a ratio of approximately 1 : 2 to 2 : 1. The typical lattice 
constant is smaller, but comparable to the wavelength of the 
light, approximately twice as big as in high-index dielectric 
structures, making top-down fabrication more feasible for 
the envisioned mid-infrared window between 3 and 4 μ m 
wavelength.

Indeed, a number of fabrication routines have been 
reported to yield woodpile structures for geometrical 
parameters within the predicted high-CD region, ranging 
from layer-by-layer manufacturing [62, 63] to two-photon 
lithography techniques [64]. Recent advances in two-photon 
lithography make it possible to directly produce metallic 
structures [65], while all other methods can produce an 
inverse mold on a conducting substrate (for example indium 
tin oxide). In both cases, an electro-deposition routine [66] 
can replicate the woodpile PC in a metal of choice. Standard 
direct laser writing on the other hand typically produces a 
polymeric woodpile structure, for which an electroless plat-
ing routine can be employed [67, 68].
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Fig. 6   Theoretically predicted 
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(dashed lines) absorption 
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on a glass substrate ( ns = 1.5 ) 
with d= 2.4 μm , �= 0.2 , and 
h
1
= 0.7 μm . The right band 

edge red-shifts in the simulated 
absorption spectra if the layer 
height is slightly increased to 
h
2
= 0.72 μm (dotted lines)
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