Skip to main content
Log in

Nanosecond laser ablation of target Al in a gaseous medium: explosive boiling

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An approximate mathematical description of the processes of homogeneous nucleation and homogeneous evaporation (explosive boiling) of a metal target (Al) under the influence of ns laser radiation is proposed in the framework of the hydrodynamic model. Within the continuum approach, a multi-phase, multi-front hydrodynamic model and a computational algorithm are designed to simulate nanosecond laser ablation of the metal targets immersed in gaseous media. The proposed approach is intended for modeling and detailed analysis of the mechanisms of heterogeneous and homogeneous evaporation and their interaction with each other. It is shown that the proposed model and computational algorithm allow modeling of interrelated mechanisms of heterogeneous and homogeneous evaporation of metals, manifested in the form of pulsating explosive boiling. Modeling has shown that explosive evaporation in metals is due to the presence of a near-surface temperature maximum. It has been established that in nanosecond pulsed laser ablation, such exposure regimes can be implemented in which phase explosion is the main mechanism of material removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.C. Millerin (ed.), Laser Ablation: Principles and Applications (Springer, Berlin, 1994)

    Google Scholar 

  2. D. Bäuerle, Laser Processing and Chemistry (Springer, Singapore, 2000)

    Book  Google Scholar 

  3. C.R. Phipps (ed.) Laser Ablation and Its Applications (Springer, New York, 2007)

    Google Scholar 

  4. J. Cheng, C.-S. Liu, S. Shang, D. Li, W. Perrie, G. Dearden, K. Watkins, Opt. Laser Technol. 46, 88 (2013)

    Article  ADS  Google Scholar 

  5. R. Eason (ed.) Pulsed Laser Deposition of Thin Films (Wiley, Hoboken, 2007)

    Google Scholar 

  6. D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, New York, 2006)

    Book  Google Scholar 

  7. S. Barcikowski, A. Hahn, A.V. Kabashin, B.N. Chichkov, Appl. Phys. A. 87, 47 (2007)

    Article  ADS  Google Scholar 

  8. D. Zhang, B. Gookce, S. Barcikowski, Chem. Rev. 117, 3990 (2017)

  9. V. Schmidt, M.R. Belegratis (eds.) Laser Technology in Biomimetics: Basics and Applications. Biological and Medical Physics (Springer, Berlin, 2013)

    Google Scholar 

  10. E. Fadeeva, S. Schlie-Wolter, B.N. Chichkov, G. Paasche, T. Lenarz, Laser Surface Modification of Biomaterials, Techniques and Applications, vol. 111 (Woodhead Publishing, Cambridge, 2016), p. 145

  11. V.I. Mazhukin, A.V. Mazhukin, M.G. Lobok, Laser Phys. 19(5), 1169–1178 (2009)

    Article  ADS  Google Scholar 

  12. B. Verhoff, S.S. Harilal, J.R. Freeman, P.K. Diwakar, A. Hassanein, J. Appl. Phys. 112, 093303 (2012)

    Article  ADS  Google Scholar 

  13. A. Miotello, R. Kelly, Appl. Phys. Lett. 67, 3535 (1995)

    Article  ADS  Google Scholar 

  14. A. Mazzi, A. Miotello, J. Coll. Interface Sci. 489, 1 (2016)

    Google Scholar 

  15. C. Porneala, D.A. Willis, J. Phys. D Appl. Phys. 42, 155503 (2009)

    Article  ADS  Google Scholar 

  16. N. Bulgakova, A. Bulgakov, Appl. Phys. A 73, 199 (2001)

    Article  ADS  Google Scholar 

  17. V.I. Mazhukin, A.V. Shapranov, M.M. Demin, A.A. Samokhin, A.E. Zubko, Math. Montisnigri 37, 24 (2016)

    Google Scholar 

  18. V.I. Mazhukin, A.V. Shapranov, M.M. Demin, A.A. Samokhin, A.E. Zubko, Math. Montisnigri 38, 78 (2017)

    Google Scholar 

  19. A.H.A. Lutey, J. Manuf. Sci. Eng. 135, 061003 (2013)

    Article  Google Scholar 

  20. V.I. Mazhukin, V.V. Nossov, I. Smurov, Appl. Surf. Sci. 253, 7686 (2007)

    Article  ADS  Google Scholar 

  21. V.I. Mazhukin, V.V. Nossov, I. Smurov, J. Appl. Phys. 101, 024922 (2007)

    Article  ADS  Google Scholar 

  22. S.S. Harilal, G.V. Miloshevsky, D.P. Kiwakar, N.L. La Haye, A. Hassanein, Phys. Plasmas 19, 083504 (2012)

    Article  ADS  Google Scholar 

  23. X.W. Li, W.F. Wei, J. Wu, S.L. Jia, A.C. Qiu, J. Appl. Phys. 113, 243304 (2013)

    Article  ADS  Google Scholar 

  24. V.I. Mazhukin, A.A. Samokhin, A.V. Shapranov, M.M. Demin, Mater. Res. Express 2, 016402 (2015)

    Article  ADS  Google Scholar 

  25. V.I. Mazhukin, A.A. Samarskii, Surv. Math. Ind. 4, 85 (1994)

    Google Scholar 

  26. D. Autrique, G. Clair, D. L’Hermite, V. Alexiades, A. Bogaerts, B. Rethfeld, J. Appl. Phys. 114, 023301 (2013)

    Article  ADS  Google Scholar 

  27. G. Galasso, M. Kaltenbacher, A. Tomaselli, D. Scarpa, J. Appl. Phys. 117, 123101 (2015)

    Article  ADS  Google Scholar 

  28. H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Metall. 48, 1 (2000)

    Google Scholar 

  29. M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006)

    Article  Google Scholar 

  30. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  31. C. Wu, L.V. Zhigilei, Appl. Phys. A 114, 11 (2014)

    Article  ADS  Google Scholar 

  32. A.K. Upadhyay, N.A. Inogamov, B. Rethfeld, H.M. Urbassek, Phys. Rev. B 78, 045437 (2008)

    Article  ADS  Google Scholar 

  33. V.I. Mazhukin, A.V. Shapranov, A.A. Samokhin, A.Yu. Ivochkin, Math. Montisnigri 27, 65 (2013)

    Google Scholar 

  34. N. Farid, S.S. Harilal, H. Ding, A. Hassanein, J. Appl. Phys. 115, 033107 (2014)

    Article  ADS  Google Scholar 

  35. M. Aghaei, S. Mehrabian, S.N. Tavassoli, J. Appl. Phys. 104(5), 053303 (2008)

    Article  ADS  Google Scholar 

  36. G. Clair, D. L’Hermite, J. Appl. Phys. 110(8), 083307 (2011)

    Article  ADS  Google Scholar 

  37. V.I. Mazhukin, A.V. Shapranov, M.M. Demin, N.A. Kozlovskaya, Bull. Lebedev Phys. Inst. 43, 283 (2016)

    Article  ADS  Google Scholar 

  38. V.I. Mazhukin, A.V. Shapranov, A.V. Mazhukin, O.N. Koroleva, Math. Montisnigri 36, 58 (2016)

    MathSciNet  Google Scholar 

  39. V.I. Mazhukin, A.V. .Shapranov, M.M. Demin, A.V. Mazhukin, Proc. SPIE 10453, 104530X (2017)

    Google Scholar 

  40. A.A. Samarskii, P.P. Matus, V.I. Mazhukin, I.E. Mozolevski, Comput. Math. Appl. 44, 501 (2002)

    Article  MathSciNet  Google Scholar 

  41. V.I. Mazhukin, D.A. Malaphei, P.P. Matus, A.A. Samarskii, Comput. Math. Math. Phys. 41, 379 (2001)

    MathSciNet  Google Scholar 

  42. A.V. Mazhukin, V.I. Mazhukin, Comput. Math. Math. Phys. 47, 1833 (2007)

    Article  MathSciNet  Google Scholar 

  43. P.V. Breslavskii, V.I. Mazhukin, Comput. Math. Math. Phys. 48, 2102 (2008)

    Article  MathSciNet  Google Scholar 

  44. B.M. Kozlov, A.A. Samokhin, A.B. Uspenskii, Kvantovaia elektronika 2(9), 2061 (1975)

    ADS  Google Scholar 

  45. V.A. Batanov, F.V. Bunkin, A.M. Prokhorov, V.B. Fedorov, Sov. Phys. JETP 36, 311 (1973)

    ADS  Google Scholar 

  46. Y.V. Senatsky, N.E. Bykovsky, S.M. Pershin, A.A. Samokhin, Laser Part. Beams 35, 177 (2017)

    Article  ADS  Google Scholar 

  47. B. Wu, Y.C. Shin, Appl. Phys. Lett. 89, 111902 (2006)

    Article  ADS  Google Scholar 

  48. J.E. Hatch, Aluminum: Properties and Physical Metallurgy (ASM, Metals Park, 1984)

    Google Scholar 

  49. V.I. Mazhukin, M.M. Demin, A.V. Shapranov, Appl. Surf. Sci. 302, 6 (2014)

    Article  ADS  Google Scholar 

  50. S.N. Andreev, V.I. Mazhukin, A.A. Samokhin, M.M. Demin, Kratkie soobshcheniia po fizike 7, 50 (2006)

    Google Scholar 

  51. A. Spiro, M. Lowe, G. Pasmanik, Appl. Phys. A 107, 801 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research was funded by the Russian Foundation for Basic Research, Grant no. 16-07-00263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Mazhukin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazhukin, V.I., Mazhukin, A.V., Demin, M.M. et al. Nanosecond laser ablation of target Al in a gaseous medium: explosive boiling. Appl. Phys. A 124, 237 (2018). https://doi.org/10.1007/s00339-018-1663-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1663-9

Navigation