Skip to main content
Log in

Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present numerical predictions for the photonic TE-like band gap ratio and the quality factors of symmetric localized defect as a function of the thickness slab and temperature by the use of plane wave expansion and the finite-difference time-domain methods. The photonic-crystal hole slab is composed of a 2D hexagonal array with identical air holes and a circular cross section, embedded in a non-dispersive III–V semiconductor quaternary alloy slab, which has a high value of dielectric function in the near-infrared region, and the symmetric defect is formed by increasing the radius of a single hole in the 2D hexagonal lattice. We show that the band gap ratio depends linearly on the temperature in the range 150–400 K. Our results show a strong temperature dependence of the quality factor Q, the maximum (\(Q = 7000\)) is reached at \(T = 350\,\hbox {K},\) but if the temperature continues to increase, the efficiency drops sharply. Furthermore, we present numerical predictions for the electromagnetic field distribution at \(T = 350\,\hbox {K}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Joullié, P. Christol, A.N. Baranov, A. Vicet, Solid-state mid-infrared laser sources, in I.T. Sorokina, K.L. Vodopyanov, (eds.), Topics in Applied Physics, vol. 89 (Springer, Germany, 2003), pp. 1–59

    Google Scholar 

  2. G. Ru, Y. Zheng, A. Li, The wavelength shift in GaInAsSb photodiode structures. J. Appl. Phys. 77, 6721 (1995)

    Article  ADS  Google Scholar 

  3. O. Levi, W. Suh, M.M. Lee, J. Zhang, S.R.J. Brueck, S. Fan, J.S. Harris, Integrated biomedical nanosensor using guided resonance in photonic crystal structures. Proc. Spie 6095, 60950N (2006)

    Article  Google Scholar 

  4. C.H. Bui, J. Zheng, S.W. Hoch, L.Y.T. Lee, J.G.E. Harris, C.W. Wong, High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling. Appl. Phys. Lett. 100, 021110 (2012)

    Article  ADS  Google Scholar 

  5. Y. Nazirizadeh, J. Reverey, U. Geyer, U. Lemmer, C. Selhuber-Unkel, M. Gerken, Material-based three-dimensional imaging with nanostructured surfaces. Appl. Phys. Lett. 102, 011116 (2013)

    Article  ADS  Google Scholar 

  6. E. De Tommasi, A.C. De Luca, S. Cabrini, I. Rendina, S. Romano, V. Mocella, Plasmon-like surface states in negative refractive index photonic crystals. Appl. Phys. Lett. 102, 081113 (2013)

    Article  ADS  Google Scholar 

  7. H. Kurt, E. Colak, O. Cakmak, H. Caglayan, E. Ozbay, The focusing effect of graded index photonic crystals. Appl. Phys. Lett. 93, 171108 (2008)

    Article  ADS  Google Scholar 

  8. S. Fan, P.R. Villenueve, J.D. Joannopoulos, E.F. Schubert, Photonic crystal light-emitting diodes. Proc. SPIE 3002, 67 (1997)

    Article  ADS  Google Scholar 

  9. D.H. Long, I.-K. Hwang, S.-W. Ryu, J. Korean Phys. Soc. 51, 1400 (2007)

    Article  ADS  Google Scholar 

  10. J.J. Wierer, M.R. Krames, J.E. Epler, N.F. Gardner, M.G. Graford, InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures. Appl. Phys. Lett. 84, 3885 (2004)

    Article  ADS  Google Scholar 

  11. L.C. Andreani, M. Agio, Photonic bands and gap maps in a photonic crystal slab. IEEE J. Quantum Electron. 38, 891 (2002)

    Article  ADS  Google Scholar 

  12. A.L. Bingham, D. Grischkowsky, Terahertz two-dimensional high-Q photonic crystal waveguide cavities. Opt. Lett. 33, 348 (2008)

    Article  ADS  Google Scholar 

  13. R. Meisels, O. Glushko, F. Kuchar, Photonics Nanostruct. 10, 60 (2012)

    Article  ADS  Google Scholar 

  14. L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, K.J. Boller, Mid-IR transmission of a large-area 2D silicon photonic crystal slab. J. Phys. D Appl. Phys. 41, 135105 (2008)

    Article  ADS  Google Scholar 

  15. M. Skorobogatiy, J. Yang, Fundamentals of Photonic Crystals Guiding (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  16. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Comput. Phys. Commun. 181(3), 687 (2010)

    Article  ADS  Google Scholar 

  17. S.G. Jhonson, J.D. Joannopoulos, Opt. Express 8, 173 (2001)

    Article  ADS  Google Scholar 

  18. S.G. Jhonson, P.R. Villenueve, S. Fan, J.D. Joannopoulos, Phys. Rev. B 62, 8212 (2000)

    Article  ADS  Google Scholar 

  19. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005)

    MATH  Google Scholar 

  20. D.M. Sulivan, Electromagnetic Simulation Using the FDTD Method. Series on RF and Microwave Technology (IEEE Press, New York, 2000)

    Book  Google Scholar 

  21. G.A. Samara, Temperature and pressure dependences of the dielectric constants of semiconductors. Phys. Rev. B 27, 3494 (1983)

    Article  ADS  Google Scholar 

  22. S. Adachi, Properties of group-IV,IIIV and IIVI semiconductors. in Wiley Series in Materials for Electronic and Optoelectronic Applications (Wiley, England 2005), pp. 195–198

  23. M.P. MikhaiIova, in Handbook Series on Semiconductor Parameters, vol. 2, ed. by M. Levinshtein, S. Rumyantsev, M. Shur (Singapore, World Scietific, 1999), pp. 180–191

    Chapter  Google Scholar 

  24. R. Sánchez-Cano, N. Porras-Montenegro, Phys. E Low Dimens. Syst. Nanostruct. 43, 76 (2010)

    Article  ADS  Google Scholar 

  25. J. Barvestani, S. Dehghan, A.S. Vala, Temperature tunability of cavity-semiconducting waveguide coupling in a two-dimensional photonic crystal. Photon Nanostruct. Fundam. Appl. (2014). doi:10.1016/j.photonics2014.07.002

    Google Scholar 

Download references

Acknowledgments

The authors thank Dirección de Investigaciones y Desarrollo Tecnológico Universidad Autónoma de Occidente and Vicerrectoría de Investigaciones Universidad del Valle for partial financial support under the Grant Numbers 10INTER-132 and CI:7871, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sánchez-Cano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Cano, R., Porras-Montenegro, N. Temperature dependence of band gap ratio and Q-factor defect mode in a semiconductor quaternary alloy hexagonal photonic-crystal hole slab. Appl. Phys. A 122, 349 (2016). https://doi.org/10.1007/s00339-016-9906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9906-0

Keywords

Navigation