Skip to main content
Log in

Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.F. Hamilton, Adv. Phys. 37, 359–441 (1988)

    Article  ADS  Google Scholar 

  2. R. Araujo, Contemp. Phys. 21, 77–84 (1980)

    Article  ADS  Google Scholar 

  3. P. Potiyaraj, P. Kumlangdudsana, S.T. Dubas, Mater. Lett. 61, 2464–2466 (2007)

    Article  Google Scholar 

  4. S.-H. Min, J.-H. Yang, J.Y. Kim, Y.-U. Kwon, Microporous Mesoporous Mater. 128, 19–25 (2010)

    Article  Google Scholar 

  5. V. Reddy, A. Currao, G. Calzaferri, J. Mater. Chem. 17, 3603–3609 (2007)

    Article  Google Scholar 

  6. A. Currao, V.R. Reddy, M.K. van Veen, R.E. Schropp, G. Calzaferri, Photochem. Photobiol. Sci. 3, 1017–1025 (2004)

    Article  Google Scholar 

  7. V. Reddy, A. Currao, G. Calzaferri, J. Phys. 61, 960 (2007)

    Google Scholar 

  8. M. Husein, E. Rodil, J. Vera, Langmuir 19, 8467–8474 (2003)

    Article  Google Scholar 

  9. M.M. Husein, E. Rodil, J.H. Vera, J. Coll. Interf. Sci. 288, 457–467 (2005)

    Article  Google Scholar 

  10. R.P. Bagwe, K.C. Khilar, Langmuir 13, 6432–6438 (1997)

    Article  Google Scholar 

  11. T. Sugimoto, K. Miyake, J. Colloid Interface Sci. 140, 335–347 (1990)

    Article  Google Scholar 

  12. Y. Sun, X. Song, J. Wang, J. Yu, Cryst. Res. Technol. 47, 437–442 (2012)

    Article  Google Scholar 

  13. C. Ramshaw, Chem. Eng. 389, 13–14 (1983)

    Google Scholar 

  14. A. Stankiewicz, Chem. Eng. Sci. 56, 359–364 (2001)

    Article  Google Scholar 

  15. D. Trent, D. Tirtowidjojo, Chem. Eng. 742, 30–31 (2003)

    Google Scholar 

  16. M.S. Jassim, G. Rochelle, D. Eimer, C. Ramshaw, Ind. Eng. Chem. Res. 46, 2823–2833 (2007)

    Article  Google Scholar 

  17. J.-F. Chen, Y.-H. Wang, F. Guo, X.-M. Wang, C. Zheng, Ind. Eng. Chem. Res. 39, 948–954 (2000)

    Article  Google Scholar 

  18. S.D. Pask, Z. Cai, H. Mack, L. Marc, O. Nuyken, Macromol. React. Eng. 7, 98–106 (2013)

    Article  Google Scholar 

  19. L. Cafiero, G. Baffi, A. Chianese, R. Jachuck, Ind. Eng. Chem. Res. 41, 5240–5246 (2002)

    Article  Google Scholar 

  20. M.-H. Chang, H.-S. Liu, C.Y. Tai, Powder Technol. 207, 378–386 (2011)

    Article  Google Scholar 

  21. C.Y. Tai, Y.-H. Wang, C.-T. Tai, H.-S. Liu, Ind. Eng. Chem. Res. 48, 10104–10109 (2009)

    Article  Google Scholar 

  22. C.-Y. Chiang, M.-H. Chang, H.-S. Liu, C.Y. Tai, S. Ehrman, Ind. Eng. Chem. Res. 51, 5207–5215 (2012)

    Article  Google Scholar 

  23. R. Aguiar, H. Muhr, E. Plasari, M. Burty, P. Rocabois, Chem. Eng. Technol. 26, 292–295 (2003)

    Article  Google Scholar 

  24. K. SwaminathanáIyer, Lab Chip 7, 1800–1805 (2007)

    Article  Google Scholar 

  25. C. Tai, Y. Wang, Y. Kuo, M. Chang, H. Liu, Chem. Eng. Sci. 64, 3112–3119 (2009)

    Article  Google Scholar 

  26. H.-S. Liu, Y.-H. Wang, C.-C. Li, C.Y. Tai, Chem. Eng. J. 183, 466–472 (2012)

    Article  Google Scholar 

  27. E. Rodil, L. Aldous, C. Hardacre, M.C. Lagunas, Nanotechnology 19, 105603 (2008)

    Article  ADS  Google Scholar 

  28. L.A. Bromley, AIChE J. 19, 313–320 (1973)

    Article  Google Scholar 

  29. O. Söhnel, J. Garside, Precipitation: Basic Principles and Industrial Applications, 1st edn. (Butterworth-Heinemann, Oxford, 1992)

    Google Scholar 

  30. A. Aoune, C. Ramshaw, Int. J. Heat Mass Transfer 42, 2543–2556 (1999)

    Article  Google Scholar 

  31. Y.-S. Chen, C.Y. Tai, M.-H. Chang, H.-S. Liu, J. Chin. Inst. Chem. Eng. 37, 63–69 (2006)

    Google Scholar 

  32. C.Y. Tai, Y.H. Wang, H.S. Liu, AIChE J. 54, 445–452 (2008)

    Article  Google Scholar 

  33. W. Peukert, H.-C. Schwarzer, F. Stenger, Chem. Eng. Process. 44, 245–252 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Dr. Molaei Dehkordi for his support and guidance during this work. The financial supports from the Sharif University of Technology and the Iranian Nanotechnology Initiative are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Davarpanah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabir, H., Davarpanah, M. & Ahmadpour, A. Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor. Appl. Phys. A 120, 105–113 (2015). https://doi.org/10.1007/s00339-015-9174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9174-4

Keywords

Navigation