Skip to main content
Log in

A thin film triode type carbon nanotube field emission cathode

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The field electron emission of carbon nanotubes has been heavily studied over the past two decades for various applications, such as in display technologies, microwave amplifiers, and spacecraft propulsion. However, a commercializable lightweight and internally gated electron source has yet to be realized. This work presents the fabrication and testing of a novel internally gated carbon nanotube field electron emitter. Several specific methods are used to prevent electrical shorting of the gate layer, a common failure for internally gated devices. A unique design is explored where the etch pits extend into the silicon substrate and isotropic etching is used to create a lateral buffer zone between the gate and carbon nanotubes. Carbon nanotubes are self-aligned to and within 10 microns from the gate, which creates large electric fields at low potential inputs. Initial tests confirm high field emission performance with an anode current density (based on total area of the device) of 293 μA cm−2 and a gate current density of 1.68 mA cm−2 at 250 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.I. Milne, K.B.K. Teo, G.A.J. Amaratunga, P. Legagneux, L. Gangloff, J.P. Schnell, V. Semet, V. Thien, B.O. Groening, J. Mater. Chem. 14, 933 (2004)

    Article  Google Scholar 

  2. J.D. Carey, Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 361, 2891 (2003)

    Article  ADS  Google Scholar 

  3. R. Gomer, Field Emission and Field Ionization (Harvard University Press, Cambridge, 1961)

    Google Scholar 

  4. K.J. Lee, in Materials Engineering (Georgia Institute of Technology, Atlanta, 1986), pp. 1–20

    Google Scholar 

  5. A. Loiseau, P. Launois, P. Petit, S. Roche, J.-P. Salvetat, Understanding Carbon Nanotubes: From Basics to Applications. Lecture Notes in Physics, vol. 677 (Springer, Berlin, 2006)

    Book  MATH  Google Scholar 

  6. W.I. Milne, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, S.B. Lee, D.G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J.P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, V. Thien Binh, Diam. Relat. Mater. 12, 422 (2003)

    Article  ADS  Google Scholar 

  7. W.A. de Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995)

    Article  ADS  Google Scholar 

  8. Y.V. Gulyaev, Z.J. Kosakovskaya, N.I. Sinitsyn, G.V. Torgashov, Y.F. Zakharchenko, in 7th IVM Conference (International Vacuum Microelectronics), Grenoble, France (1994), pp. 322–325

    Google Scholar 

  9. Y. Lan, Y. Wang, Z.F. Ren, Adv. Phys. 60, 553 (2011)

    Article  ADS  Google Scholar 

  10. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications. Topics in Applied Physics, vol. 80 (Springer, Berlin, 2001)

    Google Scholar 

  11. J.-M. Bonard, F. Maier, T. Stöckli, A. Châtelain, W.A. de Heer, J.-P. Salvetat, L. Forró, Ultramicroscopy 73, 7 (1998)

    Article  Google Scholar 

  12. M. Kaiser, M. Doytcheva, M. Verheijen, N. de Jonge, Ultramicroscopy 106, 902 (2006)

    Article  Google Scholar 

  13. G. Pirio, P. Legagneux, D. Pribat, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, Nanotechnology 13, 1 (2002)

    Article  ADS  Google Scholar 

  14. D.-W. Kim, L.H. Chen, J.F. AuBuchon, I.C. Chen, S.-H. Jeong, I.K. Yoo, S. Jin, Carbon 43, 835 (2005)

    Article  Google Scholar 

  15. C.A. Spindt, J. Appl. Phys. 39, 3504–3505 (1968)

    Article  ADS  Google Scholar 

  16. D. Kim, S.H. Lim, A.J. Guilley, C.S. Cojocaru, J.E. Bouree, L. Vila, J.H. Ryu, K.C. Park, J. Jang, Thin Solid Films 516, 706 (2008)

    Article  ADS  Google Scholar 

  17. W.I. Milne, K.B.K. Teo, M. Mann, I.Y.Y. Bu, G.A.J. Amaratunga, N. De Jonge, M. Allioux, J.T. Oostveen, P. Legagneux, E. Minoux, L. Gangloff, L. Hudanski, J.P. Schnell, L.D. Dieumegard, F. Peauger, T. Wells, M. El-Gomati, Phys. Status Solidi A 203, 1058 (2006)

    Article  ADS  Google Scholar 

  18. M. Ohring, Reliability and Failure of Electronic Materials and Devices (Academic Press, San Diego, 1998)

    Google Scholar 

  19. Y.C. Choi, D.W. Kim, T.J. Lee, C.J. Lee, Y.H. Lee, Synth. Met. 117, 81 (2001)

    Article  Google Scholar 

  20. M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Plasma Sources Sci. Technol. 12, 205 (2003)

    Article  ADS  Google Scholar 

  21. P.R. Schwoebel, C.A. Spindt, C.E. Hollandm, J. Vac. Sci. Technol. B 22, 433–435 (2003)

    Article  Google Scholar 

  22. J.M. Bonard, H. Kind, T. Stockli, L.A. Nilsson, Solid-State Electron. 45, 893 (2001)

    Article  ADS  Google Scholar 

  23. M. Chhowalla, C. Ducati, N.L. Rupesinghe, K.B.K. Teo, G.A.J. Amaratunga, Appl. Phys. Lett. 79, 2079 (2001)

    Article  ADS  Google Scholar 

  24. H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Appl. Phys. Lett. 76, 1776 (2000)

    Article  ADS  Google Scholar 

  25. Y.M. Wong, W.P. Kang, J.L. Davidson, B.K. Choi, W. Hofmeister, J.H. Huang, Diamond Relat. Mater. 14, 2078

  26. S. Berhanu, O. Gröning, Z. Chen, J. Merikhi, M. Kaiser, N.L. Rupesinghe, P.K. Bachmann, Phys. Status Solidi A (2012). doi: 10.1002/pssa.201228296

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Georgia Tech Research Institute, Dr. Mitchell Walker and Lake Singh of the High Power Electric Propulsion Laboratory at Georgia Tech, and the Air Force Institute of Technology. Work was partially funded by the Defence Advanced Research Projects Agency, project number HR0011-09-C-0142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Sanborn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanborn, G., Turano, S., Collins, P. et al. A thin film triode type carbon nanotube field emission cathode. Appl. Phys. A 110, 99–104 (2013). https://doi.org/10.1007/s00339-012-7376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7376-6

Keywords

Navigation