Skip to main content
Log in

In situ alignment of carbon nanocoils and their field emission behavior induced by an electric field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The alignment of nanocoils by an electric field was observed in situ inside a focused ion beam microscope. This alignment occurred at relatively low fields, before the onset of electron field emission. The emission behavior of individual nanocoils was also studied using a field emission probe system. The robust coils reached high emission currents, with more than 10 μA coming from individual coils at fields stronger than 4 V/μm. The emission behavior, however, was not wholly consistent with conventional field emission theory. Analysis of the data showed non-linear Fowler–Nordheim behavior. This phenomenon is usually attributed to thermal effects, but numerical calculations show that cannot be the case. The data plotted linearly on a Schottky plot, which should not be possible due to Schottky temperature dependence and resistive heating during emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.R. Davis, R.J. Slawson, C.R. Rigby: Nature 171, 756 (1953)

    Article  ADS  Google Scholar 

  2. W.R. Davis, R.J. Slawson, C.R. Rigby: Trans. Brit. Ceram. Soc. 56, 67 (1957)

    Google Scholar 

  3. M. Hillert, N. Lange: Z. Kristallogr. 111, 24 (1958)

    Article  Google Scholar 

  4. R.T.K. Baker et al.: J. Catal. 26, 51 (1972)

    Article  Google Scholar 

  5. L.S. Lobo, D.L. Trimm: J. Catal. 29, 15 (1973)

    Article  Google Scholar 

  6. R.T.K. Baker, P.S. Harris, S. Terry: Nature 253, (1975)

  7. R.A. Dalla Metta, A.G. Piken, M.J. Shelef: J. Catal. 40, 173 (1975)

    Article  Google Scholar 

  8. L. Pan, M. Zhang, Y. Nakayama: J. Appl. Phys. 91, 10058 (2002)

    Article  ADS  Google Scholar 

  9. L. Pan, T. Hayashida, M. Zhang, Y. Nakayama: Jpn. J. Appl. Phys. 40, L235 (2001)

  10. X. Chen, T. Saito, M. Kusunoki, S. Motojima: J. Mater. Res. 14, 4329 (1999)

    Article  ADS  Google Scholar 

  11. X. Chen, W. In-Hwang, S. Shimada, M. Fujii, H. Iwanaga, S. Motojima: J. Mater. Res. 15, 808 (2000)

    Article  ADS  Google Scholar 

  12. S. Motojima, M. Kawaguchi, K. Nozaki, H. Iwanaga: Appl. Phys. Lett. 56, 321 (1990)

    Article  ADS  Google Scholar 

  13. S. Motojima. I. Hasegawa, S. Kagiya, M. Momiyama: Appl. Phys. Lett. 62, 2322 (1993)

    Article  ADS  Google Scholar 

  14. M. Zhang, Y. Nakayama, L. Pan: Jpn. J. Appl. Phys. 39, L1242 (2000)

  15. R. Gomer: Field Emission and Field Ionization (Harvard University Press, Cambridge, MA 1961), 45–46

  16. V.V. Zhirnov, C. Lizzul-Rinne, G.J. Wojak, R.C. Sanwald, J.J. Hren: J. Vac. Sci. Technol. B 19, 87 (2001)

    Article  Google Scholar 

  17. E. Einarsson, J. Jiao, J. Prado, G.M. Coia, J. Petty, L. Love: Mat. Res. Soc. Symp. Proc. 740(online), I3.20 (2002)

  18. J. Jiao, E. Einarsson, D.W. Tuggle, L. Love, J. Prado, G.M. Coia: J. Mater. Res. 18, 2580 (2003)

    Article  ADS  Google Scholar 

  19. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer: Science 283, 1516 (1999)

    Article  ADS  Google Scholar 

  20. J. M Bonard, C. Klinke, K.A. Dean, B.F. Coll: Phys. Rev. B 67, 115406 (2003)

    Article  ADS  Google Scholar 

  21. A.G. Rinzler et al.: Science 269, 1550 (1995)

    Article  ADS  Google Scholar 

  22. J.M. Bonard et al.: Phys. Rev. Lett. 81, 1441 (1998)

    Article  ADS  Google Scholar 

  23. M. Sveningsson, M. Jönsson, O.A. Nerushev, F. Rohmund, E.E.B. Campbell: Appl. Phys. Lett. 81, 1095 (2002)

    Article  ADS  Google Scholar 

  24. J.P. Barbour, W.W. Dolan, J.K. Trolan, E.E. Martin, W.P. Dyke: Phys. Rev. 92, 45 (1953)

    Article  ADS  Google Scholar 

  25. N.S. Xu, Y. Chen, S.Z. Deng, J. Chen, X.C. Ma, E.G. Wang: J. Phys. D: Appl. Phys. 34, 1597 (2001)

    Article  ADS  Google Scholar 

  26. P.G. Collins, A. Zettl: Appl. Phys. Lett. 69, 1969 (1996)

    Article  ADS  Google Scholar 

  27. X. Xu, G.R. Brandes: Appl. Phys. Lett. 74, 2549 (1999)

    Article  ADS  Google Scholar 

  28. K.A. Dean, B.R. Chalamala: Appl. Phys. Lett. 76, 375 (2000)

    Article  ADS  Google Scholar 

  29. V. Filip, D. Nicolaescu, F. Okuyama: J. Vac. Sci. Technol., B. 19, 1016 (2001)

    Article  Google Scholar 

  30. S.T. Purcell, P. Vincent, C. Journet, V.T. Binh: Phys. Rev. B 88, 105502 (2002)

    Google Scholar 

  31. P. Vincent, S.T. Purcell, C. Journet, V.T. Binh: Phys Rev. B 66, 075406 (2002)

    Article  ADS  Google Scholar 

  32. C.A. Brebbia, Ed.: Boundary Element Techniques in Computer-Aided Engineering (Kluwer Academic Publishers, Inc., Dordrecht 1991)

  33. A. Modinos: Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum Press, New York 1984), pp 9–16

  34. L.W. Swanson, A.E. Bell: Adv. In Electronics and Elec. Phys. 32, 193 Appendix (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jiao.

Additional information

PACS

81.07.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einarsson, E., Tuggle, D. & Jiao, J. In situ alignment of carbon nanocoils and their field emission behavior induced by an electric field. Appl. Phys. A 79, 2049–2054 (2004). https://doi.org/10.1007/s00339-004-2674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2674-2

Keywords

Navigation