Skip to main content

Advertisement

Log in

Live coral cover in the fossil record: an example from Holocene reefs of the Dominican Republic

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

An Erratum to this article was published on 25 January 2012

Abstract

Fossil reefs hold important ecological information that can provide a prehuman baseline for understanding recent anthropogenic changes in reefs systems. The most widely used proxy for reef “health,” however, is live coral cover, and this has not been quantified in the fossil record because it is difficult to establish that even adjacent corals were alive at the same time. This study uses microboring and taphonomic proxies to differentiate between live and dead corals along well-defined time surfaces in Holocene reefs of the Enriquillo Valley, Dominican Republic. At Cañada Honda, live coral cover ranged from 59 to 80% along a contemporaneous surface buried by a storm layer, and the reef, as a whole had 33–80% live cover within the branching, mixed, massive and platy zones. These values equal or exceed those in the Dominican Republic and Caribbean today or reported decades ago. The values from the western Dominican Republic provide a geologic baseline against which modern anthropogenic changes in Caribbean reefs can be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Aronson RB, Precht WT (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Article  Google Scholar 

  • Behrensmeyer AK, Kidwell SM (1985) Taphonomy’s contribution to paleobiology. Paleobiology 11:105–119

    Google Scholar 

  • Blanchon P, Jones B, Kalbfleisch W (1997) Anatomy of a fringing reef around Grand Cayman: storm rubble, not coral framework. J Sediment Res 67:1–16

    Google Scholar 

  • Brett CE, Baird GC (1986) Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios 1:207–227

    Article  Google Scholar 

  • Brett CE, Seilacher A (1991) Fossil lagerstatten: a taphonomic consequence of event sedimentation. In: Einsele E (ed) Cycles and events in stratigraphy. Springer, Berlin, pp 283–297

    Google Scholar 

  • Brett CE, Miller KB, Baird GC (1990) A temporal hierarchy of paleoecologic processes within a Middle Devonian epeiric sea. In: Miller W (ed) Paleocommunity temporal dynamics: the long-term development of multispecies assemblies, vol 5. Paleontological Society Special Publication, University of Tennessee, Knoxville, pp 178–208

  • Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2(8):e711. doi:10.1371/journal.pone.0000711

    Article  PubMed  Google Scholar 

  • Burke L, Maidens J (2004) Reefs at risk in the Caribbean. World Resources Institute, Washington, DC http://www.wri.org

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L, Edgar GL, Edwards AJ, Fenner D, Héctor M, Guzmán HM, Hoeksema BW, Hodgson G, Johan O, Wilfredo Y, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    Article  PubMed  CAS  Google Scholar 

  • Cuevas D, Sherman C, Ramirez W, Hubbard DK (2008) Environmental factors controlling community structure, morphology and linear extension of Mid-Holocene reef corals from Canada Honda, Southwestern, Dominican Republic. Proc 11th Int Coral Reef Symp 1:21–25

    Google Scholar 

  • Douville E, Paterne M, Cabioch G, Louvat P, Gaillardet J, Juillet-Leclerc A, Ayliffe L (2010) Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites). Bioscience 7:2445–2459

    CAS  Google Scholar 

  • Edinger EN, Pandolfi JM, Kelley RA (2001) Community structure of Quaternary coral reefs compared with recent life and death assemblages. Paleobiology 27:669–694

    Article  Google Scholar 

  • Edinger EN, Burr GS, Pandolfi JM, Ortiz JC (2007) Age accuracy and resolution of Quaternary corals used as proxies for sea level. Earth Planet Sci Lett 253:37–49

    Article  CAS  Google Scholar 

  • Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  PubMed  CAS  Google Scholar 

  • Geraldes FX (2003) The coral reefs of the Dominican Republic. In: Cortes J (ed) Latin American coral reefs. Elsevier, Amsterdam, pp 77–110

    Chapter  Google Scholar 

  • Greenstein BJ (2007) Taphonomy: detecting critical events in fossil reef-coral assemblages. In: Aronson R (ed) Geological approaches to coral reef ecology. Springer, New York, pp 31–60

    Chapter  Google Scholar 

  • Greenstein BJ, Moffat HA (1996) Comparative taphonomy of modern and Pleistocene corals, San Salvador, Bahamas. Palaios 11:57–63

    Article  Google Scholar 

  • Greenstein BJ, Pandolfi JM (1997) Preservation of community structure in modern reef coral life and death assemblages of the Florida Keys: implications for the Quaternary record of coral reefs. Bull Mar Sci 19:39–59

    Google Scholar 

  • Greenstein BJ, Pandolfi JM (2003) Taphonomic alteration of reef corals: effects of reef environment and coral growth form. II: The Florida Keys. Palaios 18:495–509

    Article  Google Scholar 

  • Greenstein BJ, Curran HA, Pandolfi JM (1998) Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a Pleistocene perspective. Coral Reefs 17:249–261

    Article  Google Scholar 

  • Greer L, Jackson J, Curran HA, Guilderson T, Teneva T (2009) How vulnerable is Acropora cervicornis to environmental change? Lessons from the early to middle Holocene. Geology 37:263–266

    Article  CAS  Google Scholar 

  • Grober-Dunsmore R (2006) Resheeting of relict Acropora palmata framework may promote fast growth, but does it compromise the structural integrity of the colony? Coral Reefs 25:46

    Article  Google Scholar 

  • Hubbard DK (1992) Hurricane-induced sediment transport in open-shelf tropical systems—an example from St. Croix, U.S. Virgin Islands. J Sediment Petrol 62:946–960

    Google Scholar 

  • Hubbard DK, Ward LG, FitzGerald DM (1976) Reef morphology and sediment transport, Lucaya, Grand Bahama Island. AAPG Annual Meeting, New Orleans

    Google Scholar 

  • Hubbard DK, Miller AI, Scaturo D (1990) Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, U.S. Virgin Islands): applications to the nature of reef systems in the fossil record. J Sediment Petrol 60:335–360

    Google Scholar 

  • Hubbard DK, Burke RB, Gill IP (1998) Where’s the reef: the role of framework in the Holocene. Carbonates Evaporites 13:3–9

    Article  Google Scholar 

  • Hubbard DK, Ramirez W, Cuevas D, Erickson T, Estep A (2008) Holocene reef accretion along the north side of Bahia Enriquillo (western Dominican Republic): unique insights into patterns of reef development in response to sea-level rise. Proc 11th Int Coral Reef Symp 1:43–47

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  PubMed  CAS  Google Scholar 

  • Jackson JBC (1997) Reefs since Columbus. Coral Reefs 16:23–32

    Article  Google Scholar 

  • Kidwell SM, Flessa K (1995) The quality of the fossil record. Annu Rev Ecol Syst 26:269–299

    Article  Google Scholar 

  • Lagomarcino A, Hubbard DK (2008) A possible signature for white band disease and/or bleaching in Acropora palmata, Buck Island National Monument, St. Croix, USVI. Proc 11th Int Coral Reef Symp 263

  • Le Campion-Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–157

    Article  Google Scholar 

  • Lescinsky HL (2008) Bioerosion and encrustation on Curacao Pleistocene reefs: evaluating grazing in the fossil record. In: Park LE, Freile D (eds) 13th symposium on the geology of the Bahamas and other Carbonate regions. San Salvador, Bahamian Field Station, pp 197–210

    Google Scholar 

  • Lescinsky HL, Edinger E, Risk M (2002) Mollusc shell encrustation and bioerosion rates in a modern epeiric sea: taphonomy experiments in the Java Sea, Indonesia. Palaios 17:171–191

    Article  Google Scholar 

  • Mann P, Taylor FW, Burke K, Kulstad R (1984) Subaerially exposed Holocene coral reef, Enriquillo Valley, Dominican Republic. Geol Soc Am Bull 95:1084–1092

    Article  Google Scholar 

  • McClenachan L (2009) Documenting loss of large trophy fish from the Florida Keys with historical photographs. Conserv Biol 23:636–643

    Article  Google Scholar 

  • McClenachan L, Jackson JBC, Newman MJH (2006) Conservation implications of historic sea turtle nesting beach loss. Front Ecol Environ 4:290–296

    Article  Google Scholar 

  • McNiven IJ, Bedingfield AC (2008) Past and present marine mammal hunting rates and abundances: dugong (Dugong dugon) evidence from Dabangai Bone Mound, Torres Strait. J Archaeol Sci 35:505–515

    Article  Google Scholar 

  • Meyer DL, Bries JM, Greenstein BJ (2003) Preservation of in situ reef framework in regions of low hurricane frequency: Pleistocene of Curacao and Bonaire, southern Caribbean. Lethaia 36:273–285

    Article  Google Scholar 

  • Pandolfi JM (1996) Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology 22:152–176

    Google Scholar 

  • Pandolfi JM, Jackson JBC (2001) Community structure of Pleistocene coral reefs of Curacao, Netherlands Antilles. Ecol Monogr 71:49–67

    Google Scholar 

  • Pandolfi JM, Jackson JBC (2007) Broad-scale patterns in Pleistocene coral reef communities from the Caribbean: implications for ecology and management. In: Aronson R (ed) Geological approaches to coral reef ecology. Springer, New York, pp 201–236

    Chapter  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  PubMed  CAS  Google Scholar 

  • Pandolfi JM, Jackson JBC, Baron N, Bradbury RH, Guzman HM, Hughes TP, Kappel CV, Micheli F, Ogden JC, Possingham HP, Sala E (2005) Are U.S. coral reefs on the slippery slope to slime? Science 307:1725–1726

    Article  PubMed  CAS  Google Scholar 

  • Pandolfi JM, Tudhope AM, Burr G, Chappell J, Edinger E, Frey M, Steneck R, Sharma C, Yeates A, Jennions M, Lescinsky H, Newton A (2006) Mass mortality following disturbance in Holocene coral reefs from Papua New Guinea. Geology 34:949–952

    Article  Google Scholar 

  • Perry CT (2000) Macroboring of Pleistocene coral communities, Falmouth formation, Jamaica. Palaios 15:483–491

    Google Scholar 

  • Perry CT (2001) Storm-induced coral rubble deposition: Pleistocene records of natural reef disturbance and community response. Coral Reefs 20:171–183

    Article  Google Scholar 

  • Roche RC, Perry CT, Johnson KG, Sultana K, Smithers SG, Thompson AA (2011) Mid-Holocene coral community data as baselines for understanding contemporary reef ecological states. Palaeogeogr Palaeoclimatol Palaeoecol 299:159–167

    Article  Google Scholar 

  • Scoffin TP, Bradshaw C (2000) The taphonomic significance of endoliths in dead-versus live—coral skeletons. Palaios 15:248–254

    Google Scholar 

  • Smithers SG, Hopley D, Parnell KE (2006) Fringing and nearshore coral reefs of the Great Barrier Reef: episodic Holocene development and future prospects. J Coast Res 22:175–187

    Article  Google Scholar 

  • Stemann TA, Johnson KG (1992) Coral assemblages, biofacies, and ecological zones in the mid-Holocene reef deposits of the Enriquillo Valley, Dominican Republic. Lethaia 25:231–241

    Article  Google Scholar 

  • Stone R (2007) A world without corals. Science 316:678–681

    Article  PubMed  CAS  Google Scholar 

  • Taylor FW, Mann P, Valastro S, Burke K (1985) Stratigraphy and radiocarbon chronology of a subaerially exposed Holocene coral reef, Dominican Republic. J Geol 93:311–332

    Article  CAS  Google Scholar 

  • Torres R, Chiappone M, Geraldes F, Rodriguez Y, Vega M (2001) Sedimentation as an important environmental influence on Dominican Republic reefs. Bull Mar Sci 69:805–818

    Google Scholar 

  • Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Nino-Southern oscillation through a glacial-interglacial cycle. Science 291:1511–1517

    Article  PubMed  CAS  Google Scholar 

  • Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33:190–204

    Article  Google Scholar 

  • Weil E (2006) Diversity and relative abundance of corals, octocorals and sponges at Jaragua National Park, Dominican Republic. Rev Biol Trop 54:423–443

    PubMed  Google Scholar 

  • Wing SR, Wing ES (2001) Prehistoric fisheries in the Caribbean. Coral Reefs 20:1–8

    Article  Google Scholar 

Download references

Acknowledgments

We thank T. Erickson, A. Estep, B. A. Hoedt, and A. Minhas for assistance in the field. Funding for the study came from Petroleum Research Fund Grant 42672-B8 and Otterbein University Faculty and Student Research grants. Electron microscopy was completed on the Oberlin College SEM purchased through NSF-CCLI grant No. 0087895.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lescinsky.

Additional information

Communicated by Geology Editor Prof. Bernhard Riegl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lescinsky, H., Titus, B. & Hubbard, D. Live coral cover in the fossil record: an example from Holocene reefs of the Dominican Republic. Coral Reefs 31, 335–346 (2012). https://doi.org/10.1007/s00338-011-0863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0863-y

Keywords

Navigation