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Abstract Genetic variation is known to influence the

amount of mRNA produced by a gene. Because molecular

machines control mRNA levels of multiple genes, we

expect genetic variation in components of these machines

would influence multiple genes in a similar fashion. We

show that this assumption is correct by using correlation of

mRNA levels measured from multiple tissues in mouse

strain panels to detect shared genetic influences. These

correlating groups of genes (CGGs) have collective prop-

erties that on average account for 52–79% of the variability

of their constituent genes and can contain genes that

encode functionally related proteins. We show that the

genetic influences are essentially tissue-specific and, con-

sequently, the same genetic variations in one animal may

upregulate a CGG in one tissue but downregulate the CGG

in a second tissue. We further show similarly paradoxical

behaviour of CGGs within the same tissues of different

individuals. Thus, this class of genetic variation can result

in complex inter- and intraindividual differences. This will

create substantial challenges in humans, where multiple

tissues are not readily available.
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Introduction

Gene expression is controlled by molecular machines that

each interact with multiple genes and transcripts. It follows

that genetic variation in the components of these machines

could, in principle, simultaneously alter the final level of

mRNA derived from multiple genes. In this study we set

out to identify groups of mouse genes whose mRNA levels

are simultaneously influenced by genetic variation. We

report shared influences of genetic variation on the mRNA

levels of large numbers of genes but also show that shared

group behaviour can vary unpredictably between different

tissues of the same individual and between the same tissues

of different individuals.

We use the term regulatory variation (RV) to describe

any genetic variation that affects the amount of mRNA

produced from a gene; it can occur through the disruption

of cis-regulatory sequences, such as promoter or enhancer

elements, or more importantly for our observations,

through changes to trans-acting components of the

molecular machines that control the amount of steady-state

mRNA in a cell, such as transcription or splicing com-

plexes. Recent studies have shown that these processes are

subject to significant influences of genetic variation that

result in heritable changes to final mRNA levels (Cotsapas

et al. 2006; Gibson and Weir 2005; Rockman and Kruglyak

2006; Williams et al. 2007). The majority of findings to

date, using predominantly expression quantitative trait loci

(eQTL) experimental designs, suggests that cis-acting RV

appears to have a larger-effect size and is thus more easily

detected; in comparison, trans-regulatory variation appears

to have a smaller-effect size and is either less common or

harder to detect (Goring et al. 2007; Petretto et al. 2006;

Stranger et al. 2005). When trans-acting influences are

identified, there tends to be a small number of eQTLs that

influence the expression of large numbers of genes, so

called ‘‘master-regulators’’ of gene expression, suggesting

that RV affects the expression level of groups of genes

simultaneously (Keurentjes et al. 2007; Mehrabian et al.

2005; West et al. 2007; Wu et al. 2008).

However, while eQTL analysis is an appropriate

approach to investigate the effects caused by a small

number of genetic influences, each with large-effect sizes, it

has limited or no power to detect multiple, small-effect

eQTLs that likely would be the biological basis of RV in the

trans-acting molecular machines (Brem and Kruglyak

2005; Williams et al. 2007). To help overcome this limi-

tation, several groups have used correlation-based approa-

ches to identify groups of genes that covary under the

influence of simple or complex genetic influences (Brem

and Kruglyak 2005; Chen et al. 2008; Emilsson et al. 2008;

Ghazalpour et al. 2006; Keller et al. 2008; Williams et al.

2007). The conceptual basis of such experiments is simple:

mRNA levels that vary similarly across multiple individuals

are likely to do so because of shared sensitivity to genetic

influences. Correlation-based approaches focus on on

detecting RVs by their shared outcome at the expense of

attempting to identify the individual RVs themselves.

In this study of inbred and recombinant inbred mice, we

set out to investigate trans-acting RV using correlation

analysis to identify groups of genes that are likely to be

influenced by shared RV, and thus shared regulatory fac-

tors, and to investigate the consequence of trans-acting RV

in three different mouse tissues to assess the degree to

which the outcome of such RV is the same in all tissues.

We use correlation-based methods to show that the effects

of RV are, as predicted, coordinated changes to the mRNA

levels of groups of genes. These group changes can be very

different in multiple tissues of the same individual and

different in the same tissues from multiple individuals.

To identify genes whose expression levels may be

affected by RV and to investigate their regulation in mul-

tiple tissues, we adopt the following experimental design:

First, we compare gene expression levels in three tissues of

two inbred mouse strains, C57BL/6J and DBA/2J, and of

31 strains of the BXD recombinant inbred (RI) panel

derived from these two progenitors. Next, we look for

genes whose expression differs between the progenitor

strains in at least one of these tissues; within these we

identify subsets of genes whose mRNA levels vary coor-

dinately across the BXD RI strains and the three tissues.

We call these ‘‘correlating groups of genes’’ or CGGs (see

the subsection ‘‘Identifying groups of genes under shared

genetic influence in multiple tissues’’). We then validate

the shared regulatory influences acting upon these CGGs

by testing the conservation of their expression changes in

both the parental strains and in the distantly related inbred

strain SJL/J (see the subsection ‘‘Intra- and interstrain

expression variation in CGGs’’) and explore the biological

functionality and putative transcriptional architecture

associated with the CGGs (see the subsection ‘‘CGG and

biological functions’’).

Materials and methods

RNA preparation

Eight-week-old male Mus musculus strains C57BL/6J,

DBA/2J, and SJL/J were obtained from the Biological

Resources Centre, UNSW (Sydney, Australia), and Mus

musculus BXD/TyJ strains 1, 2, 5, 6, 8, 9, 11–16, 18–24,

27–34, 36, 38–40, and 42 were obtained from the Jackson

Laboratory (Bar Harbor, ME, USA). Following cervical

dislocation, whole brain, kidney, and liver tissues were

harvested according to protocols approved by the University
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of New South Wales Animal Care and Ethics Committee

(Ethics Code ACEC 01/43) and snap-frozen in liquid N2.

Total RNA was extracted according to the manufacturer’s

instructions with TRIzol Reagent (Invitrogen, Mt. Waver-

ley, Victoria, Australia); purity and integrity were assessed

by OD260/OD280 readings greater than 2 and intact rRNA

bands (Agilent Bioanalyzer, Agilent, Forest Hills, Victoria,

Australia), respectively.

DBA/2J vs. C57BL/6J strain experiment Total RNA

from the three tissues of ten individuals was pooled for

each strain (9 for liver) to remove individual variation in

gene expression; 20 lg of pooled RNA and 2 lg of Luci-

dea Universal Scorecard Spike-in (Amersham Biosciences,

Castle Hill, NSW, Australia) were reverse transcribed

using the SuperScript III Indirect cDNA Labelling System

(Invitrogen) and fluorescently labeled with Alexa Fluor

555 for C57BL/6J and Alexa Fluor 647 for DBA/2J

(Invitrogen).

BXD panel experiments Equal amounts of total RNA

from three animals from each BXD strain were mixed to

yield tissue pools representative of the genetic back-

grounds. A common reference sample was created for each

tissue from total RNA extracted from ten 8-week-old male

C57BL/6J mice (a different RNA source than the parental

strain experiment). Twenty micrograms of pooled RNA

was reverse transcribed (as above) and fluorescently

labeled with Alexa Fluor 555 for C57BL/6J and Alexa

Fluor 647 for BXD strain samples (as above).

C57BL/6J vs. SJL/J experiment Total RNA from the

brain, kidney, and liver of five C57BL/6J and five SJL/J

individuals was pooled for each strain. cDNA synthesis

was same as for the C57BL/6J vs. DBA/2J experiment, but

sodium tetraborate instead of sodium bicarbonate was used

in the labeling buffer. Again, C57BL/6J cDNA was labeled

with Alexa Fluor 555 and SJL/J with Alexa Fluor 647 for

DBA/2J (Invitrogen).

Microarray experiments

DBA/2J vs. C57BL/6J experiment For each tissue, labeled

cDNA was directly compared on six replicate glass-slide

two-colour microarrays containing the Compugen Mouse

OligoLibrary representing 21,997 genes and Lucidea Uni-

versal ScoreCard (Clive and Vera Ramaciotti Centre for

Gene Function Analysis, UNSW, Sydney, Australia), in

100 ll of DIGEasy buffer (Roche, Basel, Switzerland) with

5 ll each yeast tRNA and calf thymus DNA as blockers

(Invitrogen). Utility controls from the Lucidea Scorecard

were not used and therefore served as additional negative

controls. Hybridised microarrays were washed in 1 9 SSC,

three times in 1 9 SSC, 0.1% SDS at 50�C, and three times

in 1 9 SSC, dried by centrifugation, and scanned with the

GenePix 4000B microarray scanner (Axon Instruments,

Union City, CA, USA).

BXD panel experiments Identical arrays and processing

were as above, with one array being performed for each

tissue in each BXD strain, giving a total of 31 9 3 = 93

arrays.

C57BL/6J vs. SJL/J experiment Identical arrays and pro-

cessing were as above, but three microarrays per tissue were

performed per tissue, giving a total of 3 9 3 = 9 arrays.

Data processing

Image analysis was performed with the Spot image anal-

ysis software ver. 2 (CSIRO, Australia, http://experimental.

act.cmis.csiro.au/Spot/index.php). All further data pro-

cessing and statistical analyses were performed using

R ver. 2.0.0–2.6.1 (Ihaka and Gentleman 1996). Gene

expression data were morph background corrected and log2

transformed. Data for controls and the 232 replicated spots

of the housekeeping gene Gapd (NM_008084) were

removed prior to normalization to avoid bias.

DBA/2J vs. C57BL/6J experiment All 18 slides were

then normalized for intensity and spatial bias using print-

tip loess and then quantile adjusted to adjust for the dif-

fering scale of measurements across arrays (Yang et al.

2001). Replicate slides were averaged.

BXD panel experiments All 93 slides were normalized

using print-tip loess. To standardise across experiments

from the three tissues, we subselected the data from genes

considered to be expressed in all three tissues in the

parental experiment and then applied quantile normaliza-

tion. The log2 ratios of intensities, M = log2R - log2G

(referred to as M values), were subsequently used as

expression measurements.

C57BL/2J vs. SJL/J experiment Processing was that as

for the parental experiment.

Differential expression in parental strains across

multiple tissues

We classified genes as reliably detected if their log mean

intensity, A = 0.5 9 (log2R ? log2G), in all three tissues

was greater than the 95th percentile of negative controls

present on our arrays. B statistics were then calculated for

all genes using default parameters in the R limma library

ver. 1.8.6 (Smyth 2004), part of the Bioconductor project

(Gentleman et al. 2004). Genes were classified as geneti-

cally influenced if they had both a B statistic (LOD) greater

than 3 and an A value greater than the intensity threshold.

In all three tissues there were 6,075 genes detected above

threshold. Of these, 755 were genetically influenced in one

or more tissues.
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Cross-tissue correlation analysis

To identify the genes that have expression patterns similar

to those of gene gi in all tissues, we adopted a correlation-

based approach. There are three per-tissue expression

matrices, Ebrain, Ekidney, and Eliver, each of dimension

G 9 S, where G is the number of genes and S is the number

of strains, i.e., 755 genes 9 31 strains in the present case.

Pairs of genes that are correlated with each other in all three

tissues are of primary interest because they may be under

the influence of some common, tissue-independent regula-

tory mechanisms. We identify such pairs of genes by join-

ing the three per-tissue expression matrices Ebrain, Ekidney,

and Eliver into a single G 9 3S cross-tissue expression data

matrix EBKL = (Ebrain|Ekidney|Eliver). We then computed a

G 9 G correlation matrix, CBKL, from EBKL using Spear-

man’s q as a correlation metric. CBKL is referred to as the

cross-tissue correlation matrix. CBKL was then hard thres-

holded for various values of |q|, thus defining the adjacency

matrix C*BKL, which represents an undirected simple net-

work. In the present study, all networks were generated

using a threshold of |q| C 0.775. Statistical analyses related

to threshold selection are provided in the Supplementary

Results and Supplementary Fig. 1. Nodes in the cross-tissue

correlation matrix were laid out using the 2D Fruchterman–

Reingold algorithm (Fruchterman and Reingold 1991) and

visualised using implementations available in the igraph

library in R/Bioconductor (Gentleman et al. 2004).

CGG centroid R2 analysis

The centroid of each CGG is the per-strain average M value

for all genes in the CGG, which we calculated for each

tissue independently or from all three tissues combined. To

determine the similarity of each gene in the CGG to its

centroid, we compute R2 as the square of Pearson’s prod-

uct–moment coefficient (r), obtaining a distribution of R2

values for all genes in the CGG. We assess the statistical

significance of the observed R2 using permutation analysis.

We repeat this analysis for random CGGs, chosen by

randomly sampling the same number of genes from the set

of 755 genes, and obtain a distribution of R2 values for each

gene in the random CGG to the random CGGs centroid.

We compare the observed distribution of R2 to the random

distribution using the Mann–Whitney U test using the

upper-tail P values. We repeat this for 1,000 random CGGs

and count the number of times the P value was less than

0.05, divided by the number of permutations. Similar

results were obtained if the random genes were resampled

from the set of 6,075 genes, or if the random genes were

compared to the observed CGGs centroid rather than the

random CGGs centroid (data not presented).

Coherency test statistic

The coherency test statistic is designed to measure how

consistent the directionality of relative expression is in a set

of genes (see Results subsection ‘‘Intra- and interstrain

expression variation in CGGs’’). Given the expression

ratios (M values) from the comparison of two strains (such

as C57BL/6J vs. DBA/2J) and a set of genes,

G = {g1,…,gN}, with corresponding measurements of

average relative expression, M̂g, across a set of replicates

associated with each gene, the vertex-based coherency CG

is calculated as follows:

CG ¼
PN

k¼1 signðM̂gk
Þ

N

Fig. 1 The average expression

level (A value) in brain (blue),

kidney (green), and liver (red)

for each of the 755 genetically

influenced genes in DBA/2J and

C57BL/6J is plotted, with

expression level on the y axis

(log2 scale), ordered from left to

right with increasing average

expression in all three tissues.

Note the deliberate absence of

genes that are expressed in only

one of the three tissues due to

limiting to those genes that were

expressed above background in

all three tissues (see Materials

and methods)
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where sign is the sign function which is defined as

signðxÞ ¼
1

0

�1

8
<

:

if

if

if

x [ 0

x ¼ 0

x\0

Thus, this vertex-based coherency score is in the range

[-1, 1], with values that are closer to either extreme

indicating more coherently downregulated (-1) or

upregulated (?1) expression. For example, for a group of

ten genes, if mine are upregulated and one is downregulated,

then the coherency is (?9 - 1)/10 = 0.8.

Permutation test We chose 1,000 random sets of

G genes from a set of 755 genes (by permuting gene labels)

and assessed the significance of the observed coherency of

each CGG using the following formula:

P ¼
# C�G
�
�
�
�� CGj j

� �

B

where G* denotes a randomised version of gene set

G, defined using the label-permuted set of 755 genes, and B

is the number of such permutations generated. For exam-

ple, if the given CGG had a vertex-based coherency score

of 0.77, and of 1,000 randomised samples only six scores

were observed to be greater than 0.77, then the P value

would be 6/1,000 = 0.006. Further material relating to the

development and validation of the coherency test statistic is

provided as Supplementary Material.

Gene Ontology (GO) analysis

To test for enrichment or depletion of a GO term in a set of

genes of interest, we tested whether genes of interest were

mapped to the GO term at a level greater than chance

expectation (defined as the observable proportion of genes

mapping to the term in the set of expressed genes in the

experiment) using sampling without replacement from the

hypergeometric distribution (using the phyper function in

R). We used a strict Bonferroni correction for P \ 0.05,

corrected for the number of terms with more than five

genes annotated to them, either directly or via transitive

relationships in the ontology. We used the Bioconductor

package GO (v1.1.14) and mapped microarray identifiers

(GenBank IDs) to Entrez Gene IDs based on probe-

sequence-similarity using custom scripts (available on

request).

Analysis of genomic location

Using data available from the UCSC Genome Bioinfor-

matics database (www.genome.ucsc.edu), we mapped the

genomic location of genes in CGG 1 through CGG 5 and

ordered them according their physical location across the

genome (mm9). We then computed the distance between

each adjacent gene and examined instances where adjacent

genes were located within 1 Mb of each other, considering

two genes colocalised if they occurred within 1 Mb of each

other.

Transcription factor binding motifs

The GenBank sequences for each of the 6,075 expressed

genes were aligned to the NCBI 35.1 build of the mouse

genome using BLAT (v32x1) (Kuhn et al. 2007), and the

best hits were retained. The upstream 1,000 bp from these

sequences were then retrieved using BioPerl and converted

into FastA formatted files. Repeat regions were masked to

lower-case letters using RepeatMasker (ver. open-3.1.6)

and RepBase (ver. 20061006) using the following flags: ‘‘-

species mouse -xsmall -gff’’. Then the upstream sequences

for all of the genes in each CGG were separated into a

separate FastA formatted file. The Transcription Factor

motif library from JASPAR (Vlieghe et al. 2006) was

downloaded (jaspar2005core) and formatted to suit CLO-

VER using tools from the CLOVER download page (

http://zlab.bu.edu/clover) (Frith et al. 2004). CLOVER

[Cis-eLement OVERrepresentation (ver. March 29, 2006)]

was run to search for overrepresented motifs in the

upstream sequences from the genes in each CGG compared

to a background set of sequences from the 6,075 expressed

genes. These data were permuted 1,000 times to generate P

values for over-/underrepresentation in the data sets. The

following flags were used when running CLOVER: ‘‘-l -t

0.05’’. We subsequently used the AACAAT motif to rep-

resent the entire family of Sox transcription factors (Ko-

opman 2001).

eQTL analysis for genes in CGG 2

For all expression phenotypes in CGG 2 (63 genes), we

calculated linkage test statistics for the closest genetic

marker (www.webqtl.org) (Chesler et al. 2004) to each of

the 24 transcription factor encoding genes whose binding

motifs were enriched in the proximal promoters of genes in

CGG 2. This analysis was performed in each of the three

tissues separately. We estimated the significance of linkage

to each marker using likelihood ratio statistics (LRS) and

model-based P values calculated using the QTL Reaper

code (v1.1.0 with single-marker analysis option;

www.genenetwork.org/qtlreaper.html). We corrected the

number of comparisons (marker 9 gene 9 tissue) using

the Bonferroni correction. We performed a genome-wide

linkage analysis using the centroids of the each CGG (see

the subsection ‘‘CGG centroid R2 analysis’’) as an

expression trait and corrected the number of comparisons

(marker 9 tissue) using the Bonferroni correction.
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Results

Identifying groups of genes under shared genetic

influence in multiple tissues

Using microarrays, we began by identifying genes that were

differentially expressed in at least one of the three tissues,

whole brain, kidney, or liver, between strains C57BL/6J and

DBA/2J. We found that we could reliably detect 6,075

transcripts above background in all three tissues, of which

755 were variantly expressed between the two strains at a

LOD [ 3 in any of the three tissues, using the B statistic of

Lönnstedt (Lönnstedt and Speed 2002), as modified by

Smyth (2004) (see Methods subsection ‘‘Differential

expression in parental strains across multiple tissues’’). We

ascribe this consistent variation in gene expression to reg-

ulatory variation, since environmental factors have been

reduced to a minimum. We stress that we have deliberately

avoided including genes that are expressed in a ‘‘tissue-

specific’’ manner, in the sense of being expressed in only

one or two of the three tissues (Fig. 1).

The identification of 755 genes as potential targets of

regulatory variation(s) does not allow us to find out if each

gene is under a unique or shared influence. To do this, we

need to study the 755 genes in multiple, changing, genetic

backgrounds, reasoning that we could then detect shared

influence by detecting correlated alterations of mRNA lev-

els. Such correlated changes could in principle be observed

between genes within either single or multiple tissues. We

chose to search for mRNA correlations across multiple tis-

sues in the first instance and then further studied the behav-

iour in the individual tissues, seeking to find if the outcome of

genetic influence on genes is the same in each tissue.

To achieve this, we measured mRNA levels of the 755

genes in the same three tissues in 31 BXD recombinant

inbred (RI) strains (Taylor et al. 1999), pooling three age-

and sex-matched mice from each (see Methods subsection

‘‘RNA preparation’’). Although appropriate for the corre-

lation-based analysis performed here (see below), we note

that pooling removes any information about within-strain

variability and thus limits estimation of transcript herita-

bility (e.g., Petretto et al. 2006). These strains have been

derived from crosses of C57BL/6J and DBA/2J, which have

been bred to homozygosity by repeated sibling pair mating.

Because they carry arbitrary mixtures of the two progenitor

backgrounds but are homozygous at each locus, it follows

that most strains will have inherited some of the C57BL/6J

alleles and some of the DBA/2J alleles of any factors, basal

or conditional, controlling the mRNA levels of the 755

genes. If these factors influence more than a single tran-

script, we would predict that the levels of these co-influ-

enced mRNAs would correlate across the BXD panel, thus

forming a CGG.

To identify those genes that have similar expression

patterns in all 31 BXD strains and in all three tissues, we

adopted a correlation-network approach, permitting the

summarisation of a large amount of complex data into a

form that is easily visualised and interpreted (Freeman et al.

2007) (see Methods subsection ‘‘Cross-tissue correlation

analysis’’). Rather than construct a correlation network for

each tissue and identify groups of genes that are found in all

three networks, we first combine the gene expression data

for all three tissues together and then construct a cross-

tissue correlation network. This approach is advantageous

in that we can identify relationships between pairs of genes

that may be correlated more weakly in one of the tissues yet

strongly correlated in the other two.

We initially performed single linkage to gain overall

insight into the interrelationships between genes in the

cross-tissue matrix, revealing the existence of several major

subgroupings of genes (Fig. 2). We chose to construct

networks using the well-established, widely used approach

of thresholding correlation matrices (Butte and Kohane

2000; Freeman et al. 2007; Gower and Ross 1969; Voy et al.

2006; Wirth et al. 1966). As our primary aim was to identify

groups of coregulated genes that are plausibly under com-

mon genetic control, we focused on finding groups of

interconnected genes that are distinct from other such

groups (referred to as connected components in graph the-

oretical terms) (Freeman et al. 2007; Wirth et al. 1966). An

important step in identifying such groups of genes is choice

of threshold on the correlation matrix: too low a threshold

will result in a densely interconnected network, while too

high a threshold will result in a sparsely populated, loosely

interconnected network (Freeman et al. 2007). We per-

formed statistical analyses to gain insight into the suitability

of a range of thresholds and constructed our cross-tissue

correlation network using a correlation threshold of

|q| = 0.775 (see Methods subsection ‘‘Cross-tissue corre-

lation analysis’’ and supplementary results for full details).

This cross-tissue correlation network contained 212

(28.1%) genes that correlate with at least one other tran-

script; the genes have a median degree of 4, with 73% of

genes having a degree of 2 or more (Fig. 3a). These genes

are central to our subsequent study; in principle, they are

influenced by regulatory variation(s) that influence mRNA

levels in all three tissues simply because the correlation

statistic is calculated across all three tissues. Performing

similar analyses on subsets of tissues, we find that at the

same threshold an additional 204 (27.0%) genes are corre-

lated in any pair of tissues, and an additional 191 (25.3%)

are correlated in any single tissue. A total of 607 (80.4%) of

the 755 genes exhibit correlated behaviour in any network,

suggesting that shared regulatory influences upon gene

expression are widespread, and over 55% are correlated in

multiple tissues (data not presented).
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In the original cross-tissue network, we find that the 212

genes fall into 19 discrete connected components, which

we shall now refer to as correlating groups of genes or

CGGs. Of these groups, ten contain at least three genes and

the largest five contain 75, 63, 21, 12, and 6 genes,

respectively. The cross-tissue network is displayed in

Fig. 3a along with the expression patterns across the 31

BXD strains and the three tissues; it is displayed for the

five largest CGGs in Fig. 3b.

We calculated the amount of variation in a gene’s

mRNA level that could be accounted for by the shared

behaviour of the CGG. To do this, we used the coefficient

of determination (R2) to compare the expression pattern of

each transcript to the centroid of their respective CGG

(grey and thick coloured lines in Fig. 3b, respectively) for

each tissue individually and across all three tissues simul-

taneously (see Methods subsection ‘‘CGG centroid R2

analysis’’). Collectively, these R2 values ranged from 0.00

to 0.95, and the mean variability explained by the CGG

centroid in each tissue (or in the combination of three tis-

sues) ranged from 0.52 to 0.79 (with the exception of CCG

1 in brain which demonstrated low R2 values) (Fig. 4). That

is, on average, more than 50% of variation in a gene’s

mRNA level can be accounted for by the shared influences

of regulatory variation on the CGG (see also supplemen-

tary results and Supplementary Fig. 2 for additional results

relating to the statistical robustness of these observations).

To place this result into context, Petretto et al. (2006)

suggest that mappable cis-acting eQTL can account for 31-

51% of the heritability of a mRNA level and mappable

trans-acting eQTL can account for 14–21%.

While we have illustrated the congruous behaviour of

mRNAs within a CGG, we also note from Fig. 3b that

mRNA level profiles are strikingly different between each

tissue. This is supported by calculating the correlation

between the intratissue centroids for each CGG

(Supplementary Table 1): The only statistically significant

relationship is, in fact, an anticorrelation between the cen-

troids of CGG 2 in brain and liver (q = -0.59, P =

5.94 9 10-4). These results show that while genes within a

CGG are highly correlated to each other, consistent with the

idea of being influenced by shared factors, the outcome of

such regulation is markedly different in each tissue such

that the overall pattern of a group’s expression in each tissue

is at best uncorrelated or even anticorrelated. These dif-

ferences can be explained by regulatory variation residing

in either multiple regulatory components that act in a tissue-

specific fashion or in a single cross-tissue component whose

activity or expression is itself modulated by tissue-specific

factors.

Intra- and interstrain expression variation in CGGs

Having identified CGGs based on their expression patterns

in three tissues across a panel of BXD mice, we sought

independent evidence that the expression of these groups of

genes are being influenced in a coordinated fashion, due to

the effects of genetic as opposed to other sources of vari-

ation. Within each individual BXD animal, all genes in a

CGG should be coordinately regulated, even if this differs

across tissues. If these levels are indeed due to genetic

differences in the regulatory factors controlling the ulti-

mate mRNA level, then we would expect that CGG

members should display similar correlated expression

patterns across different genetic backgrounds. However,

the multiple, complex changes in genetic background

implicit in this experiment are unlikely to result in exactly

the same mRNA levels in any two individuals; therefore,

rather than test for the identical expression level of all

genes in the CGG, we designed a test to detect for the

identical direction of mRNA levels: relatively up- or

downregulated, compared to a suitable reference or

Fig. 2 Dendrogram formed by single-linkage hierarchical clustering

of the 755-gene cross-tissue matrix. The distance metric used was a

monotonically decreasing function of the absolute value of Spear-

man’s |q|, namely, H(1 - |q|2). The value of this metric equivalent to

that used to generate the correlated groups of genes (CGGs)

(0.623 : |q| = 0.775) is shown as a horizontal dashed line. Genes

in the five largest CGGs are colour-coded
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Fig. 3 a Correlations between

genes are displayed as a

network: Edges connect two

genes if those genes are

correlated with an absolute

value of Spearman’s

|q| [ 0.775. Two hundred

twelve of the 755 genetically

influenced genes (see text) pass

this threshold and are positioned

in the x, y plane based on a 2D

Fruchterman-Reingold layout

algorithm (Fruchterman and

Reingold 1991). Correlated

groups of genes (CGGs) with at

least three genes in them are

coloured, and the five largest are

numbered. When split into two

parts, as per the black curved

line, CGG 2 displays coherent

expression patterns and

functional clustering (see text).

b Panels show the mRNA

expression ratios of genes in the

relevant CGGs measured in

each BXD strain in three tissues

(1st panel, brain; 2nd panel,

kidney; and 3rd panel, liver).

The vertical axis is the

expression ratio vs. C57BL/6J

(M values) of mRNA level in

each of the 31 BXD strains

(horizontal axis). Each

individual gene’s M values are

plotted as black lines, with thick

coloured lines representing the

CGG centroids (blue, green, and

red for brain, kidney, and liver,

respectively). Note the striking

differences in the expression

patterns of the CGG centroids in

the three different tissues
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baseline. This coordinated expression over all genes in a

CGG can be summarised as a coherency statistic: the

proportion of genes whose mRNA levels are upregulated

(or downregulated) relative to the reference (see Fig. 5a for

an overview, and Methods subsection ‘‘Coherency test

statistic’’ for details). We performed simulation studies to

assess the performance of the coherency statistic with

respect to both the number of genes in a CGG and the

magnitude and variability of the expression changes (see

supplementary results). Simulating the conditions of our

experiment, we identified that the score is adequately

powered to detect coherent directionality of expression for

CGGs of at least ten genes (at permuted P \ 0.05). For

groups of genes with less than ten genes, the score had little

power, even in the case of maximal coherency.

Given that we have hypothesised that each CGG is

caused by genetic differences that existed between the

parental strains DBA/2J and C57BL/6J, we looked at

coherency in these two strains. For the four largest CGGs

(those having between 75 and 12 genes), we found that all

four were significantly coherent (P = 0.001) in at least one

tissue (bars marked with ** in row 1 of Fig. 5b and Sup-

plementary Table 2).

We note that CGG 1 in the brain, which had the lowest R2

values to its centroid, nevertheless exhibits high coher-

ency (coherency = 0.76; P = 0.001). While the shared

contribution to overall mRNA levels of the CGG might be

relatively small, there is a marked effect upon the direction

of mRNA level changes. We also note that the 63 genes in

CGG 2 have complex properties: coherency is moderate, but

still significant in brain (coherency = -0.52; P = 0.001)

and kidney (coherency = -0.46; P = 0.001) and not

coherent in liver (coherency = -0.08; P = 0.33). How-

ever, close inspection (Fig. 3a) reveals that this CGG com-

prises two subdomains: one highly interconnected domain

(CGG 2A) containing 38 genes that are loosely connected to

a less interconnected group of 25 genes (CGG 2B). These

two subdomains exhibit more coherent expression: CGG 2A

in brain -0.63 (P = 0.001), kidney -0.79 (P = 0.001), and

liver -0.74 (P = 0.001); and CGG 2B in brain -0.36

(P = 0.013), kidney 0.04 (P = 0.15), and liver 0.92

(P = 0.001). This illustrates the complexity of the correla-

tions within the network where the existence of CGGs

defined by correlation alone does not capture the full rela-

tionships of mRNA levels.

We again observed considerable intraindividual varia-

tion in the direction of CGG expression. None of the CGGs

are coherently expressed in the same direction in all three

tissues, except for CGG 2A (as described above), which is

downregulated in all three tissues. The strength of coher-

ency in each tissue coupled with the changing direction of

expression again suggests that regulatory variation may be

Fig. 4 The extent of shared rather than individual influence on a

gene’s expression level. Note that a very high proportion of the

variation in many individual genes’ mRNA levels can be accounted

for by the influence of shared rather than gene-specific influences.

Box-and-whisker plots represent the R2 between each CGG’s centroid

to each gene in the CGG, independently evaluated for the brain

mRNA levels only (B, blue), for the kidney (K, green), or for the liver

(L, red) or across all three tissues (all 3, black). Each box represents

mRNA levels falling in the 25th to the 75th percentile, the thick line

the median, and the whiskers extend to at most two standard

deviations away from the median, with outliers indicated with circles.

The horizontal width of each box is proportional to the number of

genes in each CGG
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Fig. 5 Coherency analysis. a
Coherency overview: An

example CGG containing 12

genes is identified by correlation

analysis in the 31 BXD strains;

the expression ratios from a

comparison of two mouse

strains for each of these 12

genes are shown (most genes

are upregulated). The coherency

score is calculated and statistical

significance is determined via

permutation (see Methods

subsection ‘‘Coherency test

statistic’’). The resulting

coherency and statistical

significance are displayed as an

annotated histogram. This

process is repeated for all CGGs

in expression data from all three

tissues. b Intraindividual

coherency: We plot the

coherency scores for each CGG

in the brain, kidney, and liver

for DBA/2J vs. C57BL/6J in the

first row (blue, green, and red,

respectively) and for SJL/J vs.

C57BL/6J in the second row

(light blue, light green, and

orange, respectively). c
Interindividual coherency: The

same data from panel B but

reordered so that the tissues are

grouped together. Stars indicate

the degree of statistical

significance (*P \ 0.05,

**P = 0.001)

290 M. J. Cowley et al.: Individual variation in gene expression

123



affecting both tissue-independent and tissue-specific fac-

tors, respectively, which combines to produce a tissue-

specific outcome.

To confirm the previous observations in DBA/2J, we

performed an independent comparison of a distinct inbred

mouse strain, SJL/J, to C57BL/6J (see Methods subsection

‘‘RNA preparation: C57BL/6J vs. SJL/J experiment’’).

Because SJL/J is intermediate in nucleotide diversity

between C57BL/6J and DBA/2J (Pletcher et al. 2004) and

many inbred strains contain haplotypes from common

ancestors (Frazer et al. 2007), we hypothesised that most

but not necessarily all CGGs would behave like CGGs in

this strain. We found that all CGGs are coherent in at least

one tissue (P \ 0.05; row 2 of Fig. 5b and Supplementary

Table 1), and of the 12 possible cases of four CGGs

measured in three tissues, four are highly coherent

(P \ 0.001) with four more with P \ 0.05. Focusing on the

tissues in which each CGG is coherent, we find a more

consistent direction of expression of each CGG in this

comparison of SJL/J to C57BL/6J than with DBA/2J vs.

C57BL/6J. CGG 3 is coherently expressed in all three

tissues (P \ 0.05), CGGs 1 and 2 are coherently expressed

in two tissues (P \ 0.001), and there are no examples of

CGGs that are coherent but expressed in different direc-

tions in two tissues (row 2 of Fig. 5b). These findings

confirm that these groups of genes are indeed collectively

sensitive to genetic influence, even in this more distant

inbred strain. However, the greater similarity of the

direction of CGG expression in multiple tissues of SJL/J

compared to DBA/2J suggests that there are significant

interindividual differences in the behaviour of CGGs.

To further investigate the interindividual coherency of

CGGs, we compared the coherency and directionality of

each CGG in DBA/2J and SJL/J, grouped by tissue in

Fig. 5c. Of the seven cases in which a CGG is coherent in

both DBA/2J and SJL/J, five are expressed in the same

direction. The notable exceptions are CGG 3 in kidney and

liver, which flip direction between DBA/2J and SJL/J,

perhaps indicating that the causative regulatory variations

were unique to the DBA/2J lineage, or that SJL/J contains

additional regulatory variations that alter the expression

levels of this CGG in kidney and liver. These findings

demonstrate that CGGs tend to be more similarly expressed

in the same tissue of different inbred mice than they are

expressed in different tissues of the same inbred mouse.

CGG and biological functions

The existence of CGGs could be interpreted, at the

extremes, as either the inevitable outcome of shared and

partially shared mRNA level control or of a more specific

regulatory architecture evolved to have functional out-

comes. We therefore examined the genes in each CGG for

similarity of function. CGG 1 shows no obvious functional

clustering. In contrast, CGG 2 contains a cluster of 12 genes

(of 65) involved in metabolism, including six genes that

encode proteins involved with complex carbohydrate

metabolism. These genes include Smc3, a proteoglycan;

Muc2 and Muc6, heavily glycosylated proteins; Acan, a

proteoglycan; Chia, involved in glycoside metabolism; and

Hyal2, involved in glycosaminoglycan metabolism. Four

additional genes encode proteins involved in sugar metab-

olism: Gaa, a glucosidase; Glb1, a galactosidase; Akr1b3,

an aldose reductase; and Slc2a8, a facilitated glucose

transporter. Two genes, Aldh3a1 and Aldh9a1, encode

proteins that are aldehyde dehydrogenase family members.

Using enrichment analysis (see Methods subsection ‘‘Gene

Ontology analysis’’), CGG 2 is enriched for tissue devel-

opment (GO:0009888; P = 1.79 9 10-3) and carbohy-

drate metabolic process (GO:0005975; P = 1.83 9 10-3),

with the enrichments resulting from the gene sets Acan,

Sprr2k, Gaa, Sprr3, Bmp6 and Acan, Chia, Gaa, Hyal2,

Glb1, Slc2a8, respectively. In contrast, CGG 3 contains five

genes (of 21) that are involved in transcription control,

including Hoxc5, Zbtb43, Suv39h1, Foxq1, and Hes2 (but

not supporting any statistically significant enrichment).

We found convincing evidence of functional clustering

in CGG 2 and CGG 4. In CGG 4, 10 of the 14 transcripts

are annotated [six are ribosomal proteins (Rps29, Rps15,

Rplp2, Rplp1, Rpl35A, and Rpl19), and two are ribosomal

protein/ubiquitin fusions (Fau and Uba52)] and showed a

highly significant enrichment for translation (GO:0006412;

P = 2.77 9 10-6).

It is plausible that patterning of coexpression that results

in CGG composition could be simply secondary to genomic

context, arising, for example, from coexpressed tandem

repeat genes or gene pairs under common control due to the

local chromatin environment (Batada et al. 2007; Fukuoka

et al. 2004). To test this possibility, we examined the extent

to which genes in are colocalised (defined as an adjacent

pair of genes that are within 1 Mb of each other: see

Methods subsection ‘‘Analysis of genomic location’’).

CGG 1 through CGG 5 had at least one gene on 20,18,13,

10 and 5 distinct chromosomes, respectively. Only 5 of 75

and 5 of 63 genes were spaced 1 Mb or less in CGG 1 and

CGG 2, respectively. No such instances were observed on

CGG 3, CGG 4, or CGG 5. On CGG 2, these colocated gene

pairs included Sprr2k and Sprr3 and Muc2 and Muc6, but no

other pairs of genes from the same family were observed.

Therefore, genomic localisation does not appear to be an

organising principle of CGGs observed in our analysis.

We have stressed that the genetic influences upon CGGs

do not have to be at the level of the control of transcription;

nevertheless, this is a plausible hypothesis that is testable.

To study this, we examined the CGGs for overrepresenta-

tion of transcription factor (TF) binding sites (TFBS); our
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reasoning is that transcriptional control of a CGG could be

due to shared action of TFs and that a variant TF could then

contribute to the differential mRNA levels across our BXD

panel. Our results are summarised in Supplementary

Table 2 and here we discuss only CGG 2. We identified a

number of enriched TFBS motifs that were present in more

promoters of the 63 genes in CGG 2 than expected by

chance (P \ 0.05) (see Methods subsection ‘‘Transcription

factor binding motifs’’), suggesting that they may be

involved in the regulation of the genes. These TFBS motifs

correspond to 24 TFs, including Foxd3, Tcf1, En1, Sp1,

Gfi1, Nkx2-5, Irf2, and all 17 TFs of the Sox family that

recognise different variants of the AACAAT motif (Ko-

opman 2001) (Sox1 to Sox9, Sox11 to Sox13, Sox15, Sox17,

Sox18, Sox21, and Sox30). If any of these TFs contribute to

variation in CGG 2 mRNA levels, we may be able to detect

genetic association of the TF gene with the mRNA levels

of some or all of the genes in CGG 2. To identify associ-

ation, we conducted a hypothesis-driven eQTL analysis in

each of the three tissues to test for linkage of any of the 63

genes in CGG 2 to the closest genetic marker to each of the

24 TF genes identified above (see Methods subsection

‘‘eQTL analysis for genes in CGG 2’’).

The marker D8Mit124 located approximately 2.3 Mb

distal of the Sox1 gene on chromosome 8 had median a P

value of 0.001 for the 63 mRNA levels in the brain com-

pared to 0.410 for all other gene/TF marker combinations,

0.012 in the kidney compared to 0.422, and 0.015 in the

liver compared to 0.488. While the individual P values do

not reach significance following a Bonferroni correction,

there is nevertheless a striking incidence of low P values to

this marker. This result is compatible with the hypothesis

that some of the variation in CGG 2 mRNA levels in all

three tissues may be caused by genetic variation in the Sox1

gene; however, the gene is located in a region of low

polymorphism and there are no immediate candidate cod-

ing or noncoding SNPs. Proving involvement of Sox1 will

require an experimental design that is outside the scope of

this study. Intriguingly, Blache et al. (2004) have previ-

ously suggested Sox9 is a negative regulator of Muc2 but

did not test Sox1.

Finally, we tested the ability of CGG centroids to act as

surrogate expression traits in genome-wide eQTL analyses,

in a manner analogous to the PCA-derived eigentraits of

Biswas et al. (2008). Overall, patterning linkage peaks

across the genome was comparable between centroid- and

per-gene analyses (data not shown). Only the CGG 2

centroid demonstrated linkage (in brain, P = 0.044 to

D1Mit134, and in kidney, P = 0.0011 to 08.006.700).

Interestingly, the latter marker was approximately 2.86 Mb

proximal of the Sox1 gene, suggesting that the centroid-

based approach may have the ability to identify meaningful

genetic determinants of expression in trans.

Discussion

In this study we have taken advantage of different genetic

backgrounds to identify groups of genes whose mRNA

levels are likely to be under shared genetic influences

across multiple tissues. We focused on examining the

inbred strains C57BL/6J and DBA/2J and limited our

analyses of genetic influence to only those genes that were

expressed in brain, kidney, and liver and that were differ-

entially expressed between the parental strains in one or

more of these tissues. We identified 755 genes subject to

such genetic influence. Using pairwise comparisons of

mRNA levels across 31 recombinant inbred strains of mice

derived from this pair of parental strains, we detected

‘‘correlating groups of genes’’ or CGGs, whose mRNA

levels change coordinately across all 31 strains in all three

tissues. We then studied the same genes in the unrelated

strain SJL/J and showed that they also exhibit CGG-like

behaviour and exhibit coordinately up- or downregulated

levels of mRNA, as appropriate.

Genetic influences that influence multiple genes must be

formally in trans. We can therefore estimate the cumula-

tive total influence on mRNA levels of trans effects as the

proportion of the variation in an individual gene’s mRNA

level that can be ascribed to shared CGG influences.

Considering the average proportion of variation across a

CGG, this quantity ranges from 52 to 79%, which is

comparable in magnitude to reported results of eQTL

analyses of effects which are in cis to a gene (Hubner et al.

2005; Petretto et al. 2006; Stranger et al. 2005; West et al.

2007). The influences we have observed on groups of genes

are likely to be the outcome of numerous in trans influ-

ences that are individually not easy to detect. These data

support the notion that trans influences, while being far less

readily detectable than those in cis, are actually both

common and of significant cumulative effect.

The organisation of genes into coordinately regulated

groups or ‘‘modules,’’ based on both response to regulatory

variation and broader disease or environmental challenge,

has been recently reported by several groups (Chen et al.

2008; Keller et al. 2008). We see little overlap of genes in

our CGGs and these authors’ modules, which have been

defined by very different genetic backgrounds (data not

shown). In our analysis, we further show that a striking

feature of some CGGs is that genetic variation influences

the same genes in divergent ways in different tissues of the

same individual; genes in a CGG may be relatively upreg-

ulated in one (or more) tissue(s) but relatively downregu-

lated in another. Unpredictable behaviour is also seen in the

behaviour of CGGs compared across different individuals.

For example, mRNAs of a CGG may be upregulated in the

brain of one strain but downregulated in the brain of a

second; we have observed this in replicated studies of

292 M. J. Cowley et al.: Individual variation in gene expression

123



C57BL/6J, DBA/2J, and SJL/J, as well as in individual

BXD strains. This unpredictability is quite unlike the effects

of a protein sequence variation where an amino acid change

is the same in every tissue that expresses the relevant exon.

We identify genetic influence in these studies by

detecting pairs of genes whose mRNA levels vary coordi-

nately in our analyses; however, the proportion of the 755

genes that are affected is entirely determined by the

threshold used to construct the correlation network. Con-

sistent with previous analyses (Brumm et al. 2008; Freeman

et al. 2007), we have shown that there is no simple single

criterion that we can use to define this cutoff (indeed there is

no plausible biological reason why there should be a dis-

crete value (Brumm et al. 2008; Wirth et al. 1966), but using

the cutoffs employed for the three tissue analyses, we can

show that approximately 80% of the 755 genes are geneti-

cally influenced in one or more tissues, suggesting that these

complex trans-genetic influences are common. It is also

likely that there are groups of coregulated genes that would

not have been included in our initial 755-gene analysis but

that are revealed as genetically influenced because they are

subject to transgressive segregation in the BXD strains. We

highlight that there are many different approaches that, in

principle, have been used to construct an expression cor-

relation network, e.g., the weighted approach of Horvath

and colleagues (Emilsson et al. 2008; Zhang and Horvath

2005), Bayesian networks (Bansal et al. 2007), or infor-

mation theory-based approaches (Bansal et al. 2007;

Reverter and Chan 2008). More importantly, because no

method of network analysis is without its limitations or

disadvantages, we pursued coherency analysis as a method

for assessing our analysis in the context of independent

experiments.

The apparently common but unpredictable influence of

genetic variation prompted us to develop the use of coher-

ency testing, essentially testing the direction rather than the

amount of relative change in mRNA levels for analysis of

relative CGG gene behaviour. We believe this is a robust and

appropriate test of a CGG that is not based on the extreme

view that mRNA levels should be identical between two

genetically dissimilar individuals. Further extensions to the

present methods of coherency testing are also possible. Our

current approach is limited to testing the extent to which

groups of genes show uniform changes in expression, but if

more complex patterns of coregulation could be specified,

these approaches could remain informative.

Our data add to three lines of evidence suggesting that

the influence of genetic variation is frequently tissue-spe-

cific. First, several microarray-based surveys have high-

lighted differences in gene expression across different brain

regions in inbred mouse strains (Freeman et al. 2007;

Hovatta et al. 2007; Nadler et al. 2006; Pavlidis and Noble

2001; Sandberg et al. 2000). These differences in

expression appear to be phenotypically relevant, as shown

by analysis of interstrain differences in motor coordination

tasks (Nadler et al. 2006). Second, analyses of eQTL data

from studies on different tissues have shown limited evi-

dence for tissue-specific effects (Bystrykh et al. 2005;

Chesler et al. 2005; Gatti et al. 2007; Hubner et al. 2005;

Petretto et al. 2006). Third, Yang et al. (2006), using an

intercross of C57BL/6J and C3H/HeJ mouse strains and

sampling muscle, liver, adipose, and brain, demonstrated

the essentially tissue-specific nature of expression of sex-

ually dimorphic, but not more general, classes of genes.

Functional annotation of genes within each CGG showed

that in some cases genes whose mRNA levels were highly

correlated also encode proteins with biologically related

functions; the clearest examples are proteins involved in

sugar metabolism clustered in CGG 2 and ribosomal pro-

teins in CGG 4. The correlated behaviour of functionally

related genes is perhaps not surprising in view of numerous

studies on the coregulation of gene expression. Our major

conclusion, however, is that shared function does not appear

to be the primary organising principle of most genes within

a CGG. In this respect, a better understanding of the shared

behaviour of the CGG and its relationship, if any, to phe-

notypic outcomes (Goring et al. 2007; Nadler et al. 2006;

Passador-Gurgel et al. 2007) will provide greater insight

into the functional consequences of CGG variation and

shared control. Further insight into the putative biology of

CGGs could be gained by employing them as ‘‘gene-sets’’

in pathway-based enrichment analyses, such as Gene Set

Enrichment Analysis (GSEA) (Subramanian et al. 2005),

across a variety of experiments.

Our findings for CGG 2 that the Sox binding site is

overrepresented and that mRNA levels of the genes within

the CGG exhibit unusual linkage at the region harbouring

Sox1 suggest an involvement of this transcription factor in

CGG 2 behaviour, but this is necessarily speculative. The

reality is that our methods, in common with all such anal-

yses, including eQTL-based approaches, cannot distinguish

between primary and secondary influences upon mRNA

levels. For example, whether an unobserved common reg-

ulator causes CGG 2 behaviour or variation in more distal

processes, such as signal transduction, will have to be

shown by extensive mechanistic dissection, but such fol-

low-up studies will at least have to be able to distinguish

between these alternatives.

In more general terms, we have focused upon correla-

tion-based approaches in our study with the assumption

that correlation is a likely outcome of biological processes

rather than simply using correlation as a statistical tool.

This study has not been designed to identify, in most cases,

the cause of a change in mRNA level; instead, we have

simply focused on defining at the level of mRNA the

phenotypic differences between two organisms that are
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likely due to the sum total of all relevant genetic influences.

Of course, changes in mRNA levels do not have to be

reflected in changing protein levels, and in most cases it is

this latter change that will contribute to phenotypic diver-

sity. Recent studies in yeast by Foss et al. (2007) have

shown that there is only weak correlation of mRNA and

protein levels tested across genetically divergent strains,

and so prediction from purely genotypic information of

ultimate protein levels, and therefore potential phenotype,

is going to be a very challenging task, even at a single-

tissue let alone at a multiple-tissue or organismal level.

Nevertheless, the observation that this type of genetic

variation has strong tissue-specific outcomes suggests that

the regulatory architecture of mRNA levels may have

evolved, in part, to generate selective phenotypic diversity

of individual tissues and could represent a contributing

source of morphologic and functional evolutionary differ-

ences, as well as having implications for the use of surro-

gate tissues in human studies.
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