Skip to main content
Log in

Dipole Interactions in Doubly Periodic Domains

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider the interactions of finite dipoles in a doubly periodic domain. A finite dipole is a pair of equal and opposite strength point vortices separated by a finite distance. The dynamics of multiple finite dipoles in an unbounded inviscid fluid was first proposed by Tchieu, Kanso, and Newton in Tchieu et al. (Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 468(2146):3006–3026, 2012) as a model that captures the “far-field” hydrodynamic interactions in fish schools. In this paper, we formulate the equations of motion governing the dynamics of finite dipoles in a doubly periodic domain. We show that a single dipole in a doubly periodic domain exhibits periodic and aperiodic behavior, in contrast to a single dipole in an unbounded domain. In the case of two dipoles in a doubly periodic domain, we identify a number of interesting trajectories including collision, collision avoidance, and passive synchronization of the dipoles. We then examine two types of dipole lattices: rectangular and diamond. We verify that these lattices are in a state of relative equilibrium and show that the rectangular lattice is unstable, while the diamond lattice is linearly stable for a range of perturbations. We conclude by commenting on the insight these models provide in the context of fish schooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aref, H.: On the equilibrium and stability of a row of point vortices. J. Fluid Mech. 290, 167–182 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Aref, H., Stremler, M.A.: On the motion of three point vortices in a periodic strip. J. Fluid Mech. 314, 1–25 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Beal, D.N., Hover, F.S., Triantafyllou, M.S., Liao, J.C., Lauder, G.V.: Passive propulsion in vortex wakes. J. Fluid Mech. 549, 385–402 (2006)

    Article  Google Scholar 

  • Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  • Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005)

    Article  Google Scholar 

  • Crowdy, D.: On rectangular vortex lattices. Appl. Math. Lett. 23(1), 34–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Desreumaux, N., Florent, N., Lauga, E., Bartolo, D.: Active and driven hydrodynamic crystals. Eur. Phys. J. E 35(8), 1–11 (2012)

    Article  Google Scholar 

  • Donnelly, R.J.: Quantized Vortices in Helium II, vol. 3. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  • Katz, Y., Tunstrøm, K., Ioannou, C.C., Huepe, C., Couzin, I.D.: Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl. Acad. Sci. 108(46), 18720–18725 (2011)

    Article  Google Scholar 

  • Kulik, K.N., Tur, A.V., Yanovsky, V.V.: Interaction of point and dipole vortices in an incompressible liquid. Theor. Math. Phys. 162(3), 383–400 (2010)

    Article  MATH  Google Scholar 

  • Liao, J.C., Beal, D.N., Lauder, G.V., Triantafyllou, M.S.: Fish exploiting vortices decrease muscle activity. Science 302, 1566–1569 (2003)

    Article  Google Scholar 

  • Smith, S.G.L.: How do singularities move in potential flow? Phys. D, Nonlinear Phenom. (2011). doi:10.1016/j.physd.2011.06.010

    Google Scholar 

  • Llewellyn Smith, S.G., Nagem, R.J.: Vortex pairs and dipoles. Regul. Chaotic Dyn. 18(1–2), 194–201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Middelkamp, S., Torres, P.J., Kevrekidis, P.G., Frantzeskakis, D.J., González, C., Schmelcher, P., Freilich, D.V., Hall, D.S.: Guiding-center dynamics of vortex dipoles in Bose–Einstein condensates. Phys. Rev. A 84(1), 011605 (2011)

    Article  Google Scholar 

  • Newton, P.K.: The dipole dynamical system. Discrete Contin. Dyn. Syst. 2005(Suppl.), 692–699 (2005)

    MATH  Google Scholar 

  • O’Neil, K.A.: On the Hamiltonian dynamics of vortex lattices. J. Math. Phys. 30(6), 1373–1379 (1989)

    Article  MathSciNet  Google Scholar 

  • Parrish, J.K., Viscido, S.V., Grünbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202(3), 296–305 (2002)

    Article  Google Scholar 

  • Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  • Stremler, M.A.: On relative equilibria and integrable dynamics of point vortices in periodic domains. Theor. Comput. Fluid Dyn. 24(1), 25–37 (2010)

    Article  MATH  Google Scholar 

  • Stremler, M.A., Aref, H.: Motion of three point vortices in a periodic parallelogram. J. Fluid Mech. 392, 101–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Tchieu, A.A., Kanso, E., Newton, P.K.: The finite-dipole dynamical system. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 468(2146), 3006–3026 (2012)

    Article  MathSciNet  Google Scholar 

  • Tkachenko, V.K.: On vortex lattices. Sov. JETP 22, 1282 (1966)

    Google Scholar 

  • Tkachenko, V.K.: Stability of vortex lattices. Sov. JETP 23, 1049 (1966)

    Google Scholar 

  • Umeki, M.: Clustering analysis of periodic point vortices with the L function. J. Phys. Soc. Jpn. 76(4), 043401 (2007)

    Article  Google Scholar 

  • Weihs, D.: Hydromechanics of fish schooling. Nature 241, 290–291 (1973)

    Article  Google Scholar 

  • Weihs, D.: Stability versus maneuverability in aquatic locomotion. Integr. Comp. Biol. 42, 127–134 (2002)

    Article  Google Scholar 

  • Yanovsky, V.V., Tur, A.V., Kulik, K.N.: Singularities motion equations in 2-dimensional ideal hydrodynamics of incompressible fluid. Phys. Lett. A 373(29), 2484–2487 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Science Foundation through the CAREER award CMMI 06-44925 and grant CCF 08-11480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kanso.

Additional information

Communicated by Paul Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsang, A.C.H., Kanso, E. Dipole Interactions in Doubly Periodic Domains. J Nonlinear Sci 23, 971–991 (2013). https://doi.org/10.1007/s00332-013-9174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-013-9174-5

Keywords

Mathematics Subject Classification

Navigation