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Abstract
The detection of functional coronary artery stenosis with cor-
onary CT angiography (CCTA) is suboptimal. Additional CT
myocardial perfusion imaging (CT-MPI) may be helpful to
identify patients with myocardial ischaemia in whom coro-
nary revascularization therapy would be beneficial. CT-MPI
adds incremental diagnostic and prognostic value over ob-
structive disease on CCTA. It allows for the quantitation of
myocardial blood flow and calculation of coronary flow re-
serve and shows good correlation with 15O-H2O positron
emission tomography and invasive fractional flow reserve.
In addition, patients prefer CCTA/CT-MPI over SPECT,
MRI and invasive coronary angiography. CT-MPI is ready
for clinical use for detecting myocardial ischaemia caused
by obstructive disease. Nevertheless, the clinical utility of
CT-MPI to identify ischaemia in patients with non-obstruc-
tive/microvascular disease still has to be established.

Key Points
• CT-MPI can improve the positive predictive value of CCTA
for lesion-specific ischaemia.

• CT-MPI adds incremental prognostic value over CCTA for
major adverse cardiac events.

• CT-MPI correlates with 15O-H2O PET.
• CT-MPI/CCTA shows high overall patient satisfaction.
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Editorial

Coronary CT angiography (CCTA) is an excellent non-
invasive test for ruling out obstructive coronary artery disease
(CAD) [1]. Nevertheless, the positive predictive value of
CCTA for identifying myocardial ischaemia is suboptimal
[1, 2]. More importantly, CCTA as an a priori anatomical
imaging test shares with invasive coronary angiography
(ICA) the limitations for accurately gauging the haemody-
namic relevance of a lesion; furthermore, severe anatomical
narrowing does not necessarily imply the presence of func-
tionally significant stenosis [3].

The role of CT-myocardial perfusion imaging (MPI)
in obstructive CAD

CTmyocardial perfusion imaging (CT-MPI) has emerged as a
non-invasive imaging method for the detection of myocardial
ischaemia [4]. Currently, three different approaches are avail-
able to perform CT-MPI: conventional CT-MPI (i.e. snapshot
perfusion), dynamic perfusion CT-MPI and dual-energy CT-
MPI (DECT-MPI) [5]. These different techniques have shown
good diagnostic performance [6, 7]. Nevertheless, dynamic
and DECT-MPI seem to have a better sensitivity, likely due
to the ability to detect more subtle perfusion defects [8, 9].
Cury et al. [10] showed in a multicentre study that
regadenoson CT-MPI was in good agreement with SPECT
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for detecting reversible ischaemia. Results from a sub-analysis
of the CORE320 (Combined Non-invasive Coronary
Angiography and Myocardial Perfusion Imaging Using 320
Detector Computed Tomography) study [11] demonstrated
superior diagnostic accuracy of CT-MPI compared to
SPECT for predict ing obstruct ive CAD on ICA.
Nevertheless, ICA is a suboptimal test to establish the hemo-
dynamic severity of significant stenosis [12]. In a recent meta-
analysis, CT-MPI demonstrated a high diagnostic accuracy for
identifying haemodynamically significant myocardial perfu-
sion defects determined by ICA in combinationwith fractional
flow reserve (FFR), with comparable results to magnetic res-
onance imaging (MRI) [7]. The combination of CT-MPI with
CCTA allows for anatomical and functional evaluation of
CAD [13, 14]. The addition of CT-MPI to obstructive lesions
on CCTA (e.g. ≥ 50 % stenosis degree) appears to be of in-
cremental value for the diagnosis of myocardial ischaemia as
determined by invasive FFR [4]. One multicentre registry
evaluated the prognostic value of dynamic CT-MPI [15] for
major adverse cardiac events in 144 patients during a follow-
up period up to 18 months; the authors observed that also in
prognostication the addition of CT-MPI to obstructive stenosis
on CCTA results in an incremental prognostic value, which
remained when correcting for clinical risk factors.
Furthermore, a clear trend in increase in hazard ratio was
observed with an increase in the number of territories with
perfusion defects. These results are congruent with studies
combing SPECT with CCTA [16, 17]. Van Rosendael et al.
[18] demonstrated not only that those with a normal stress CT-
MPI had a low occurrence of major cardiovascular events at
12 months, but also that adding CT-MPI to obstructive disease
on CCTA results in lower referral rates for ICA and
revascularisation.

CT-MPI in non-obstructive CAD and microvascular
disease

CT-MPI allows for the quantitation of myocardial blood flow
(MBF) and calculation of coronary flow reserve (CFR) [19,
20]. Abnormal measures can be suggestive for the presence of
epicardial and/or microvascular CAD [21]. At least 10–30 %
of patients with angina pectoris undergoing ICA have no sig-
nificant stenosis, and among those 50–65 % are believed to
have coronary microvascular dysfunction [22–25]. The recog-
nition of microvascular dysfunction and the potentially under-
lying myocardial ischaemia is, however, often delayed due to
the ‘hidden nature’ of the disease.Williams et al. evaluated the
diagnostic performance of ‘snapshot’ adenosine stress CT-
MPI [26]. Part of the study population (22 out of 51) was
compared to 15O-H2O positron emission tomography (PET).
15O-H2O allows for free diffusion (100 % extraction fraction)
and is linearly correlated with myocardial uptake [27, 28].

However, its use is mainly limited to research since it requires
an on-site cyclotron due to the short half-time of the tracer. In
their study, Williams et al. [26] demonstrated that CT myocar-
dial attenuation (measured in Hounsfield units) during
hyperaemia correlates with MBF as measured by 15O-H2O
PET. The observed difference in 15O-H2O uptake between
no CAD and non-obstructive CAD under hyperaemic condi-
tions shows potential to detect microvascular disease. In addi-
tion, CT-MPI/CCTA demonstrated a good positive predictive
value of 90 % on a patient level compared to ICA/FFR. With
regard to gender, women are more prone to have non-
obstructive CAD compared to men; the WISE (Women's
Ischemia Syndrome Evaluation) study showed that 81 % of
women referred for ICA have no or non-obstructive CAD
[29]. At a 10-year follow-up cardiovascular death or myocar-
dial infarction occurred in 6.7 % of women with minimal
CAD (i.e. ≤ 20% diameter reduction) and in 12.8% ofwomen
with non-obstructive CAD (i.e. > 20 %, but < 50 %
narrowing) [30]. Due to the relatively high occurrence of
events in patients with non-obstructive CAD, the incorpora-
tion of CT-MPI to clinical decision-making can be of great
importance for better identification of myocardial ischaemia.

Patient satisfaction and radiation dose

A recent study by Feger et al. [31] observed high patient
satisfaction for CT (including CT-MPI) and found that pa-
tients prefer it over SPECT, MRI and ICA. In detail, half of
the patients preferred the combined CT-MPI/CCTA approach,
with only 2 % of patients giving preference to stress MRI.
Furthermore, the use of (semi)-automated quantification of
CT-MPI data provides substantially reduced analysis times,
making it feasible to integrate quantitative CT-MPI into clin-
ical workflow [32]. A concern with CT-MPI is the associated
increase in radiation exposure of patients. In a review, Danad
et al. [9] calculated an average radiation exposure of 5.9 mSv
(range 1.9–15.7) for snapshot CT-MPI and 9.2 mSv (range
3.8–12.8) for dynamic CT-MPI. Nevertheless, when using
low-kV protocols dynamic CT-MPI is feasible at 4–6 mSv
[33, 34]. Adenosine is usually well tolerated by patients,
though the administration is of concern for patients with ad-
vanced heart block or asthma, and patients should avoid caf-
feine intake 24 h before testing [35]. The recent introduction
of third generation DSCTand dual layer CTsystems is expect-
ed to further increase the role of CT-MPI with highly accurate
iodine quantification [36]. Furthermore, data from the
SPECIFIC (Dynamic Stress Perfusion CT for Detection of
InducibleMyocardial Ischemia) trial, which aims to determine
the diagnostic accuracy of CT-MPI compared with invasive
FFR in patients with suspected or known CAD (ClinicalTrials.
gov Identifier: NCT02810795) is expected to give more
insight into the role of dynamic CT-MPI.
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Conclusion

CT-MPI is a proven method for detecting myocardial ischae-
mia caused by obstructive CAD, is associated with high pa-
tient satisfaction, and has been shown to be ready for clinical
use in this setting. Recent research shows that perfusion im-
aging has incremental prognostic value over stenosis degree
onCCTA. In addition, it has the potential to identify ischaemia
caused by non-obstructive CAD and microvascular disease.
Nevertheless, the future clinical utility of CT-MPI to identify
the extent of ischaemia in patients with non-obstructive/mi-
crovascular CAD still has to be established.
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