Skip to main content
Log in

Survival of early life history stages of Arctic kelps (Kongsfjorden, Svalbard) under multifactorial global change scenarios

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Kelps (brown algae of the order Laminariales) build highly complex and productive underwater forests and possess microscopic and macroscopic life stages. The microscopic stages (spores, gametophytes, juvenile sporophytes) are usually more sensitive to environmental stressors and may form a bottleneck for the survival of the population. Future Arctic kelp forests will be especially affected by elevated temperatures and increased sedimentation. Knowledge on grazer impact is still rudimentary. In order to investigate how global change in interaction with grazing may shape future Arctic kelp systems, we performed laboratory experiments (2 × 3 × 2 factorial design) on early life stages of the kelps Alaria esculenta, Laminaria digitata and Saccharina latissima from Arctic Kongsfjorden (Svalbard). Spores were exposed to ambient and elevated summer temperatures in combination with 3 levels of sediment and 2 levels of grazing by the limpet Margarites helicinus. The germination and formation of juvenile sporophytes were strongly inhibited in all species with increasing sediment cover, clearly showing the strongest negative effect on sporophyte development of all tested variables. Grazers interacted with temperature and sedimentation-affecting kelps in a species-specific way. They had a strong impact on the number of developing sporophytes partially counteracting the negative impact of sedimentation. We conclude that the structure of kelp communities can be shaped by abiotic and biotic variables acting on early developmental stages and that global warming has the potential to alter the strengths and direction of these effects, which may lead to future shifts in the community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Airoldi L (2003) The effects of sedimentation on rocky coast assemblages. Oceanogr Mar Biol 41:161–236

    Google Scholar 

  • Amsler CD, Reed DC, Neushul M (2007) The microclimate inhabited by macroalgal propagules. Br Phycol J 27:253–270

    Article  Google Scholar 

  • Arakawa H (2005) Lethal effects caused by suspended particles and sediment load on zoospores and gametophytes of the brown alga Eisenia bicyclis. Fisheries Sci 71:133–140

    Article  CAS  Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43(1):1–86

    Article  Google Scholar 

  • Bartsch I, Paar M, Fredriksen S, Schwanitz M, Daniel C, Hop H, Wiencke C (2016) Changes in seaweed biomass, depth distribution and age structure of kelps in an Arctic fjord (Spitsbergen) between 1996/1998 and 2012–2014. Polar. doi:10.1007/s00300-015-1870-1

    Google Scholar 

  • Beszczynska-Møller A, Weslawski JM, Walczowski W, Zajaczkowski M (1997) Estimation of glacial meltwater discharge into Svalbard coastal waters. Oceanologia 39:289–298

    Google Scholar 

  • Brodie J, Williamson CJ, Smale DA et al (2014) The future of the northeast Atlantic benthic flora in a high CO2 world. Ecol Evol 4:2787–2798

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman ARO (1984) Reproduction, recruitment and mortality in two species of Laminaria in Southwest Novia Scotia. J Exp Mar Biol Ecol 78:99–109

    Article  Google Scholar 

  • Chapman ARO (1989) Abundance of Fucus spiralis and ephemeral seaweeds in a high eulittoral zone: effects of grazers, canopy and substratum type. Mar Ecol 102:565–572

    Google Scholar 

  • Chapman AS, (formerly Albrecht AS), Fletcher RL (2002) Differential effects of sediments on survival and growth of Fucus serratus embryos (Fucales, Phaeophyceae). J Phycol 38:894–903

  • Chapman WL, Walsh JE (2007) Simulations of Arctic temperature and pressure by global coupled models. J Climate 20:609–632

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The physical science basis. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil Trans R Soc B 362:149–166

    Article  PubMed  Google Scholar 

  • Clayton M, Wiencke C (1986) Techniques and equipment for culturing Antarctic benthic marine macroalgae, and for preparing specimens for electron microscopy. Serie Cientifica INACH 34:93–97

    Google Scholar 

  • Coelho SM, Rijstenbil JW, Brown MT (2000) Impacts of anthropogenic stresses on the early development stages of seaweeds. J Aquat Ecosys Stress Recov 7:317–333

    Article  CAS  Google Scholar 

  • Costanza R, d’Arge R, de Groot R et al (1997) The value of the world’s ecosystem service and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • D’Antonio CM (1986) Role of sand in the domination of hard substrata by the intertidal alga Rhodomela larix. Mar Ecol Progr Ser 27:263–275

    Article  Google Scholar 

  • Daniel Moreno A (2015) Interspecific competition of sympatric Arctic kelps under environmental influence. Master thesis, University of Gent, Belgium

  • Devinny JS, Volse LA (1978) Effects of sediments on the development of Macrocystis pyrifera gametophytes. Mar Biol 48:343–348

    Article  Google Scholar 

  • Engledow HR, Bolton JJ (1994) Seaweed α-diversity within the lower eulittoral zone in Namibia: the effects of wave action, sand inundation, mussels and limpets. Bot Mar 37:267–276

    Article  Google Scholar 

  • Eriksson BK, Johansson G, Snoeijs P (2002) Long-term changes in the macroalgal vegetation of the inner Gullmar Fjord, Swedish Skagerrak coast. J Phycol 38:284–396

    Article  Google Scholar 

  • Fredersdorf J, Müller R, Becker S, Wiencke C, Bischof K (2009) Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–492

    Article  PubMed  Google Scholar 

  • Fredriksen S, Karsten U, Bartsch I, Woelfel J, Koblowsky M, Schumann R, Moy SR, Steneck RS, Wiktor J, Hop H, Wiencke C (in press) Biodiversity of benthic macro- and microalgae from Svalbard with special focus on Kongsfjorden. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Adv Polar Ecol, Springer

  • Graham MH, Vásquez JA, Buschmann AH (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol 45:39–88

    Google Scholar 

  • Henríquez LA, Buschmann AH, Maldonado MA (2011) Grazing on the giant kelp microscopic phase and the recruitment success of annual populations of Macrocystis pyrifera (Laminariales, Phaeophyta) in Southern Chile. J Phycol 4:252–258

    Article  Google Scholar 

  • Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot Mar 55:399–414

    Article  Google Scholar 

  • Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, Gulliksen B (2012) Climate-driven regime shift in Arctic marine benthos. P Natl Acad Sci USA 109:14052–14057

    Article  CAS  Google Scholar 

  • Krause-Jensen D, Duarte CM (2014) Expansion of vegetated coastal ecosystems in the future Arctic. Front Mar Sci. doi:10.3389/fmars.2014.00077

    Google Scholar 

  • Lantuit H, Overduin PP, Couture N et al (2012) The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Est Coasts 35:383–400

    Article  CAS  Google Scholar 

  • Lotze HK, Worm B (2001) Strong bottom-up and top-down control of early life stages of macroalgae. Limnol Oceanogr 46:749–757

    Article  Google Scholar 

  • Lotze HK, Worm B (2002) Complex interactions of climatic and ecological controls on macroalgal recruitment. Limnol Oceanogr 47:1734–1741

    Article  Google Scholar 

  • Lüning K (1980) Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J Phycol 16:1–15

    Article  Google Scholar 

  • Lüning K (1981) Egg release in gamteophytes of Laminaria saccharina: induction by darkness and inhibition by blue light and UV. Br Phycol J 16:379–393

    Article  Google Scholar 

  • Lüning K (1984) Temperature tolerance and biogeography of seaweeds: the marine algal flora of Helgoland (North Sea) as an example. Helgoland Mar Res 38:305–317

    Google Scholar 

  • Lüning K (1990) Seaweeds: their environment, biogeography and ecophysiology. Wiley, New York

    Google Scholar 

  • McBean G, Alekseev G, Chen D, Førland E, Fyfe J, Groisman PY, King R, Melling H, Vose R, Whitfield PH (2005) Arctic climate: past and present. In: Symon C, Arris L, Heal B (eds) Arctic climate impacts assessment (ACIA). Cambridge University Press, Cambridge, pp 21–60

    Google Scholar 

  • Merzouk A, Johnson LE (2011) Kelp distribution in the northwest Atlantic Ocean under a changing climate. J Exp Mar Biol Ecol 400:90–98

    Article  Google Scholar 

  • Müller R, Wiencke C, Bischof K (2008) Interactive effects of UV radiation and temperature on microstages of Laminariales (Phaeophyceae) from the Arctic and North Sea. Clim Res 37:203–213

    Article  Google Scholar 

  • Müller R, Laepple T, Bartsch I, Wiencke C (2009) Impact of ocean warming on the distribution of seaweeds in polar and cold-temperate water. Bot Mar 52:617–638

    Article  Google Scholar 

  • O’Connor (2009) Warming strengthens an herbivore-plant interaction. Ecology 90:388–398

    Article  PubMed  Google Scholar 

  • Olischläger M, Wiencke C (2013) Seasonal fertility and combined effects of temperature and UV-radiation on Alaria esculenta and Laminaria digitata (Phaeophyceae) from Spitsbergen. Polar Biol 36:1019–1029

    Article  Google Scholar 

  • Paar M, Voronkov A, Hop H, Brey T, Bartsch I, Schwanitz M, Wiencke C, Lebreton B, Asmus R, Asmus H (2015) Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol. doi:10.1007/s00300-015-1760-6

    Google Scholar 

  • Poore AGB, Cambell AH, Coleman RA et al (2012) Global patterns in the impact of marine herbivores on benthic primary producers. Ecol Lett 15:912–922

    Article  PubMed  Google Scholar 

  • Provasoli L (1968) Media and Prospects for the cultivation of marine Algae. Cultures and collections of algae: proceedings of the U.S.-Japan conference 1966 Hakone, The Japanese Society of Plant Physiologists

  • Quartino ML, Deregibus D, Campana GL, Latorre GEJ, Momo FR (2013) Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLOS One 8:e58223. doi:10.1371/journal.pone.0058223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed DC, Laur DR, Ebeling AW (1988) Variation in algal dispersal and recruitment: the importance of episodic events. Ecol Monogr 58:321–335

    Article  Google Scholar 

  • Roleda MY (2015) Stress physiology and reproductive phenology of Arctic endemic kelp Laminaria solidungula. J Agardh Polar Biol. doi:10.1007/s00300-015-1813-x

    Google Scholar 

  • Roleda MY, Dethleff D (2011) Storm-generated sediment deposition on rocky shores: simulating burial effects on the physiology and morphology of Saccharina latissima sporophytes. Mar Biol Res 7:213–223

    Article  Google Scholar 

  • Santos R (1993) A multivariate study of biotic and abiotic relationships in a subtidal algal stand. Mar Ecol Progr Ser 94:181–190

    Article  Google Scholar 

  • Schiel DR, Foster MS (2006) The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Ann Rev Ecol Evol Syst 37:343–372

    Article  Google Scholar 

  • Sevilgen DS, de Beer D, Al-Handal AY, Brey T, Polerecky L (2014) Oxygen budgets in subtidal arctic (Kongsfjorden, Svalbard) and temperate (Helgoland, North Sea) microphytobenthic communities. Mar Ecol Prog Ser 504:27–42

    Article  CAS  Google Scholar 

  • Smale DA, Barnes DKA (2008) Likely responses of Antarctic benthos to climate-related changes in physical disturbance during the 21st century, based primarily on evidence from the West Antarctic Peninsula region. Ecography 31:289–305

    Article  Google Scholar 

  • SpurklandT T, Iken K (2011) kelp bed dynamics in estuarine environments in subarctic Alaska. J Coast Res 27:133–143

    Article  Google Scholar 

  • Steinhoff F (2010) Phlorotannins as UV-protective substances in early developmental stages of brown algae. Dissertation, University of Bremen, Germany

  • Sundene O (1962) The implications of transplant and culture experiments on the growth and distribution of Alaria esculenta. Nytt Mag Bot 9:155–174

    Google Scholar 

  • Svendsen H, Beszczynska-Møller A, Lefauconnier B, Tverberg V, Gerland S, Hagen JO, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Hodson A, Mumford P (2002) The physical environment of Kongsfjorden–Krossfjorden—an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Article  Google Scholar 

  • tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia 31:147–163

    Article  Google Scholar 

  • tom Dieck I (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog Ser 100:253–264

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology—their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, pp 1–495

    Google Scholar 

  • Vadas RL Sr, Johnson S, Norton TA (1992) Recruitment and mortality of early post-settlement stages of benthic algae. Br Phycol J 27:331–351

    Article  Google Scholar 

  • van den Hoek C (1982) Phytogeographic distribution groups of benthic marine alga in the North Atlantic Ocean. A review of experimental evidence from life history studies. Helgoland Mar Res 35:153–214

    Google Scholar 

  • Wang J (2015) Trophic interactions between invertebrates and seaweeds in a changing world. Master thesis, University of Gent, Belgium

  • Wessels H, Hagen W, Wiencke C, Karsten U (2004) Trophic interactions between macroalgae and herbivores from Kongsfjorden (Svalbard). In: Wiencke C (ed) The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research performed at the Koldewey Station in the years 1991–2003. Ber Polarforsch Meeresforsch 492:63–72

  • Wessels H, Hagen W, Molis M, Wiencke C, Karsten U (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitsbergen) for two benthic sympatric invertebrates. J Exp Mar Biol Ecol 329:20–23

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed at the Ny Ålesund International Research and Monitoring Facility on Svalbard as part of the long-term project KOL 06 “The biology of Arctic benthic algae”. The authors wish to thank the diving group under the lead of Max Schwanitz for sampling the fertile macroalgae and grazers. We would also like to thank AWIPEV team 2013 and 2014 for their logistic support. Special thanks go to Michael Greenacre for substantially improving the statistical analysis of data. We would also like to thank the three anonymous reviewers for their very constructive suggestions and their time which improved the manuscript. Many thanks go to J. Bartsch for proof reading the manuscript and correcting grammatical errors. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the priority programme “Antarctic Research with comparative investigations in Arctic ice areas” by a grant Za735/1-1 and by the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zacher.

Additional information

This article belongs to the special issue on the “Kongsfjorden ecosystem – new views after more than a decade of research”, coordinated by Christian Wiencke and Haakon Hop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zacher, K., Bernard, M., Bartsch, I. et al. Survival of early life history stages of Arctic kelps (Kongsfjorden, Svalbard) under multifactorial global change scenarios. Polar Biol 39, 2009–2020 (2016). https://doi.org/10.1007/s00300-016-1906-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1906-1

Keywords

Navigation