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Abstract Weconsider an environment inwhich several independent service providers
can collaborate by pooling their critical, low-utilization resources that are subject to
unavailability. We examine the allocation of the joint profit for such a pooled sit-
uation by studying an associated cooperative game. For this game, we will prove
non-emptiness of the core, present a populationmonotonic allocation scheme and show
convexity under some conditions. Moreover, four allocation rules will be introduced
and we will investigate whether they satisfy monotonicity to availability, monotonic-
ity to profit, situation symmetry and game symmetry. Finally, we will also investigate
whether the payoff vectors resulting from those allocation rules are members of the
core.

1 Introduction

In this paper, we will investigate situations in which several independent service
providers keep the same type of critical, low-utilization resources that are subject
to unavailability. For instance, one can think of a railway setting with several contrac-
tors, each having one tamping machine. Tamping machines are critical resources as
they repair unstable, and so unusable, railway tracks. As only a few railway tracks
become unstable per year and tamping takes some hours only, the utilization of tamp-
ing machines is relatively low. However, tamping machines sometimes fail, are in
repair and as a consequence are unavailable for some weeks. One can also think of a
setting with several maintenance companies, each having one repairman with specific
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knowledge for one and the same type of highly profitable machine. Repairmen are
critical resources as they repair those machines. As machines break down only a few
times per year and repair takes some hours only, utilization of repairmen is relatively
low. However, due to, for example, vacation or illness, repairmen may be unavailable
for several weeks. In both examples, it is possible that demand occurs for an unavail-
able resource. For the railway setting, this leads to an inoperative part of the railway
network and as a consequence to high social costs. For the specialized repairmen set-
ting, this leads to down time of the machine which may be very costly as well. As the
fraction of time resources are utilized is relative small, and so it is very unlikely that
two or more service providers need a resource simultaneously, pooling of resources
may be a natural option here. In particular, by pooling of resources, more service can
be provided upon request and so additional profit can be realized in the long run. This
may encourage the service providers to pool their resources.

We will examine such a pooled situation by considering a stylized model of real-
ity. In this model, we assume that (i) resources switch between being available and
unavailable according to underlying stochastic processes, (ii) it does not occur that
two or more service providers need a resource simultaneously, (iii) transshipments of
resources between service providers occur instantaneously at zero costs and (iv) the
profit of each service provider depends non-decreasingly on the long-run fraction of
time that at least one resource is available. The first assumption is realistic as there is
no reason to assume that unavailability of a resource of a service provider would affect
the unavailability of a resource of another service provider. The second assumption
is a good approximation of reality when the fraction of time resources are utilized
is relative small, which implies that it is unlikely that two or more service providers
need a resource simultaneously. The third assumption is realistic in settings wherein
service providers are located close (enough) to each other or wherein substantial time
is needed to prepare the environment for service. For the latter one, the Dutch railway
setting is a good example as it already may take hours to create a safe work envi-
ronment for tamping. Transshipment costs can be neglected as they are usually small
relative to costs for unavailability. The last assumption is realistic in settings wherein
service providers operate for a sufficient long time. In this paper, we analyse general
non-decreasing profit functions as well as linear profit function, specifically. Nonlin-
ear profit functions fit well in situations, such as the Dutch railway setting, wherein
service providers operate based on performance based contracts that reward service
providers more as availability increases. Linear profit functions fit well for situations
with highly profitable machines for which downtime costs increase proportional to the
unavailability of the machines. Under these four assumptions, the model relies on two
components only: the long-run fraction of time that at least one resource is available
and the profit functions of the service providers.

Although pooling of resources may generate additional profit, it is unclear yet how
to allocate this amongst the participating service providers. The use of cooperative
game theory can be helpful in here. In particular, we will introduce a cooperative
game in order to examine the allocation of the additional profit for such a pooled
situation. For this cooperative game, which we will call an availability game, we will
contribute in the following way. We will show that there always exists an allocation
of the joint profit that cannot be improved upon by any subgroup of players, i.e.
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any coalition. In this case, the so-called core of the associated game is non-empty.
Moreover, we present an allocation of the joint profit for every possible coalition such
that each player’s payoff increases as the coalition to which the player belongs grows
larger, i.e. we present a population monotonic allocation scheme. In addition, we will
present conditions that ensure that each player’s marginal contribution increases as
the coalition to which he or she belongs grows larger, i.e. convexity of the associated
game. We will also introduce four different allocation rules and investigate whether
the payoff vectors resulting from those allocation rules increase for an increasing
availability and increasing profit, i.e. satisfy monotonicity to profit and monotonicity
to availability. Furthermore, we will investigate whether the payoff vectors resulting
from those allocation rules are the same for players that have the same profit function
and availabilities, i.e. satisfy situation symmetry, and are the same for players that have
the same payoff for every possible coalition, i.e. satisfy game symmetry. Finally, we
will also investigate whether the payoff vectors resulting from those allocation rules
are members of the core.

This paper can be positioned at the interface of cooperative game theory and oper-
ations research problems. In the literature, this research area is summarized under
the heading of operations research (OR) games. An overview of OR games can be
found in Borm et al. (2001). They divide OR games in five categories, namely con-
nection, routing, scheduling, production and inventory. Availability games are mostly
overlapping with the last category. Recent publications in this category focus on eco-
nomic order quantity situations (Meca et al. 2004), economic lot sizing situations
(Van Heuvel et al. 2007; Drechsel and Kimms 2011), newsvendor situations (Özen
et al. 2008), truckload delivery situations (Hezarkhani et al. 2016; Li et al. 2016) and
spare parts situations (Karsten et al. 2012; Karsten and Basten 2014; Karsten et al.
2015). Recently, Bachrach et al. (2011, 2012, 2013) introduced and investigated a
new class of operations research games, called cooperative reliability games, which
comes closer to our work. Those games consider a directed network with one sink
and one source, where each link is controlled by a self-interested agent. Those links
are subject to failures with some fixed probability. The agents can form coalitions to
obtain connectivity from the sink to the target node. A fixed reward, which is equal
to the probability of achieving connectivity for that coalition, should then be divided
amongst the participating agents. In particular, Bachrach et al. (2011) focused on how
to approximate the Shapley value for large networks and Bachrach et al. (2012, 2013)
focused on when cooperative reliability games are convex and balanced. The key dif-
ference with their work is that Bachrach et al. (2011, 2012, 2013) assumed that the
reward obtained per coalition depends on a single societal profit function only, while
in our model it is assumed that the reward obtained per coalition depends on the sum
of the profit functions of all players of that coalition. So, results of Bachrach et al.
(2011, 2012, 2013) are not applicable here.

The remainder of this paper is as follows. We start in Sect. 2 with preliminaries
on cooperative game theory. In Sect. 3, we introduce cooperative availability games
and show general properties regarding those games. In Sect. 4, we introduce four
different allocation rules and investigate them on several properties. Finally, we draw
conclusions and suggest directions for future research in Sect. 5.
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2 Preliminaries on cooperative game theory

In this section, we provide some basic elements of cooperative game theory. Consider
a finite set N of players and a function v : 2N → R called the characteristic function,
with v(∅) = 0. The pair (N , v) is called a cooperative game with transferable utility,
shortly called a game. A subset M ⊆ N is a coalition and v(M) is the worth coalition
M can achieve by itself. The worth can be transferred freely amongst the players. The
set N is called the grand coalition. For a coalition M ⊆ N , the subgame (M, vM ) is
the game with player set M and characteristic function vM with vM (K ) = v(K ) for
all K ⊆ M . A game (N , v) is monotonic if the value of every coalition is at least the
value of any of its subcoalitions, i.e. v(M) ≤ v(K ) for all M, K ⊆ N with M ⊆ K .

When the value of the union of any two disjoint coalitions is larger than or equal to
the sum of the values of these disjoint coalitions, a game (N , v) is superadditive, i.e.
v(M) + v(K ) ≤ v(M ∪ K ) for all M, K ⊆ N with M ∩ K = ∅. A game (N , v)

is convex if the marginal contribution of any player to any coalition is less than his
marginal contribution to a larger coalition, i.e. v(K ∪{i})−v(K ) ≥ v(M∪{i})−v(M)

for all M ⊆ K ⊆ N\{i} and all i ∈ N .
An allocation for a game (N , v) is an N -dimensional vector x ∈ R

N describing the
payoffs to the players, where player i ∈ N receives xi . An allocation is called efficient
if

∑
i∈N xi = v(N ). This implies that all worth is divided amongst the players of the

grand coalition N . An allocation is individual rational if xi ≥ v({i}) for all i ∈ N
and stable if no group of players has an incentive to leave the grand coalition N ,
i.e.

∑
i∈M xi ≥ v(M) for all M ⊆ N . The set of efficient and individual rational

allocations, called the imputation set of (N , v), is denoted by

I (N , v) :=
{

x ∈ R
N

∣
∣
∣
∣ xi ≥ v({i}) for all i ∈ N and

∑

i∈N
xi = v(N )

}

.

The set of efficient and stable allocations, called the core of (N , v), is denoted by

C (N , v) :=
{

x ∈ R
N

∣
∣
∣
∣

∑

i∈M
xi ≥ v(M) for all M ⊆ N and

∑

i∈N
xi = v(N )

}

.

Following Bondareva (1963) and Shapley (1967), a game (N , v) is called balanced
if the core is non-empty. If for every M ⊆ N , the corresponding subgame (M, vM ) is
balanced, the game is called totally balanced.

A well-known rule that associates an allocation with each game is the Shapley
value, proposed by Shapley (1953). This allocation rule can be described in several
ways. One is to calculate a weighted average over all marginal contributions that a
player can make to any possible coalition. Formally, for any game (N , v) the Shapley
value is defined by

�i (N , v) =
∑

M⊆N\{i}

|M |!(|N | − 1 − |M |)!
|N |! (v(M ∪ {i}) − v(M)) for all i ∈ N .
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For any game (N , v), an allocation scheme y = (yi,M )M⊆N ,i∈M specifies how
to allocate the worth of every coalition. A population monotonic allocation scheme
(PMAS), introduced by Sprumont (1990), is an allocation scheme (yi,M )M⊆N ,i∈M that
is efficient, i.e.

∑
i∈M yi,M = v(M) for all M ⊆ N , and monotonic, i.e. yi,M ≤ yi,K

for all M, K ⊆ N with M ⊆ K and all i ∈ M . If a game (N , v) admits a PMAS
y, then it is totally balanced and its allocation for the grand coalition, (yi,N )i∈N , is a
member of the core.

3 Model description

In this section, we introduce our model of the underlying situation, which we call
an availability situation. Moreover, we define the cooperative game to which we will
refer as the associated availability game.

3.1 Availability situations

Consider an environment with N a finite set of independent service providers, each
providing the same service with a single interchangeable resource (for example a
tamping machine or a repairman). For each service provider i ∈ N , we assume that its
resource can switch between two states, namely available and unavailable, according
to an underlying stochastic process, in which Ai ∈ (0, 1) represents the resulting
long-run fraction of time that the resource of player i is available.

Remark 1 An example of such a stochastic process is the one in which the resource of
any service provider i ∈ N starts in state available for a fixed time unit, for example a
day or an hour, and then, at the end of each time unit in which the resource is available,
switches to state unavailable with probability pai ∈ (0, 1) or remains in the same state
with probability 1 − pai and, at the end of each time unit in which the resource is
unavailable, switches to state available with probability pui ∈ (0, 1) or remains in
the same state with probability 1 − pui . For such a (discrete time) stochastic process,

one can determine easily that the steady-state probability of being available is
pui

pai +pui
and it holds, with probability 1, that the long-run fraction of time that the resource is
available converges to this steady-state probability. Here, with ZT

i the number of time
units up to and including time unit T for which the resource is available, the long-run
fraction of time that the resource is available is defined as limT→∞ ZT

i /T .

From now on, we refer to Ai as the availability and to 1− Ai as the unavailability.
We assume that the profit function of each service provider depends on its availability.
Let Pi : [0, 1] → R+ be this non-decreasing profit function. So, for availability
Ai service provider i ∈ N receives a profit of Pi (Ai ). We assume that there exists a
j ∈ N for which Pj (1)−Pj (A j ) > 0. To analyse this setting, we define an availability
situation as a tuple (N , A, P) with N , A = (Ai )i∈N , and P = (Pi )i∈N as described
above. We use θ to refer to an availability situation θ = (N , A, P) and θ ′ to refer to
availability situation θ ′ = (N ′, A′, P ′). The set of availability situations is denoted by
�.
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3.2 Availability games

The service providers, from now on called players, can protect against unavailability
by pooling their resources. We assume that transshipments of resources between two
or multiple players occur instantaneously at zero costs. Moreover, we assume that
no two or more players will demand for a resource simultaneously, and so, the new
availability of player i as part of coalition M becomes the long-run fraction of time
that at least one resource is available. We define this long-run fraction of time that at
least one resource of coalition M is available for any player i ∈ M as follows

AM
i = 1 −

∏

j∈M
(1 − A j ). (1)

Remark 2 For example, for multiple stochastic processes like the one presented in
Remark 1, the relationship in (1) holds with probability 1, whenever the probabilities
of the different players are independent. This follows as a similar relationship holds for
the steady-state probabilities. Note there may exist several other (types of) stochastic
processes for which (1) holds.

As profit depends on this availability (only), the profit of player i as part of coalition
M becomes Pi (AM

i ), and thus, the profit of coalitionM becomes
∑

i∈M Pi (AM
i ). Now,

we can define a game corresponding to an availability situation θ .

Definition 1 For any availability situation θ = (N , A, P), the game (N , vθ ) with

vθ (M) =
∑

i∈M
Pi

(
AM
i

)
(2)

for all M ∈ 2N\{∅} and vθ (∅) = 0 is called the associated availability game.

Example 1 Consider availability situation θ ∈ �with N = {1, 2, 3}, A1 = 0.6, A2 =
0.9, A3 = 0.5, P1(x) = x, P2(x) = 2x and P3(x) = 7x . In Table 1, the related
availabilities and corresponding profits for (N , vθ ) are presented per coalition. �

3.3 General properties

In this section, wewill present general properties for availability games. The following
two lemma’s will be used frequently. The first lemma states that the availability of a
coalition is at least the availability of any of its subcoalitions, while the second lemma
states that the profit of a coalition is at least the profit of any of its subcoalitions.

Table 1 Corresponding availabilities and profits

M ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

AM
i – 0.60 0.90 0.50 0.96 0.80 0.95 0.98

vθ (M) 0 0.60 1.80 3.50 2.88 6.40 8.55 9.80
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Lemma 1 For every availability situation θ ∈ �, it holds that for any M, K ⊆ N
with M ⊆ K ∏

i∈M
(1 − Ai ) ≥

∏

i∈K
(1 − Ai ).

Proof Let θ ∈ � be an availability situation and M, K ⊆ N with M ⊆ K . We have
0 ≤ 1 − Ai ≤ 1 for all i ∈ N and consequently

∏

i∈M
(1 − Ai ) ≥

∏

i∈M
(1 − Ai ) ·

∏

i∈K\M
(1 − Ai ) =

∏

i∈K
(1 − Ai ),

where the inequality uses 0 ≤ ∏
i∈M (1 − Ai ) ≤ 1 for all M ⊆ N . 
�

Lemma 2 For every availability situation θ ∈ � with M, K ⊆ N, M ⊆ K and
i ∈ M, it holds that

Pi
(
AM
i

)
≤ Pi

(
AK
i

)
. (3)

Proof Let θ ∈ � be an availability situation. Then

Pi
(
AM
i

)
= Pi

⎛

⎝1 −
∏

j∈M
(1 − A j )

⎞

⎠ ≤ Pi

⎛

⎝1 −
∏

j∈K
(1 − A j )

⎞

⎠ = Pi
(
AK
i

)
,

where the inequality is a result of (i) Lemma 1 and (ii) the non-decreasing property of
Pi . The first and last equality follow from (1). 
�

As a result of Lemma 2, we can now claim that availability games are monotonic:
the value of a coalition is at least the value of any of its subcoalitions.

Proposition 1 Every availability game (N , vθ ) is monotonic.

Proof Let θ ∈ � be an availability situation and (N , vθ ) be the corresponding avail-
ability game. Now, let M, K ⊆ N with M ⊆ K . Then

vθ (M) =
∑

i∈M
Pi (A

M
i ) ≤

∑

i∈M
Pi

(
AK
i

)
≤

∑

i∈K
Pi

(
AK
i

)
= vθ (K ).

The first and last equality hold by definition. The first inequality holds by Lemma 2
and the second one holds as Pi (x) ∈ R+ for all x ∈ [0, 1]. 
�

In addition, we are able to show that every availability game (N , vθ ) is superaddi-
tive: the value of the union of disjoint coalitions is larger than or equal to the sum of
the values of these coalitions.
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Proposition 2 Every availability game (N , vθ ) is superadditive.

Proof Let θ ∈ � be an availability situation and (N , vθ ) be the corresponding avail-
ability game. Let M, K ⊆ N with M ∩ K = ∅. Then

vθ (M) + vθ (K ) =
∑

i∈M
Pi

(
AM
i

)
+

∑

i∈K
Pi

(
AK
i

)

≤
∑

i∈M
Pi

(
AM∪K
i

)
+

∑

i∈K
Pi

(
AM∪K
i

)

=
∑

i∈M∪K

Pi
(
AM∪K
i

)
= vθ (M ∪ K ).

where the inequality holds by Lemma 2. 
�
Superadditivity does not suffice to conclude that there always exists an allocation

that divides total profit completely such that it cannot be improved upon by any coali-
tion, i.e. the core is non-empty. Following Shapley (1953), convexity of a game is a
sufficient condition for core non-emptiness. A game is convex if each player’smarginal
contribution increases as the coalition to which he or she belongs grows larger. The
next example shows that availability games are not convex in general.

Example 2 Consider the situation of Example 1. Observe that v({1, 2, 3}) −v({2, 3})
= 9.80−8.55= 1.25< 2.90= 6.40−3.50= v({1, 3}) −v({3}) andwe can conclude
that the game is not convex. �

Despite that availability games are not convex in general, non-emptiness of the core
can still be proved.

Theorem 1 Every availability game (N , vθ ) has a non-empty core.

Proof Let θ ∈ � be an availability situation and (N , vθ ) be the corresponding avail-
ability game. Let (xi )i∈N be the allocation with

xi = Pi
(
AN
i

)
for all i ∈ N .

First, observe that ∑

i∈N
xi =

∑

i∈N
Pi

(
AN
i

)
= vθ (N ),

and thus, the allocation is efficient. Secondly, observe that for any M ⊆ N

∑

i∈M
xi =

∑

i∈M
Pi

(
AN
i

)
≥

∑

i∈M
Pi

(
AM
i

)
= vθ (M),

where the inequality holds by Lemma 2. Given that
∑

i∈M xi ≥ vθ (M), the allocation
is stable as well. Hence, (xi )i∈N is an efficient and stable allocation and thus always
a member of the core. The core is non-empty. 
�

123



Pooling of resources with unavailability 241

We can also claim that availability games have a population monotonic allocation
scheme (PMAS): there exists an allocation of the joint profit for every possible coalition
such that each player’s payoff increases as the coalition to which the player belongs
grows larger.

Theorem 2 For every availability situation θ ∈ � allocation scheme (ai,M )M⊆N ,i∈M,
given by

ai,M = Pi
(
AM
i

)
for all i ∈ M and all M ⊆ N

is a population monotonic allocation scheme (PMAS) for (N , vθ ).

Proof Let θ ∈ � be an availability situation. Then, observe that

∑

i∈M
ai,M =

∑

i∈M
Pi

(
AM
i

)
= vθ (M)

for all M ⊆ N . Secondly, observe that for any M, K ⊆ N with M ⊆ K and i ∈ M
we have

ai,M = Pi
(
AM
i

)
≤ Pi

(
AK
i

)
= ai,K

and so (ai,M )i∈M,M⊆N is a PMAS. 
�
Following Sprumont (1990), every game with a PMAS is totally balanced. A game

is totally balanced if all of its subgames have non-empty cores. Since every availability
game has a PMAS, it is totally balanced as well.

Corollary 1 Every availability game (N , vθ ) is totally balanced.

In Example 2, it is illustrated that availability games are not convex in general.
However, it is of interest to investigate if there exist necessary and sufficient conditions
for a class of availability situations for which convexity can be ensured. We will
investigate the class of availability situations with linear profit functions, i.e. the class
of availability situations for which for every player i ∈ N , there exists a pi ∈ R+ such
that Pi (x) = pi x for all x ∈ [0, 1]. These situations will be called linear availability
situations.1 The set of linear availability situations will be denoted by �L .

Definition 2 Let θ ∈ �L be a linear availability situation. Then function Li j (θ) is
defined by

Li j (θ) = A j

(
∑

k∈N
pk Ai − pi

)

− p j Ai for all i, j ∈ N with i �= j.

1 Availability games originating from linear availability situations with p j > 0 for some j ∈ N and
pi = 0 for all i ∈ N\{ j} may be recognized as big boss games (see Muto et al. 1988). As a consequence,
availability games originating from linear availability situation may be recognized as linear combinations
of big boss games. This does not hold for availability games in general.
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Theorem 3 For every linear availability situation θ ∈ �L with |N | ≥ 2 , the
corresponding game (N , vθ ) is convex if and only if

Li j (θ) ≤ 0 for all i, j ∈ N with i �= j.

Proof See Appendix2.

Example 3 Consider the (linear) availability situation of Example 1. Note that p1 =
1, p2 = 2 and p3 = 7. Then, L12(θ) is given by

L12(θ) = 0.9 · (10 · 0.6 − 1) − 2 · 0.6 = 3.3 > 0.

As derived directly in Example 2, the game is indeed not convex. �
For linear availability situations θ ∈ �L with pi = p ∈ R+ for all i ∈ N ,

Theorem 3 reduces to an easier result.

Corollary 2 For every linear availability situation θ ∈ �L with N = {1, 2, ..., n}
with n ≥ 2, pi = p ∈ R+ for all i ∈ N, and A1 ≥ A2 ≥ · · · ≥ An, the corresponding
availability game (N , vθ ) is convex if and only if

|N |A1A2 − A1 − A2 ≤ 0.

Proof See Appendix.

Corollary 2 states that, under specific conditions, the corresponding availability
game is convex. For example, availability games with only few players are more
likely to be convex than games with many players (under the same highest and second
highest availabilities). This may be due to the following effect. The additional profit
player i ∈ N generates when another player j ∈ N\{i} enters the coalition decreases
by the size of the coalition player i ∈ N belongs to. This effect may occur for linear
availability situations θ ∈ �L where availabilities (and profits) are constant as well.

Corollary 3 For every linear availability situation θ ∈ �L with N = {1, 2, ..., n}
with n ≥ 2, Ai = A for all i ∈ N, and p1 ≤ p2 ≤ · · · ≤ pn, the corresponding
availability game (N , vθ ) is convex if and only if

A ≤ p1 + p2
∑

i∈N pi
.

Proof See Appendix.

Corollary 4 For every linear availability situation θ ∈ �L with N = {1, 2, ..., n}
with n ≥ 2, pi = p ∈ R+, and Ai = A for all i ∈ N, the corresponding availability
game (N , vθ ) is convex if and only if

A ≤ 2

|N | .

2 For the sake of readability, lengthy proofs are presented in the appendix.
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Proof See Appendix.

Corollaries 2, 3 and 4 can be used to investigate quickly whether games are convex
and as a consequence to conclude whether the core is non-empty.

4 Allocation rules

In the proof of Theorem 1, an interesting allocation per availability situation, which
can be seen as an allocation rule, is presented. Despite that the payoff vector resulting
from this allocation rule is a core member of every availability situation, it will not
necessarily satisfy any other (appealing) property. Even stronger, there may exist
other allocation rules that (i) allocate total profit based on other criteria, (ii) satisfy
interesting properties and (iii) have a payoff vector that is a core member for every
availability situation aswell. For that reason, wewill introduce three other (interesting)
allocation rules for availability situations. For the, in total, four allocation rules, wewill
investigate if they satisfy monotonicity to availability, monotonicity to profit, situation
symmetry and game symmetry. Finally, we will also investigate the core membership
of the payoff vectors resulting from the allocation rules.

4.1 Four allocation rules

First, we will formally introduce an allocation rule defined on availability situations.

Definition 3 An allocation rule on availability situations is defined as a mapping γ

that assigns to any availability situation θ ∈ � a vector γ (θ) ∈ R
N .

We will only pay attention to allocation rules that divide the total profit, i.e.∑
i∈N γi (θ) = vθ (N ) for any availability situation θ ∈ �. The total profit that can be

generated only depends on (i) the availabilities and (ii) the profit functions of the dif-
ferent players. In what follows, we will first introduce three intuitive allocation rules,
each depending on the availabilities and profit functions of the different players of the
corresponding availability situation. Thereafter, we will present the fourth allocation
rule which is based on a well-known allocation rule for cooperative games, namely
the Shapley value.

The first allocation rule (which is introduced in the proof of Theorem 1 as an
allocation for every availability situation) will allocate to every player the profit, he
or she generates with its own profit function while being part of the grand coalition. It
is based on the idea that a player that generates more profit than another player under
the same availability should also be rewarded more. This allocation rule, which we
call Own Profit (OP), is described for any availability situation θ ∈ � by

OPi (θ) = Pi
(
AN
i

)
for all i ∈ N .

A possible drawback of the first allocation rule is that players are not rewarded
directly for the impact of their own availability (on the profit functions of others).
The second allocation rule overcomes this by allocating the total profit proportional
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to the availabilities of the players. The idea behind this allocation rule is that the more
a player is available, the more it can help others, and for this, it will be rewarded.
Formally, for every availability situation θ ∈ �, this allocation rule, which we call
Proportional to Availability (PA), is defined by

PAi (θ) = Ai
∑

j∈N
A j

vθ (N ) for all i ∈ N .

A possible drawback of the second allocation rule is that players are not rewarded
directly for the profit generated with their own profit function while being part of
the grand coalition. The third allocation rule will not overcome this (nor the other)
drawback. However, it tries to find another intuitive way of dividing the profit based
on the availabilities and profit functions. This allocation rule will first allocate the
individual profit, i.e. the profit that every playerwould obtain in the individual situation,
to every player. In fact, every player will be rewarded for their own availability and
profit function. Then, the remaining part of the total profit, i.e. the surplus, will be
divided proportional to the players’ profit loss due to unavailability. We measure the
profit loss due to unavailability as the difference in profit a player can bring in with
100% availability and with their (own) individual availability. The idea behind this
part is that players are rewarded for their profit potential they can bring with 100%
availability. Formally, for every availability situation θ ∈ � this allocation rule, which
we call Surplus Proportional to profit Potential (SPP), is defined by3

SPPi (θ)= vθ ({i}) + Pi (1)− Pi (Ai )
∑

j∈N
[
Pj (1)− Pj (A j )

]

⎛

⎝vθ (N ) −
∑

j∈N
vθ ({ j})

⎞

⎠ for all i ∈ N .

The last allocation rule that will be introduced is the Shapley value. The Shapley
value (Shapley 1953) is a well-known (and accepted) allocation rule for cooperative
games. It is the only one that satisfies the efficiency, monotonicity, symmetry and
dummy property simultaneously. We will define the Shapley Value (SV) for every
availability situation θ ∈ � by

SVi (θ) = �i (N , vθ ) for all i ∈ N .

4.2 Properties of allocation rules

In this section, we will investigate whether the allocation rules satisfy intuitive prop-
erties as monotonicity to availability, monotonicity to profit, situation symmetry and
game symmetry. Finally, we will also investigate whether the payoff vectors resulting
from the allocation rules are core members.

3 One can also be interested in the situation wherein the profit loss due to unavailability is with respect to
AN (rather than 100%). Then, allocation rule SSP boils down to OP.
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4.2.1 Monotonicity to availability

Suppose the availability of a player increases. Then, this specific player is able to
generate more profit. Moreover, as the total availability increases, other players can
generate more profit as well. Hence, it is natural to assume that players do not expect
decreases in their allocations. We will investigate whether the allocation rules will
allocate to all players not less when the availability of any player increases, i.e. satisfy
monotonicity to availability.

Definition 4 An allocation rule γ satisfies monotonicity to availability on D ⊆ � if
for any two availability situations θ, θ ′ ∈ D, where θ and θ ′ coincide except for the
availability of player j with A j ≤ A′

j

γi (θ) ≤ γi (θ
′) for all i ∈ N .

The following example will show that allocation rules PA, SPP and SV do not
satisfy monotonicity to availability on �.

Example 4 Consider availability situation θ ∈ � with N = {1, 2, 3}, A1 = 0.5,
A2 = 0.5, A3 = 0.5 and

P1(x) = P2(x) =

⎧
⎪⎨

⎪⎩

x if 0 ≤ x ≤ 1
2

1
2 if 1

2 < x < 1

1 if x = 1,

P3(x) =
{
x if 0 ≤ x ≤ 1

2
1 if 1

2 < x ≤ 1.

Moreover, consider situation θ ′ ∈ �, which coincideswith θ except that A′
3 = 0.75.

In Table 2, the four allocations regarding those two situations θ and θ ′ are depicted
for all three players.

Allocation rules PA, SPP and SV do not satisfy monotonicity to availability, since

PA2(θ) > PA2(θ
′),

SPP2(θ) > SPP2(θ
′),

SV2(θ) > SV2(θ
′).

Note that this example can also be constructed with continuous profit functions. �
Proposition 3 Allocation rule OP satisfies monotonicity to availability on �.

Table 2 Allocations for availability game

i OPi PAi SPPi SVi i OPi PAi SPPi SVi

1 1
2

2
3

2
3

7
12 1 1

2
4
7

1
2

1
2

θ 2 1
2

2
3

2
3

7
12 θ ′ 2 1

2
4
7

1
2

1
2

3 1 2
3

2
3

10
12 3 1 6

7 1 1
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Proof See Appendix.

For linear availability situations, we obtain different results regarding monotonicity
to availability. The following example will be used to show that allocation rules PA
and SV do not satisfy monotonicity to availability on �L .

Example 5 Consider the (linear) availability situation θ ∈ �L of Example 1. More-
over, consider situation θ ′ ∈ �L , which coincides with θ except that A′

1 = 0.8 now.
In Table 3, the four allocations regarding those two situations θ and θ ′ are depicted
for all three players. All numbers are rounded to two decimals.

Allocation rules PA and SV do not satisfy monotonicity to availability, since

PA2(θ) > PA2(θ
′),

SV2(θ) > SV2(θ
′). �

Proposition 4 Allocation rules OP and SPP satisfy monotonicity to availability on
�L .

Proof See Appendix.

4.2.2 Monotonicity to profit

Suppose the profit function of a player changes such that the difference between the
outcomes of the old and the new profit function is non-decreasing in the argument, i.e.
in (total) availability. Then, this specific player is able to generate more profit. Despite
that the other players will not generate more profit themselves, they are responsible
(in terms of availability) for the (extra) profit of the specific player as well. Hence, it
is natural to assume that players do not expect decreases in their allocations. We will
investigate whether the allocation rules will allocate to all players not less when the
difference between the outcome of the new and old profit function of a specific player
is non-decreasing in (total) availability, i.e. satisfy monotonicity to profit.

Definition 5 An allocation rule γ satisfies monotonicity to profit on D ⊆ � if for
any two availability situations θ, θ ′ ∈ D, where θ and θ ′ coincide except for the profit
of player j with P ′

j (x) − Pj (x) non-decreasing in x ,

γi (θ) ≤ γi (θ
′) for all i ∈ N .

Table 3 Allocations for availability game

i OPi PAi SPPi SVi i OPi PAi SPPi SVi

1 0.98 2.94 0.98 1.28 1 0.99 3.60 0.99 1.52

θ 2 1.96 4.41 1.99 2.95 θ ′ 2 1.98 4.05 2.00 2.70

3 6.86 2.45 6.83 5.57 3 6.93 2.25 6.91 5.68
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The following example will show that allocation rule SPP does not satisfy mono-
tonicity to profit on �L .

Example 6 Consider an availability situation θ ∈ �L with N = {1, 2, 3}, A1 = 0.6,
A2 = 0.7, A3 = 0.5, p1 = 1, p2 = 3 and p3 = 9. Moreover, consider situation
θ ′ ∈ �L , which coincides with θ except that p′

1 = 10 now. In Table 4, the four
allocations regarding those two situations θ and θ ′ are depicted for all three players.
Note that all numbers are rounded to two decimals.

Allocation rule SPP does not satisfy monotonicity to profit, since

SPP3(θ) > SPP3(θ
′). �

Proposition 5 Allocation rules OP, PA and SV satisfy monotonicity to profit on �.

Proof See Appendix.

4.2.3 Situation symmetry

Suppose that two players have the same profit function and availability. Then, those
players both generate the same profit and both help other players (in terms of avail-
ability) in the same way. Hence, it is natural to assume that those players expect the
same allocation. We will investigate whether the allocation rules will indeed allocate
the same to both players, i.e. satisfy situation symmetry. For this, we will introduce
some new definitions.

Definition 6 For any availability situation θ ∈ �, players i, j ∈ N with i �= j are
called situation symmetric if

Pi (x) = Pj (x) for all x ∈ [0, 1] and Ai = A j .

Definition 7 An allocation rule γ satisfies situation symmetry on D ⊆ � if for all
θ ∈ D and all situation symmetric players i, j ∈ N with i �= j it holds that

γi (θ) = γ j (θ).

Proposition 6 Allocation rulesOP, PA, SPP and SV satisfy situation symmetry on�.

Proof See Appendix.

Table 4 Allocations for availability game

i OPi PAi SPPi SVi i OPi PAi SPPi SVi

1 0.94 4.07 0.95 1.69 1 9.40 6.89 9.44 8.83

θ 2 2.82 4.75 2.88 3.54 θ ′ 2 2.82 8.04 2.87 4.38

3 8.46 3.39 8.39 6.98 3 8.46 5.74 8.37 7.46
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4.2.4 Game symmetry

Suppose that player i and player j have the same individual profit, but not necessarily
the sameprofit functions and availabilities.Moreover, assume that the total profit of any
coalition including player i equals the total profit of the same coalition including player
j rather than i . So, both players are symmetric, but now in terms of the corresponding
availability game. Hence, it is natural to assume that both players expect the same
allocation. We will investigate whether the allocation rules will allocate the same
to both players, i.e. satisfy game symmetry. We will first introduce the definition of
symmetric players in terms of availability games.

Definition 8 For any availability situation θ ∈ � players i, j ∈ N with i �= j are
called game symmetric if for the corresponding availability game (N , vθ )

vθ (M ∪ {i}) = vθ (M ∪ { j}) for all M ⊆ N\{i, j}.

Definition 9 An allocation rule γ satisfies game symmetry on D ⊆ � if for all θ ∈ D
and all game symmetric players i, j ∈ N with i �= j it holds that

γi (θ) = γ j (θ).

The following example will show that allocation rules OP, PA and SPP do not
satisfy game symmetry on �L .

Example 7 Consider a linear availability situation θ ∈ �L with N = {1, 2, 3}, A1 =
0.7, A2 = 0.8, A3 = 0.9, p1 = 9, p2 = 40 and p3 = 7. Then vθ ({1}) = 6.3 =
vθ ({3}) and vθ ({1, 2}) = 40.06 = vθ ({2, 3}), and thus, we can conclude that players
1 and 3 are game symmetric. The corresponding allocations are presented in Table 5.
All numbers are rounded to two decimals.

The allocation rules OP, PA and SPP do not satisfy game symmetry, since

OP1(θ) > OP3(θ),

PA1(θ) < PA3(θ),

SPP1(θ) > SPP3(θ). �

Proposition 7 Allocation rule SV satisfies game symmetry on �.

Proof Let θ ∈ � be an availability situation. Moreover, let i, j ∈ N with i �= j
be two game symmetric players in (N , vθ ). Following Shapley (1953), it holds that

Table 5 Allocations for
availability game

i OPi PAi SPPi SVi

1 8.95 16.24 8.92 9.18

θ 2 39.76 18.55 39.76 37.30

3 6.96 20.87 6.98 9.18
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�i (N , vθ ) = � j (N , vθ ). As a consequence, SVi (θ) = �i (N , vθ ) = � j (N , vθ ) =
SV j (θ), which concludes that SV satisfies game symmetry. 
�

4.2.5 The core

In Sect. 3.3, we already investigated the non-emptiness of the core. This result was
based on finding a payoff vector that always belongs to the core. Now, we will investi-
gate whether the payoff vectors resulting from the allocation rules are alwaysmembers
of the core as well.

The following example will show that there exists an availability situation θ ∈ �

for which payoff vectors PA(θ), SPP(θ) and SV(θ) are not core elements.

Example 8 Consider the availability situation of Example 4. Then, the correspond-
ing game (N , vθ ) is given by vθ ({1}) = vθ ({2}) = vθ ({3}) = 1

2 , vθ ({1, 3}) =
vθ ({2, 3}) = 11

2 , v
θ ({1, 2}) = 1 and vθ ({1, 2, 3}) = 2. The payoff vectors resulting

from allocation rules PA, SPP and SV (see Table 2) are not elements of the core, since

PA1(θ) + PA3(θ) = 2

3
+ 2

3
< 1

1

2
= vθ ({1, 3}),

SPP1(θ) + SPP3(θ) = 2

3
+ 2

3
< 1

1

2
= vθ ({1, 3}),

SV1(θ) + SV3(θ) = 7

12
+ 10

12
= 1

5

12
< 1

1

2
= vθ ({1, 3}). �

From the proof of Theorem 1, the following result is obtained immediately.

Corollary 5 For every availability situation θ ∈ �, it holds that

OP(θ) ∈ C (N , vθ ).

The following example will show that there exists a linear availability situation
θ ∈ �L for which payoff vectors PA(θ) and SV(θ) are not core elements.

Example 9 Consider the (linear) availability situation θ ∈ �L of Example 1. The
related allocations are presented in Table 6. All values are rounded to two decimal
places.

Table 6 Allocations for
availability game

i OPi PAi SPPi SVi

1 0.98 2.94 0.98 1.28

θ 2 1.96 4.41 1.99 2.95

3 6.86 2.45 6.83 5.57
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The payoff vectors resulting from allocation rules PA and SV are not elements of
the core, since

PA2(θ) + PA3(θ) < 4.42 + 2.46 = 6.88 < vθ({2, 3}),
SV2(θ) + SV3(θ) < 2.96 + 5.58 = 8.54 < vθ({2, 3}). �

Based on Corollary 5 and Example 9, it remains to investigate whether payoff
vectors resulting from SPP are core members. We make use of the following lemma.

Lemma 3 Let θ ∈ �L be a linear availability situation with xi = 1 − Ai for all
i ∈ N. Then for all M ⊆ N it holds that

∑

i∈M
pi

⎛

⎝
∏

j∈M
x j

⎞

⎠ ≥
∑

i∈M pi xi
∑

j∈N p j x j

∑

i∈N
pi

⎛

⎝
∏

j∈N
x j

⎞

⎠.

Proof See Appendix.

Proposition 8 For every availability situation θ ∈ �L it holds that

SPP(θ) ∈ C (N , vθ ).

Proof See Appendix.

Following Shapley (1953), the Shapley value is a member of the core if the corre-
sponding game is convex. In Theorem 3, necessary and sufficient conditions are given
for convexity of games associated with linear availability situations. Combining them
leads to our last result immediately.

Corollary 6 For linear availability situations θ ∈ �L with Li j (θ) ≤ 0 for all
i, j ∈ N and i �= j , SV(θ) is a member of the core of (N , vθ ).

5 Conclusions and future research

We formulated a stylized model of reality in which several independent service
providers can collaborate by pooling their critical, low-utilization resources that are
subject to unavailability.Weexamined the allocation of the joint profit for such a pooled
situation by studying an associated cooperative game. For this game, we proved that
there always exists an allocation of the joint profit that cannot be improved upon by
any coalition. In addition, we showed that there exists an allocation of the joint profit
for every possible coalition such that each player’s payoff increases as the coalition
to which the player belongs grows larger. Moreover, we discussed four allocation
rules and investigated whether they satisfy intuitive properties such as monotonicity
to availability, monotonicity to profit, situation symmetry and game symmetry. Next
to that, we investigated whether the payoff vectors resulting for those allocation rules
are core members. In Tables 7 and 8, all results have been summarized.
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With respect to the original underlying real-life examples (of tampingmachines and
specialized repairmen needed for highly profitable machines), these results provide
operational insights. For instance, as (in terms of the game) there always exists an allo-
cation of the joint profit that cannot be improved upon by any coalition, investigating
collaboration between several contractors or maintenance companies is a worthwhile
endeavour. However, it is likely that intuitive and simply-to-implement allocations
rules, such as PA and SPP who divide profit proportionally to criteria such as avail-
ability and profit, may have some shortcomings in practice. For instance, it is well
possible that the payoff vectors of these allocation rules may not be part of the core
as well as that they may lack the monotonicity to availability property, which implies
that an increase in the availability not necessarily implies an increase in the profit allo-
cation. A possible drawback of allocation rule SV is its implementation, as it requires
calculating the values of all coalitions, which may be problematic as this increases
exponentially in the number of players. Oppositely, it seems that allocation rule OP,
which allocates the profit, he or she generates with its own profit function while being
part of the grand coalition, is a good starting point as it is easy to implement, core-
guaranteed and dominates allocation rules PA and SPP in terms of the investigated
properties.

For further research, it would be interesting to study the following extensions.
First, one could look at an extended model with the property that two or more ser-
vice providers may demand for a resource simultaneously. In this case, it is not
always possible (anymore) that another resource can take over demand. Moreover,
we can extend the model by including that (i) the individual resource availabil-
ity depends on the number of parties that participate in the pool and (ii) exchange
costs are included for transporting resources to other parties in case of pooling of the
resources.

Table 7 Results for availability
situations

Properties OP PA SPP SV

Monotonicity to availability � × × ×
Monotonicity to profit � � × �
Situation symmetry � � � �
Game symmetry × × × �
Member of the core � × × ×

� : Satisfies property
× : Does not (always) satisfy
property

Table 8 Results for linear
availability situations

Properties OP PA SPP SV

Monotonicity to availability � × � ×
Monotonicity to profit � � × �
Situation symmetry � � � �
Game symmetry × × × �
Member of the core � × � ×aaSatisfies property if conditions

of Corollary 6 hold
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6 Appendix

Proof of Theorem 3 Let θ ∈ �L be a linear availability situation with |N | ≥ 2 and
(N , vθ ) be the corresponding availability game. We will show that the corresponding
availability game is convex if and only ifLi j (θ) ≤ 0 for all i, j ∈ N with i �= j .

(⇒) Suppose the availability game is convex, i.e. (Shapley 1953), then

vθ (M ∪ {i, j}) − vθ (M ∪ { j}) − (vθ (M ∪ {i}) − vθ (M)) ≥ 0 (4)

for all i, j ∈ N with i �= j and all M ⊆ N\{i, j}. Let i, j ∈ N with i �= j and
M ⊆ N\{i, j}. Based on (4), it holds that

0 ≤ vθ (M ∪ {i, j}) − vθ (M ∪ { j}) − (vθ (M ∪ {i}) − vθ (M))

=
∑

k∈M∪{i, j}
pk

⎛

⎝1 −
∏

l∈M∪{i, j}
(1 − Al)

⎞

⎠ −
∑

k∈M∪{ j}
pk

⎛

⎝1 −
∏

l∈M∪{ j}
(1 − Al)

⎞

⎠

−
∑

k∈M∪{i}
pk

⎛

⎝1 −
∏

l∈M∪{i}
(1 − Al)

⎞

⎠ +
∑

k∈M
pk

(

1 −
∏

l∈M
(1 − Al)

)

=
∑

k∈M∪{ j}
pk

⎛

⎝Ai

∏

l∈M∪{ j}
(1 − Al)

⎞

⎠ + pi

⎛

⎝1 −
∏

l∈M∪{i, j}
(1 − Al)

⎞

⎠

−
∑

k∈M
pk

(

Ai

∏

l∈M
(1 − Al)

)

− pi

⎛

⎝1 −
∏

l∈M∪{i}
(1 − Al)

⎞

⎠

=
∏

l∈M∪{ j}
(1 − Al)

⎛

⎝
∑

k∈M∪{ j}
pk Ai − pi (1 − Ai )

⎞

⎠

−
∏

l∈M
(1 − Al)

(
∑

k∈M
pk Ai − pi (1 − Ai )

)

=
∏

l∈M
(1 − Al)

⎛

⎝(1 − A j )

⎛

⎝
∑

k∈M∪{i, j}
pk Ai − pi

⎞

⎠ −
⎛

⎝
∑

k∈M∪{i}
pk Ai − pi

⎞

⎠

⎞

⎠,
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where the first equality follows by definition. The second equality follows by combin-
ing all terms k ∈ M ∪ { j} from the first and second summation into one summation
and combining all terms k ∈ M from the third and fourth summation into one sum-
mation. In the two new summations, we combine the product terms and use that
Ai = 1 − (1 − Ai ). Finally, we write down the terms that are left from the original
summations. In the third equality, the product term

∏
l∈M∪ j (1 − Al) is taken out of

the first and second term and the product term
∏

l∈M (1− Al) is taken out of the third
and fourth term. Moreover, pi · 1 and −pi · 1 cancel out against each other. In the
fourth equality, the product term

∏
l∈M (1− Al) is taken out of the whole equality and

−pi (1− Ai ) is written as pi Ai − pi , where pi Ai is finally included in the summation.
As Ai ∈ (0, 1) for all i ∈ N , it holds that

∏
l∈M (1− Al) > 0. If the last expression

is divided by
∏

l∈M (1 − Al), we obtain

0 ≤ (1 − A j )

⎛

⎝
∑

k∈M∪{i, j}
pk Ai − pi

⎞

⎠ −
⎛

⎝
∑

k∈M∪{i}
pk Ai − pi

⎞

⎠

= p j Ai − A j

⎛

⎝
∑

k∈M∪{i, j}
pk Ai − pi

⎞

⎠.

This is equivalent to

A j

⎛

⎝
∑

k∈M∪{i, j}
pk Ai − pi

⎞

⎠ − p j Ai ≤ 0. (5)

As i, j ∈ N with i �= j and M ⊆ N\{i, j} were chosen arbitrarily, (5) holds for
any i, j ∈ N with i �= j and allM ⊆ N\{i, j}. In particular, (5) holds for any i, j ∈ N
with i �= j and M = N\{i, j}. For M = N\{i, j}, the left side of (5) coincides with
Li j (θ) and thus Li j (θ) ≤ 0 for all i, j ∈ N with i �= j .

(⇐) Now, we assume that
Li j (θ) ≤ 0

for all i, j ∈ N with i �= j . Then, for a given i, j ∈ N with i �= j it holds that

A j

(
∑

k∈N
pk Ai − pi

)

− p j Ai ≤ 0.

Now, let M ⊆ N\{i, j}. As ∑
k∈M∪{i, j} pk Ai ≤ ∑

k∈N pk Ai , we can conclude
that

A j

⎛

⎝
∑

k∈M∪{i, j}
pk Ai − pi

⎞

⎠ − p j Ai ≤ A j

(
∑

k∈N
pk Ai − pi

)

− p j Ai ≤ 0.
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This implies that

0 ≤ −A j

⎛

⎝
∑

k∈M∪{i, j}
pk Ai − pi

⎞

⎠ + p j Ai

= −A j

⎛

⎝
∑

k∈M∪{i, j}
pk Ai − pi

⎞

⎠

+
⎛

⎝
∑

k∈M∪{i, j}
pk Ai − pi

⎞

⎠ −
⎛

⎝
∑

k∈M∪{i}
pk Ai − pi

⎞

⎠

= (1 − A j )

⎛

⎝
∑

k∈M∪{i, j}
pk Ai − pi

⎞

⎠ −
⎛

⎝
∑

k∈M∪{i}
pk Ai − pi

⎞

⎠

Multiplying the last expression by
∏

l∈M (1 − Al) > 0 results in

∏

l∈M
(1 − Al)

⎛

⎝(1 − A j )

⎛

⎝
∑

k∈M∪{i, j}
pk Ai − pi

⎞

⎠ −
⎛

⎝
∑

k∈M∪{i}
pk Ai − pi

⎞

⎠

⎞

⎠ ≥ 0.

From proof (⇒), we know that this inequality coincides with

v(M ∪ {i, j}) − v(M ∪ { j}) − (v(M ∪ {i}) − v(M)) ≥ 0. (6)

As i, j ∈ N with i �= j andM ⊆ N\{i, j}were chosen arbitrarily, we can conclude
that (6) holds for any i, j ∈ N with i �= j and all M ⊆ N\{i, j}. Using recursive
arguments, it can be seen that (6) is sufficient to show convexity. 
�
Proof of Corollary 2 Let θ ∈ �L be a linear availability situation with N =
{1, 2, ..., n} with n ≥ 2, pi = p ∈ R+ for all i ∈ N and A1 ≥ A2 ≥ · · · ≥ An . Let
(N , vθ ) be the corresponding availability game. We will show that the corresponding
availability game is convex if and only if |N |A1A2 − A1 − A2 ≤ 0.

(⇒) Suppose the corresponding availability game is convex. Then, by Theorem 3,
Li j (θ) ≤ 0 for all i, j ∈ N with i �= j and so

L12(θ) = A2 (|N |pA1 − p) − pA1 ≤ 0.

As p ∈ R+, we derive

|N |A1A2 − A1 − A2 ≤ 0,

which concludes this part of the proof.
(⇐) Suppose that |N |A1A2 − A1 − A2 ≤ 0. Then, it holds that
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A1

(
1

2
|N |A2 − 1

)

+ A2

(
1

2
|N |A1 − 1

)

≤ 0. (7)

As 0 ≤ A2 ≤ A1 < 1, this implies that 1
2 |N |A2 − 1 ≤ 0 and 1

2 |N |A1 − 1 ≤ 0 or
1
2 |N |A2 − 1 ≤ 0 and 1

2 |N |A1 − 1 ≥ 0. We will now investigate those different cases.

Case 1. 1
2 |N |A2 − 1 ≤ 0 and 1

2 |N |A1 − 1 ≤ 0.
As 1

2 |N |A1 − 1 ≤ 0, it holds that 1
2 |N |A j − 1 ≤ 1

2 |N |A1 − 1 ≤ 0 for all
j ∈ N . As Ai ∈ (0, 1) for all i ∈ N , it holds that Ai (

1
2 |N |A j − 1) ≤ 0 for

all i, j ∈ N . So, for all i, j ∈ N with i �= j , it holds that

Ai

(
1

2
|N |A j − 1

)

+ A j

(
1

2
|N |Ai − 1

)

≤ 0.

Case 2. 1
2 |N |A2 − 1 ≤ 0 and 1

2 |N |A1 − 1 ≥ 0.
As A1(

1
2 |N |A j −1) ≤ A1(

1
2 |N |A2−1) for all j ∈ N\{1} and A j (

1
2 |N |A1−

1) ≤ A2(
1
2 |N |A1 − 1) for all j ∈ N\{1}, it holds that

A1

(
1

2
|N |A j − 1

)

+ A j

(
1

2
|N |A1 − 1

)

≤ A1

(
1

2
|N |A2 − 1

)

+A2

(
1

2
|N |A1 − 1

)

≤ 0

for all j ∈ N\{1}. For i ∈ N\{1} and j ∈ N : j > i , it holds that 1
2 |N |A j −

1 ≤ 1
2 |N |Ai − 1 ≤ 1

2 |N |A2 − 1 ≤ 0. Thus

Ai

(
1

2
|N |A j − 1

)

+ A j

(
1

2
|N |Ai − 1

)

≤ 0. (8)

Combining Case 1 and Case 2, we conclude that (8) holds for all i ∈ N and all
j ∈ N with j > i . Since Li j (θ) = L j i (θ) for all i, j ∈ N with i �= j , (8) holds
for all i, j ∈ N with i �= j . As multiplying (8) with p ∈ R+ will not affect the
right-hand side of the inequality, it holds thatLi j (θ) ≤ 0 for all i, j ∈ N with i �= j .
By Theorem 3 , the corresponding availability game is convex. 
�
Proof of Corollary 3 Let θ ∈ �L be a linear availability situation with N =
{1, 2, ..., n} with n ≥ 2, Ai = A ∈ (0, 1) for all i ∈ N and p1 ≤ p2 · · · ≤ pn . Let
(N , vθ ) be the corresponding availability game. We will show that the corresponding
availability game is convex if and only if A ≤ p1+p2∑

i∈N pi
.

(⇒) Suppose the corresponding availability game is convex. Then, by Theorem 3,
Li j (θ) ≤ 0 for all i, j ∈ N with i �= j and so

L12(θ) = A

(
∑

i∈N
pi A − p1

)

− p2A ≤ 0.
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After some rewriting, we derive

A ≤ p1 + p2
∑

i∈N pi
,

which concludes this part of the proof.
(⇐) Suppose that 0 < A ≤ p1+p2∑

i∈N pi
. After some rewriting, we derive

A

(
∑

i∈N
pi A − p1

)

− p2A ≤ 0. (9)

The left-hand side of (9) coincides withL12(θ), and soL12(θ) ≤ 0. Now, observe
that

0 ≥ L12(θ) = A

(
∑

k∈N
pk A − p1

)

− p2A = A
2 ∑

k∈N
pk − A(p1 + p2)

≥ A
2 ∑

k∈N
pk − A(pi + p j )

= Li j (θ)

for all i, j ∈ N with i �= j . This implies that Li j (θ) ≤ 0 for all i, j ∈ N with i �= j .
By Theorem 3, the corresponding availability game is convex. 
�

Proof of Corollary 4 Let θ ∈ �L be a linear availability situation with N =
{1, 2, ..., n} with n ≥ 2, Ai = A ∈ (0, 1) for all i ∈ N and pi = p ∈ R+ for
all i ∈ N . Let (N , vθ ) be the corresponding availability game. We will show that the
corresponding availability game is convex if and only if A ≤ 2

|N | .
(⇒) Suppose the corresponding availability game is convex. Then, by Corollary 3,

it holds that

A ≤ p1 + p2
∑

k∈N pk
= 2p

|N |p = 2

|N | ,

which concludes the first part of the proof.
(⇐) Suppose that A ≤ 2

|N | . This implies that

A ≤ 2

|N | = 2p

|N |p = p1 + p2
∑

k∈N pk
,

and thus, by Corollary 3, the corresponding game is convex. 
�

Proof of Proposition 3 Let θ ∈ � be an availability situation and θ ′ ∈ � be another
availability situation that coincides with θ except for the availability of player j , i.e.
A j ≤ A′

j . Then, it holds for any player i ∈ N that

123



Pooling of resources with unavailability 257

OPi (θ) = Pi

(

1 −
∏

k∈N
(1 − Ak)

)

= Pi

⎛

⎝1 −
∏

k∈N\{ j}
(1 − Ak)(1 − A j )

⎞

⎠

= P ′
i

⎛

⎝1 −
∏

k∈N\{ j}
(1 − A′

k)(1 − A j )

⎞

⎠

≤ P ′
i

⎛

⎝1 −
∏

k∈N\{ j}
(1 − A′

k)(1 − A′
j )

⎞

⎠

= OPi (θ
′).

where the third equality results from Ak = A′
k for all k �= j and Pi = P ′

i for all i ∈ N .
The inequality results from 0 ≤ A j ≤ A′

j ≤ 1 with 0 ≤ ∏
k∈N\{ j}(1 − A′

k) ≤ 1, and
the fact that Pi is non-decreasing. 
�

Proof of Proposition 4 (i) OP From Proposition 3, it follows that allocation rule OP
satisfies monotonicity to availability on �. As �L ⊆ �, allocation rule OP satisfies
monotonicity to availability on �L as well.

(ii) SPP Let θ ∈ �L be a linear availability situation and θ ′ ∈ �L be another linear
availability situation that only deviates in the availability of player j ∈ N with A j ≤
A′
j . We claim that the derivative of SPPi (θ) for any player i ∈ N is non-negative with

respect to availability A j . Note that Pi (1) − Pi (Ai ) = pi − pi Ai = pi (1 − Ai ) for
all i ∈ N .

Allocation SPPi (θ) for player i ∈ N can be rewritten as

SPPi (θ) = pi Ai + pi (1 − Ai )
∑

k∈N pk(1 − Ak)

(
∑

t∈N
pt

(

1 −
∏

k∈N
(1 − Ak)

)

−
∑

l∈N
pl Al

)

= pi Ai +
(

1 −
∑

l∈N\{i} pl(1 − Al)
∑

l∈N pl(1 − Al)

)

×
(

∑

t∈N
pt

(

1 − At −
∏

k∈N
(1 − Ak)

))

= pi Ai +
∑

t∈N
pt

(

1 − At −
∏

k∈N
(1 − Ak)

)

−
∑

l∈N\{i}
pl(1 − Al)

+
∑

l∈N\{i} pl(1 − Al)
∑

l∈N pl(1 − Al)

∑

t∈N
pt

∏

k∈N
(1 − Ak)
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= pi Ai + pi (1 − Ai ) −
∑

t∈N
pt

∏

k∈N
(1 − Ak)

+
∑

l∈N\{i} pl(1 − Al)
∑

l∈N pl(1 − Al)

∑

t∈N
pt

∏

k∈N
(1 − Ak)

= pi −
∑

t∈N
pt

∏

k∈N
(1 − Ak)

(

1 −
∑

l∈N\{i} pl(1 − Al)
∑

l∈N pl(1 − Al)

)

= pi −
∑

t∈N
pt

∏

k∈N
(1 − Ak)

(
pi (1 − Ai )

∑
l∈N pl(1 − Al)

)

.

As at least for one player k ∈ N , pk(1) − pk(Ak) > 0, function SPPi (θ) is
continuous and differentiable in A j . For player j , the derivative of SPP j (θ) to A j is
given by

d

dA j
SPP j (θ) = −

∑
l∈N pl(1 − Al) · (−p j ) − p j (1 − A j ) · (−p j )

(∑
l∈N pl(1 − Al)

)2

∑

t∈N
pt

∏

k∈N
(1 − Ak)

− p j (1 − A j )
∑

l∈N pl(1 − Al)

∑

t∈N
pt

∏

k∈N\{ j}
(1 − Ak) · (−1)

= p j
(∑

l∈N pl(1 − Al)
)2

( ∑

l∈N\{ j}
pl(1 − Al)

∑

t∈N
pt

∏

k∈N
(1 − Ak)

+
∑

l∈N
pl(1 − Al)

∑

t∈N
pt

∏

k∈N
(1 − Ak)

)

= p j
∑

t∈N pt
∏

k∈N (1 − Ak)
(∑

l∈N pl(1 − Al)
)2

⎛

⎝
∑

l∈N\{ j}
pl(1 − Al) +

∑

l∈N
pl(1 − Al)

⎞

⎠ ≥ 0.

Note that all terms are non-negative, and thus, the derivative is non-negative as
well. Hence, SPP j (θ) is non-decreasing in A j . This implies that SPP j (θ) ≤ SPP j (θ

′).
Taking the derivative of SPPi (θ) to A j with i ∈ N\{ j} gives

d

dA j
SPPi (θ) = −0 − (pi (1 − Ai ) · (−p j ))

(∑
l∈N pl(1 − Al)

)2

∑

t∈N
pt

∏

k∈N
(1 − Ak)

− pi (1 − Ai )
∑

l∈N pl(1 − Al)

∑

t∈N
pt

∏

k∈N\{ j}
(1 − Ak) · (−1)

= pi (1 − Ai )
(∑

l∈N pl(1 − Al)
)2

(

−p j

∑

t∈N
pt

∏

k∈N
(1 − Ak)

+
∑

t∈N
pt

∏

k∈N\{ j}
(1 − Ak)

∑

l∈N
pl(1 − Al)

⎞

⎠
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= pi (1 − Ai )
(∑

l∈N pl(1 − Al)
)2

⎛

⎝
∑

t∈N
pt

∏

k∈N\{ j}
(1 − Ak)

⎞

⎠

×
(

−p j (1 − A j ) +
∑

l∈N
pl(1 − Al)

)

= pi (1 − Ai )
(∑

l∈N pl(1 − Al)
)2

⎛

⎝
∑

t∈N
pt

∏

k∈N\{ j}
(1 − Ak)

⎞

⎠

×
⎛

⎝
∑

l∈N\{ j}
pl(1 − Al)

⎞

⎠ ≥ 0.

Note that all terms are non-negative, and thus, the derivative is non-negative as well.
Hence, SPPi (θ) is non-decreasing in A j for all i ∈ N\{ j}. We conclude that SPPi (θ)

≤ SPPi (θ ′) for all i ∈ N . 
�
Proof of Proposition 5 Let θ, θ ′ ∈ � be two availability situations where θ and θ ′
coincide except for the profit of player j with P ′

j (x) − Pj (x) non-decreasing in x .
As P ′

k(x) − Pk(x) = 0 for all k ∈ N\{ j}, it holds that P ′
i (x) ≥ Pi (x) for all i ∈ N .

Hence, it holds for all i ∈ N that

OPi (θ) = Pi

(

1 −
∏

k∈N
(1 − Ak)

)

≤ P ′
i

(

1 −
∏

k∈N
(1 − A′

k)

)

= OPi (θ
′)

given that Ak = A′
k for all k ∈ N .

In the same line, it holds that

PAi (θ) = Ai
∑

k∈N Ak

∑

k∈N
Pk

(

1 −
∏

h∈N
(1 − Ah)

)

≤ A′
i∑

k∈N A′
k

∑

k∈N
P ′
k

(

1 −
∏

h∈N
(1 − A′

h)

)

= PAi (θ
′),

given that Ak = A′
k for all k ∈ N .

Finally, let i ∈ N and M ⊆ N\{i}. Then

vθ ′
(M ∪ {i}) − vθ ′

(M) =
∑

k∈M∪{i}
P ′
k

⎛

⎝1 −
∏

l∈M∪{i}
(1 − Al)

⎞

⎠

−
∑

k∈M
P ′
k

(

1 −
∏

l∈M
(1 − Al)

)
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=
∑

k∈M

⎛

⎝P ′
k

⎛

⎝1 −
∏

l∈M∪{i}
(1 − Al)

⎞

⎠

−P ′
k

(

1 −
∏

l∈M
(1 − Al)

))

+ P ′
i

⎛

⎝1 −
∏

l∈M∪{i}
(1 − Al)

⎞

⎠

≥
∑

k∈M

⎛

⎝Pk

⎛

⎝1 −
∏

l∈M∪{i}
(1 − Al)

⎞

⎠

− Pk

(

1 −
∏

l∈M
(1 − Al)

))

+ Pi

⎛

⎝1 −
∏

l∈M∪{i}
(1 − Al)

⎞

⎠

= vθ (M ∪ {i}) − vθ (M),

where the inequality holds, as

(i) if j ∈ M (and thus j �= i) then P ′
j (y) − P ′

j (x) ≥ Pj (y) − Pj (x) for y ≥ x and
P ′
l = Pl for all l ∈ M\{ j} and P ′

i = Pi .
(ii) if j /∈ M and i = j then P ′

l = Pl for all l ∈ M and P ′
i ≥ Pi .

(iii) if j /∈ M and i �= j then P ′
l = Pl for all l ∈ M and P ′

i = Pi and so the inequality
becomes equality.

As vθ ′
(M ∪{i})−vθ ′

(M) ≥ vθ (M ∪{i})−vθ (M) for any i ∈ N and M ⊆ N\{i} and
given that the Shapley value of a cooperative game is a weighted average over those
marginal contributions, it follows that

SVi (θ) = �i (N , vθ ) ≤ �i (N , vθ ′
) = SVi (θ

′) for all i ∈ N ,

which concludes the proof. 
�

Proof of Proposition 6 Let θ ∈ � be an availability situation and i, j ∈ N with i �= j
two players that are situation symmetric. For allocation rule OP, it holds that

OPi (θ) = Pi

(

1 −
∏

k∈N
(1 − Ak)

)

= Pj

(

1 −
∏

k∈N
(1 − Ak)

)

= OP j (θ),

as Pi (x) = Pj (x) for all x ∈ [0, 1]. For allocation rule PA, it holds that

PAi (θ) = Ai
∑

k∈N Ak
vθ (N ) = A j

∑
k∈N Ak

vθ (N ) = PA j (θ),
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as Ai = A j . For allocation rule SPP, it holds that

SPPi (θ) = vθ ({i}) + Pi (1) − Pi (Ai )
∑

k∈N [Pk(1) − Pk(Ak)]

(

vθ (N ) −
∑

l∈N
vθ ({l})

)

= Pi (Ai ) + Pi (1) − Pi (Ai )
∑

k∈N [Pk(1) − Pk(Ak)]

(

vθ (N ) −
∑

l∈N
vθ ({l})

)

= Pj (A j ) + Pj (1) − Pj (A j )
∑

k∈N [Pk(1) − Pk(Ak)]

(

vθ (N ) −
∑

l∈N
vθ ({l})

)

= vθ ({ j}) + Pj (1) − Pj (A j )
∑

k∈N [Pk(1) − Pk(Ak)]

(

vθ (N ) −
∑

l∈N
vθ ({l})

)

= SPP j (θ),

As Pi (x) = Pj (x) for all x ∈ [0, 1] and Ai = A j . Finally, for allocation rule
SV, it holds that Pi (x) = Pj (x) for all x ∈ [0, 1] and Ai = A j . This implies that
vθ (M ∪ {i}) = vθ (M ∪ { j}) for all M ⊆ N\{i, j}. Based on Definition 8, players i
and j are game symmetric. Based on Proposition 7 and Definition 9, we conclude that
SVi (θ) = SV j (θ). 
�
Proof of Lemma 3 Let θ ∈ �L be a linear availability situation, xi = 1 − Ai for all
i ∈ N , and M ⊆ N . Then, it holds that

∑

i∈M
pi xi

∑

j∈M
p j

⎛

⎝1 −
∏

k∈N\M
xk

⎞

⎠ ≥ 0.

Moreover, it holds that

∑

i∈N\M
pi xi

∑

k∈M
pk −

∑

i∈N\M
pi

∏

j∈N\M
x j

∑

k∈M
pkxk ≥ 0.

Now, when both parts are summed, we obtain

0 ≤
∑

i∈M
pi xi

∑

j∈M
p j

⎛

⎝1 −
∏

k∈N\M
xk

⎞

⎠ +
∑

i∈N\M
pi xi

∑

k∈M
pk

−
∑

i∈N\M
pi

∏

j∈N\M
x j

∑

k∈M
pkxk

=
∑

i∈M
pi xi

∑

j∈M
p j −

∑

i∈M
pi xi

∑

j∈M
p j

∏

k∈N\M
xk +

∑

i∈N\M
pi xi

∑

k∈M
pk

−
∑

i∈N\M
pi

∏

j∈N\M
x j

∑

k∈M
pkxk

123



262 L. Schlicher et al.

=
∑

i∈N
pi xi

∑

j∈M
p j −

∑

i∈M
pi xi

∑

j∈M
p j

∏

k∈N\M
xk −

∑

i∈N\M
pi

∏

j∈N\M
x j

∑

k∈M
pkxk

=
∑

i∈N
pi xi

∑

j∈M
p j −

∑

i∈M
pi xi

∑

j∈M
p j

∏

k∈N\M
xk −

∑

k∈M
pkxk

∑

i∈N\M
pi

⎛

⎝
∏

j∈N\M
x j

⎞

⎠

=
∑

i∈N
pi xi

∑

j∈M
p j −

∑

i∈M
pi xi

∑

j∈N
p j

⎛

⎝
∏

k∈N\M
xk

⎞

⎠,

where the equalities hold by rewriting. From the last expression, we derive

∑

i∈N
pi xi

∑

j∈M
p j ≥

∑

i∈M
pi xi

∑

j∈N
p j

⎛

⎝
∏

k∈N\M
xk

⎞

⎠.

Multiplying both sides by
∏

j∈M x j (≥ 0) and subsequently dividing both sides by∑
j∈N p j x j (> 0) gives

∑

i∈M
pi

∏

j∈M
xi ≥

∑
i∈M pi xi

∑
j∈N p j x j

∑

i∈N
pi

∏

j∈N
xi ,

which concludes the proof. 
�

Proof of Proposition 8 Let θ ∈ �L be a linear availability situation. Note that Pi (1)−
Pi (Ai ) = pi − pi Ai = pi (1 − Ai ) for all i ∈ N . It holds that

∑

i∈N
SPPi (θ) =

∑

i∈N

(

vθ ({i}) + pi (1 − Ai )
∑

j∈N p j (1 − A j )

(

vθ (N ) −
∑

k∈N
vθ ({k})

))

=
∑

i∈N
vθ ({i}) + vθ (N ) −

∑

k∈N
vθ ({k})

= vθ (N ),

and thus, SPP(θ) is efficient. Secondly, let M ⊆ N , then

vθ (M) =
∑

i∈M
pi

⎛

⎝1 −
∏

j∈M
(1 − A j )

⎞

⎠

=
∑

i∈M
pi Ai +

∑

i∈M
pi (1 − Ai ) −

∑

i∈M
pi

∏

j∈M
(1 − A j )

≤
∑

i∈M
vθ ({i}) +

∑

i∈M
pi (1 − Ai ) −

∑
i∈M pi (1 − Ai )

∑
k∈N pk(1 − Ak)

∑

i∈N
pi

∏

j∈N
(1 − A j )
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=
∑

i∈M
vθ ({i}) +

∑
i∈M pi (1 − Ai )

∑
k∈N pk(1 − Ak)

⎛

⎝
∑

k∈N
pk(1 − Ak) −

∑

i∈N
pi

∏

j∈N
(1 − A j )

⎞

⎠

=
∑

i∈M
vθ ({i}) +

∑
i∈M pi (1 − Ai )

∑
k∈N pk(1 − Ak)

⎛

⎝
∑

k∈N
pk(1 −

∏

j∈N
(1 − A j )) −

∑

k∈N
pk Ak

⎞

⎠

=
∑

i∈M

(

vθ ({i}) + pi (1 − Ai )
∑

k∈N pk(1 − Ak)

(

vθ (N ) −
∑

k∈N
vθ ({k})

))

=
∑

i∈M
SPPi (θ),

where the inequality is a result of Lemma 3 with x j = 1 − A j for all j ∈ N . Hence,
SPP(θ) is also stable and thus a member of the core. 
�
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