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Abstract Deterministic epidemic models are attractive due to their compact nature,
allowing substantial complexity with computational efficiency. This partly explains
their dominance in epidemic modelling. However, the small numbers of infectious
individuals at early and late stages of an epidemic, in combination with the stochastic
nature of transmission and recovery events, are critically important to understanding
disease dynamics. This motivates the use of a stochastic model, with continuous-time
Markov chains being a popular choice. Unfortunately, even the simplest Markovian
S–I–R model—the so-called general stochastic epidemic—has a state space of order
N 2, where N is the number of individuals in the population, and hence computa-
tional limits are quickly reached. Here we introduce a hybrid Markov chain epidemic
model, which maintains the stochastic and discrete dynamics of the Markov chain in
regions of the state space where they are of most importance, and uses an approximate
model—namely a deterministic or a diffusion model—in the remainder of the state
space. We discuss the evaluation, efficiency and accuracy of this hybrid model when
approximating the distribution of the duration of the epidemic and the distribution of
the final size of the epidemic. We demonstrate that the computational complexity is
O(N ) and that under suitable conditions our approximations are highly accurate.
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1 Introduction

Compartmental continuous-time Markov chain (CTMC) models are of substantial
importance to mathematical epidemiology (Bartlett 1956; Rand and Wilson 1991;
Fox 1993; Grenfell et al. 1998; Keeling et al. 2000; Spagnolo et al. 2003; Coulson
et al. 2004). They capture the stochastic individual-to-individual nature of disease
transmission which is particularly important when there are small numbers of infec-
tious individuals, such as during the early or late stages of an epidemic. However, the
state space of these models is typically O(Nd), where d is the number of compart-
ments in the model and N is the population size. Hence when N is large, it is often
more efficient to analyse an approximation of the CTMC.

Kurtz (1970, 1971) and Barbour (1974, 1976, 1980a, b) established a deterministic
and a diffusion approximation of suitably-scaled density dependent Markov popula-
tion processeswhich are asymptotic in N . In practice, these approximations are highly
accurate for finite N but are known to be inaccurate if the population of at least one
compartment of the underlying CTMC is close to zero. The hybrid models presented
in this paper combine a CTMC with its associated deterministic or diffusion approxi-
mation in a way which appeals to the strengths of both models while also addressing
their respective weaknesses.

We consider the so-called general stochastic epidemic model (Bartlett 1949, 1956;
Bailey 1950, 1957; Kendall 1965; Kermack andMcKendrick 1927), otherwise known
as the Susceptible–Infectious–Removed (SIR) CTMC, which is a common represen-
tation of the population level dynamics of many viral infections, where following
recovery from the disease, an infectious individual is henceforth permanently immune.
Our focus will be on approximating the distribution of the duration of the epidemic
and the distribution of the final size of the epidemic. The duration of the epidemic
is defined as the length of time before the final infectious individual is removed
from the population, and the final size of the epidemic is defined as the total num-
ber of individuals who experience an infection (including those who were infected
initially) before the final infectious individual is removed from the population. Jenk-
inson and Goutsias (2012) and Black and Ross (2015) presented highly efficient
approaches for calculating the distribution of the duration of the epidemic and the
final size of the epidemic, respectively, directly from the SIR CTMC. Asymptotic
approximations of these distributions have also been investigated via the determinis-
tic and diffusion approximations (Kermack and McKendrick 1927; Ethier and Kurtz
2008).

Hybrid models of the SIR CTMC have also generated substantial interest. In
particular, Barbour (1975) presented an asymptotic approximation for the distri-
bution of the duration of the epidemic similar to our own hybrid fluid model.
The key difference being that Barbour used the dynamics of a branching pro-
cess during the early and final stages of the epidemic, whereas our model uses
the dynamics of the CTMC. In addition, an asymptotic approximation of the dis-
tribution of the final size of the epidemic similar to our own hybrid diffusion
model has been investigated by a number of authors (Andersson and Britton 2000;
Ball and Neal 2010; Nagaev and Startsev 1970; Scalia-Tomba 1985; Watson 1980,
1981; Lefèvre 1990). According to Lefèvre (1990), all of these previous models
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use the dynamics of a branching process to model the sub-critical component of
the final size and a Gaussian approximation to model the super-critical compo-
nent of the final size. These approaches differ from our hybrid models because
we use CTMC dynamics whenever the number of infectious individuals is low.
For comparison, we compare the accuracy of our hybrid fluid model and hybrid
diffusion model to these asymptotic approximations in calculating the distribution
of the duration of the epidemic and the distribution of the final size of the epi-
demic.

Hybrid discrete–continuous approximations of CTMC dynamics have also been
presented by Sazonov et al. (2011) and Safta et al. (2015). Sazonov et al. (2011)
presented a two-stage model for approximating the dynamics of the SIR CTMC.
Their model has the dynamics of a branching process during the early stages of the
epidemic and deterministic dynamics thereafter. Sazonov et al. (2011) used theirmodel
to approximate the distribution of the time of the peak of the outbreak. Safta et al.
(2015) presented a numerical scheme for approximating the distribution of CTMC
models of chemical reaction networks. Their approach uses CTMC dynamics for the
compartments of the process which are less than a particular threshold and diffusion
dynamics otherwise. In the context of the SIR CTMC, this means that during the
early stages of the epidemic, the susceptible class has diffusion dynamics while the
infectious class has CTMC dynamics.

As we shall see, the hybrid models we introduce here reduce the complexity of
algorithms required to compute distributions of interest from O(N 2) to O(N ) in
exchange for a minor reduction in accuracy. This enables us to compute an accurate
approximation of these distributions in a reasonable amount of time even for population
sizes of order 107.

This paper is organised as follows. Section 2 introduces notation for the SIR CTMC
and presents its fluid limit and diffusion limit approximations. Section 3 introduces the
hybrid fluid model and applies it to calculating the distribution of the duration of the
epidemic and the distribution of the final size of the epidemic. Section 4 introduces
the hybrid diffusion model and applies it to calculating the distribution of the final
size of the epidemic. Section 5 discusses the details of calculating the solutions to the
systems of equations which arise in Sects. 3 and 4. Finally Sect. 6 discusses possible
improvements and extensions.

2 The SIR epidemic model

Let {X (t)}t≥0 denote the SIR CTMC (Bailey (1950)) which takes values (S, I ) from
the two-dimensional lattice

X =
{
(S, I ) ∈ Z2+ : S + I ≤ N

}
. (1)

Let �1 = (−1, 1) and �2 = (0,−1) denote the stochiometries (jumps) of X (t)
and qX (x, x + � j ) denote the transition rate from x to x + � j , for j = 1, 2. Then
for all x ∈ X , the positive transition rates of X (t) are:
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qX (x, x + �1) = β

N − 1
SI if x + �1 ∈ X , (2)

qX (x, x + �2) = γ I if x + �2 ∈ X , (3)

where β is the effective transmission rate parameter and 1/γ is the average infectious
period of an individual.

2.1 The fluid approximation

Consider the scaled process X (t) /N which takes the scaled values (S/N , I/N ),
with (S, I ) in X . Under minor technical conditions, the fluid limit theorem (Theorem
3.1 of Kurtz (1970)) implies that as N → ∞, the scaled process X (t) /N converges
uniformly in probability over finite time intervals to the unique deterministic trajectory
x (t), provided x (0) = X (0) /N . Given an initial state, the deterministic trajectory
x (t) takes values (s, i) from the continuum [0, 1]2, with s + i ≤ 1, and is the unique
solution to the system of ordinary differential equations (ODE)s

ds

dt
= −βsi, (4)

di

dt
= βsi − γ i. (5)

For a finite population, the deterministic trajectory Nx (t) is a working approximation
for the average dynamics of X (t) and is commonly referred to as its fluid approxima-
tion.

2.2 The diffusion approximation

Under minor technical conditions, the diffusion limit theorem (Theorem 3.5 of Kurtz
1971) implies that

√
N (X (t) /N−x (t)) converges weakly over finite time intervals to

a Gaussian diffusion process as N → ∞, provided x (0) = X (0) /N . This Gaussian
diffusion process has mean value 0 and variance-covariance matrix Σ(t), where Σ(t)
is the unique solution to the system of ODEs

d �

dt
= B� + �BT + G, (6)

with

B =
[−βi −βs

βi βs − γ

]
, G =

[
βsi −βsi

−βsi βsi + γ i

]
,

and initial value Σ(0) = (Σ i, j (0) = 0, i, j = 1, 2). For a finite population, the
Gaussian diffusion process with mean Nx (t) and variance-covariance matrix NΣ(t)
is a working approximation forX (t), and we refer to it as the diffusion approximation.
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It is worth noting that the fluid and diffusion approximations of Kurtz (1970, 1971)
are uniform only over finite time intervals and can not be used to directly approximate
the distribution of the duration of the epidemic or the distribution of the final size
of the epidemic. However, see Section 11.4 of Ethier and Kurtz (2008), in particular
Remark 11.4.2.

3 The hybrid fluid model

In this section we introduce the hybrid fluid model whose joint dynamics in S(t) and
I (t) are determined by either the SIR CTMC or the fluid approximation, depending
on the number of infectious individuals.

3.1 Model formulation

Let {Y (t)}t≥0 denote the hybrid fluid process, which takes values (SY , I Y ) from the
hybrid discrete-continuous state space Y , which is defined next. For now, we fix the
threshold Î as a constant in {0, 1, . . . , N } and define the state space Y as the union of
YMC and YDE , where

YMC =
{(

SY , I Y
)

∈ Z2+ : SY + I Y ≤ N , I Y ≤ Î
}

and

YDE =
{(

SY , I Y
)

∈ R2+ : SY + I Y ≤ N , I Y ≥ Î
}

.

The hybrid fluid process switches dynamics depending on which subset ofY it is in. In
particular, whenY (t) is in the subsetYMC it has the dynamics of the SIRCTMCX (t),
and when Y (t) is in the subset YDE it has the dynamics of the fluid approximation
Nx (t). The dynamics of Y (t) at the intersection of YMC and YDE , denoted T MC ,
require careful consideration.

According to the fluid dynamics of Y (t) (Eq. (5)) the rate of change of I Y with
respect to time is positive if SY > N/R0, where R0 = β/γ is the basic reproductive
number. This means that if Y (t) hits the state y1 = (SY1 , Î ) in T MC , where SY1 >

N/R0, then the fluid dynamics will immediately force Y (t) out of T MC and into
YDE . In contrast, if SY1 ≤ N/R0 then the fluid dynamics will force Y (t) to remain in
its current state until a discrete event occurs. As such, we define

T MC
1 =

{
(SY , Î ) ∈ YMC : SY ∈

{⌊
N

R0

⌋
+ 1, . . . , N − Î

}}
,

as the set of stateswhich forceY (t) to switch fromCTMCdynamics toODEdynamics
and

T2 =
{
(SY , Î ) ∈ YDE : SY ∈

[
0,

N

R0

]}
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as the set of stateswhich forceY (t) to switch fromODEdynamics toCTMCdynamics.
We denote the integer components of T2 as T MC

2 which is defined as the intersection
of YMC and T2.

Since the fluid dynamics of Y (t) are deterministic, we can determine which state in
T2 the fluid dynamics terminate in as well as the total duration of the fluid dynamics,
provided the initial state in T MC

1 of the fluid dynamics is known. A phase-plane
analysis of the fluid approximation reveals that if the hybrid fluid process hits the state
y1 in T MC

1 then the process will hit the state y2 in T2 where the number of susceptible
individuals of this state is

SY2 (y1) = − N

R0
W

(
−

(
SY1 R0

N

)
exp

(
− SY1 R0

N

))
, (7)

where W(x) denotes the principal branch of the Lambert-W function. In addition,
as the number of susceptible individuals is monotonically decreasing with respect to
time, the duration of the fluid dynamics is given by the integral

t (y1) = N

β

∫ SY2 (y1)

SY1

{
u

[
1

R0
log

(
SY1
u

)
+ 1

N

(
u − SY1 − Î

)]}−1

du. (8)

Similar equations to (7) and (8) are used by Barbour (1974).
When the hybrid fluid process switches from fluid dynamics to CTMC dynamics a

discretisation process must occur before the CTMC dynamics can resume. As the fluid
dynamics only approximate the expected value of the system, we decided to round the
number of susceptible individuals SY2 (y1) as follows:

round down to �SY2 (y1)	 with probability 1 − (SY2 (y1) − �SY2 (y1)	),
round up to �SY2 (y1)	 + 1 with probability (SY2 (y1) − �SY2 (y1)	). (9)

Once Y (t) enters a state in T MC
2 it resumes CTMC dynamics. However, the only

events which are possible from states in T MC
2 are recovery events.

Figure 1 is a representation of the state space of the hybrid fluid model for a
population of N = 15 individuals and a threshold of Î = 3. The green points are
states from the discrete set YMC , and the continuum YDE is the region with I Y ≥ Î
and SY ≤ N − I Y . The state space Y is the union of these two sets. The sets T MC

1 and
T MC
2 are represented by the upward and downward pointing triangles, respectively.

The trajectories of Nx (t) are represented as the black curves emanating from the
set T MC

1 , which intersect with T2 in integer states where the number of susceptible
individuals is given by Eq. (7). The duration that the process spends on each of these
trajectories is calculated from Eq. (8) and the final state of the diffusion dynamics is
either rounded up or down. Finally, the arrows in YMC represent the transitions of the
CTMC dynamics.
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Fig. 1 The state transition diagram of the hybrid fluid process with N = 15 and Î = 3. The green points are
the discrete states fromYMC , and the continuumYDE is the set of states with I Y ≥ Î , and SY ≤ N − I Y .
The upward (downward) pointing triangles are states from which Y (t) switches from CTMC to fluid (fluid
to CTMC) dynamics, which are contained within the set T MC

1 (T MC
2 ). The black curves emanating from

states in T MC
1 are the deterministic trajectories of Nx (t) through YDE (color figure online)

For the remainder of this section we use the hybrid fluid process to approximate
the distribution of the duration of the epidemic and the distribution of the final size of
the epidemic.

3.2 Duration of the epidemic

A system of delayed differential equations (DDE)s describing the flow of probability
through the discrete states in YMC is derived by separately considering the probabil-
ity flux on three disjoint subsets of YMC . Within each of these subsets, the flux of
probability between states in YMC must be treated differently due to the way in which
probability flows between YMC and YDE . In the first scenario we consider the set
D = YMC\(T MC

1 ∪ T MC
2 ), on which no probability flows out of YMC . In the second

and third scenarios we consider the sets T MC
1 and T MC

2 through which probability
flows from YMC to YDE and from YDE to YMC , respectively. The system of DDEs
allow us to calculate the distribution of Y (t) on YMC for t ≥ 0, which we utilise for
calculating the distribution of the duration of the epidemic.

3.2.1 Scenario 1

We begin by defining the probability distribution of the hybrid fluid process as the
vector φY (y ; t) = Pr(Y (t) = y | Y (0) = y0) which denotes the probability mass
that Y (t) is in the state y in YMC at the time t , for t ≥ 0, given that the initial state of
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the process is y0 in D. For all y in the set D, the probability flux is governed by the
forward equations

d

dt
φY (y ; t) =

∑

y′∈YMC

φY
(
y′ ; t) qX (y′, y). (10)

3.2.2 Scenario 2

Now consider the set of states through which probability flows out of YMC and into
YDE . Since the hybrid fluid process instantly switches from CTMC dynamics to fluid
dynamics when it hits a state in T MC

1 , the flux of probability into any state in T MC
1 is

always equal to the probability flux out. Consequently, the net flux for any state y in
T MC
1 is zero and so φY (y; t) = 0 for all t > 0.

3.2.3 Scenario 3

Now consider the set of states through which probability flows into YMC from YDE .
According to Eqs. (8) and (9) the flux of probability into the state y1 in T1 at time t is
distributed amongst two corresponding states in T MC

2 at time t + t (y1). Suppose y1 is
a state in T MC

1 and y is a state in T MC
2 . In addition, define Pr(y|y1) as the probability

that the hybrid fluid process switches fromfluid dynamics to CTMCdynamics through
the state y, conditioned on switching fromCTMC dynamics to fluid dynamics through
the state y1, given by Eq. (9). Then the flux of probability into the state y at time t is
given by

∑
y′∈D

φY
(
y′ ; t − t (y1)

)
qX (y′, y1)

∑

y1∈T MC
1

Pr(y | y1),

with the condition that φY (y ; u) = 0 if u < 0.
Since the hybrid fluid process has CTMC dynamics on the set T MC

2 , the probability
flux of the state y is influenced by other states in YMC . Hence, for all y in T MC

2 , the
probability flux is governed by the system of DDEs

d

dt
φY (y ; t) =

∑

y′′∈YMC

φY
(
y′′ ; t) qX (y′′, y)

+
∑
y′∈D

φY
(
y′ ; t − t (y1)

)
qX (y′, y1)

∑

y1∈T MC
1

Pr (y | y1) . (11)

We solve the system of DDEs (10), (11) on the discrete set YMC using a modified
version of the Implicit Euler scheme of Jenkinson and Goutsias (2012). In order to
deal with the delayed terms in Eq. (11) we store the flux of probability into each state
in T MC

1 in a secondary array and after t (y1) time units have elapsed the probability
returns to the system through the corresponding states in T MC

2 . Under the assumption
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that t (y1) is the same for all y1 in T MC
1 the exact solution to the system of DDEs (10),

(11) is available (Yi andUlsoy 2006). However, this exact solution involves computing
a large number of matrix exponentials and is less computationally efficient than the
numerical scheme outlined above.

The probability that the duration of the epidemic is at most t is the sum over
φY (y ; t) for y in A, where A = {(SY , I Y ) ∈ YMC : I Y = 0} denotes the set of
absorbing states of YMC . For future reference, we define B = YMC\A as the set of
transient states ofYMC . The systemofDDEs (10), (11) is calculated usingAlgorithm1
of Sect. 5.

3.2.4 Numerical results

Throughout this section we use a time grid which ranges from 0 to 80 with a time step
of 0.01 because this ensures that the epidemic will be extinct with high probability
before the terminal time (for N ≤ 10,000), and that the implicit Euler scheme of
Jenkinson and Goutsias achieves a global L1-error of O(10−2). We set R0 = 1.3,
for which our procedure for determining an appropriate threshold (inequality (17) in
Sect. 5.2) gives Î = 17.

Figure 2 shows the distribution of the duration of the epidemic calculated from the
CTMC model (green with circles), hybrid fluid model (blue with squares), and Bar-
bour’s model (Barbour 1975) (purple with diamonds) for N = 1000 with one initially
infectious individual. The hybrid fluid model provides an accurate approximation of
the distribution of the duration of the epidemic. Barbour’s model approximates the
sub-critical component of the duration of the epidemic accurately but the hybrid fluid
model captures the super-critical component of the duration of the epidemic more
accurately.
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Fig. 2 The distribution of the duration of the epidemic calculated from the CTMC model, hybrid fluid
model, and Barbour’s model for R0 = 1.3 and N = 1000 with one initially infectious individual
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Fig. 3 The L1-error and runtime of the distribution of the duration of the epidemic for the SIR CTMC,
hybrid fluid model and Barbour’s asymptotic approximation. The L1-error of the hybrid fluid model is
much better than Barbour’s L1-error for moderate N , and its runtime isO(N ). Here we used R0 = 1.3 for
which Î = 17 (inequality (17)), and the initial state (N − 1, 1)

Figure 3 shows the runtime of the CTMC model (dotted green with circles) and
the runtime of the hybrid fluid model (dotted blue with squares) across a range of N
with R0 = 1.3. The slope of the line from the hybrid fluid model is approximately
one, which indicates that the asymptotic runtime for using Algorithm 1 on the hybrid
fluid model to calculate the distribution of the duration of the epidemic is of O(N ),
corresponding to the number of states in the state space of the hybrid fluid model
which is approximately Î N . Irrespective of the population size, Barbour’s asymptotic
approximation is effectively instantaneous to compute so its runtime has not been
included in Fig. 3.

Figure 3 also shows the L1-error of the hybrid fluid model (solid blue with squares)
and the L1-error of Barbour’s model (solid purple with diamonds). The L1-error of the
hybrid fluid model shows a significant improvement over Barbour’s model for N less
than 103 but appears to be consistent with Barbour’s model for larger N . The L1-error
of the hybrid fluid model appears to increase with N which suggests that the main
source of disagreement between the CTMC model and the hybrid fluid model is the
length of time over which the CTMC is approximated by the fluidmodel. Although the
L1-error of the hybrid fluid approximation can generally be improved by increasing the
threshold Î , the hybrid fluid approximation does not show a significant improvement
over Barbour’s asymptotic approximation unless Î is large enough that the probability
of Y (t) hitting the subset YDE is insignificant.

3.3 Final size of the epidemic

The distribution of the final size of the epidemic is deduced from the hitting distribution
of the embedded jump chain of the hybrid fluid process on the absorbing set A.
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Let {Yn}n≥0 denote the embedded jump process of Y (t) which takes values in YMC

and denote by pY (y, y + � j ) the probability that the jump process transitions from the
state y to y + � j , for j = 1, 2. For all y in YMC\T MC

1 , the positive jump probabilities
are:

pY (y, y + �1) = βS

βS + γ (N − 1)
if y + �1, y + �2 ∈ YMC ,

pY (y, y + �2) = γ (N − 1)

βS + γ (N − 1)
if y + �1, y + �2 ∈ YMC ,

pY (y, y + �2) = 1 if y + �1 /∈ YMC and y + �2 ∈ YMC ;

and for all y in T MC
1 the positive jump probabilities are given by Eq. (9).

Fix y0 in B and let hY (y) denote the probability that Yn ever hits the state y in
YMC , given the initial state y0. Then the hitting probabilities hY (y), for all y in T MC ,
are the minimal non-negative solution to the system of linear equations

hY (y) =
∑

y′∈YMC

hY (y′) pY (y′, y), (12)

with hY (y0) = 1. The distribution of the final size of the epidemic, given the initial
state y0, is the (N + 1) × 1 vector with entries hY (y) for all y in A. The solution to
the system of linear equations (12) is calculated using Algorithm 1.

3.3.1 Numerical results

Figure 4 shows the distribution of the final size of the epidemic calculated from the
CTMC model (green with circles) and the hybrid fluid model (blue with squares) for
R0 = 1.3 and N = 1000 with one initially infectious individual. The hybrid fluid
model approximates the sub-critical component of the final size accurately but fails to
approximate the super-critical component of the final size distribution.

Figure 5 shows the runtime of the CTMCmodel (dotted green with circles) and the
runtime of the hybrid fluid model (dotted blue with squares) across a range of N for
R0 = 3. The asymptotic slope of the curve of the runtime for the hybrid fluid model
is approximately one, which indicates that the asymptotic runtime of Algorithm 1 on
the hybrid fluid model is O(N ).

Figure 5 also shows the L1-error of the hybrid fluidmodel (solid blue with squares).
The L1-error of the hybrid fluid model appears to converge to a value around 66%
of the largest possible L1-error, suggesting that Y (t) approximates well the 1/R0
proportion of sample paths which become extinct close to SY = N , but fails to
approximate the 1 − 1/R0 proportion of sample paths which become extinct near
SY = 0. This confirms our intuition that the source of disagreement between Y (t)
and X (t) propagates from the time interval over which the fluid approximation is
used to approximate the underlying CTMC. Although Î = 17 has been identified as a
reasonable threshold (inequality (17) in Sect. 5.2), the asymptotic error may generally
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Fig. 4 The distribution of the final size of the epidemic calculated from the CTMC, hybrid fluid model,
hybrid deterministic model, and Scalia–Tomba for R0 = 1.3 and N = 1000 with one initially infectious
individual
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Fig. 5 The L1-error and runtime of the distribution of the final size of the epidemic for both hybrid models
and Scalia’s asymptotic approximation, compared to the SIRCTMC. The error in the hybrid fluidmodel and
the hybrid diffusion model is at-best constant ofO(1) andO(10−3), respectively. The asymptotic slope of
the runtime of Algorithm 1 on the hybrid models suggest that they are of computational complexityO(N )

compared to theO(N2) complexity of the Black and Ross algorithm. Here we used R0 = 1.3 and Î = 17
with the initial state (N − 1, 1)

be decreased by selecting a larger threshold. However, the L1-error is fairly insensitive
to changing the threshold.

The hybrid fluid model approximates the time that the SIR CTMC spends above the
threshold quite well, but the variability in the S component of the model when switch-
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ing from fluid dynamics to CTMC dynamics, not captured by the fluid approximation,
is important in determining the final size distribution.

4 The hybrid diffusion model

We now introduce the hybrid diffusion model which uses the diffusion approximation
to capture the fluctuations of the underlying CTMC about the deterministic trajectory
of the fluid approximation. The hybrid diffusion model is constructed in a similar way
to the hybrid fluid model except that it uses the diffusion approximation in place of the
fluid approximation. The hybrid diffusion model is used to calculate the distribution
of the final size of the epidemic.

4.1 Model formulation

Let {Z (t)}t≥0 denote the hybrid diffusion process, which takes values (SZ , I Z ) in the
setY . Aswith the hybrid fluid process, the hybrid diffusion process switches dynamics
depending on which subset of Y it is in. In particular, when Z (t) is in the subset YMC

it has the dynamics of the SIR CTMC X (t), and when Z (t) is in the subsetYDE it has
the dynamics of the diffusion approximation. The dynamics of the hybrid diffusion
process at the interface T are considered in more detail.

Since the fluid approximation provides the mean drift of the diffusion approxima-
tion, if Z (t) hits a state in T MC

1 there is a high probability that the diffusion dynamics
will immediately force Z (t) out of T MC

1 and into YDE . Due to the stochastic nature
of the diffusion dynamics, if Z (t) is in YDE , then there is a non-zero probability that
Z (t) will hit any state (SZ , Î ) such that SZ is in R. In which case (i) if SZ > N/R0
then there is a high probability that Z (t) will be forced back into YDE , and (ii) if
SZ ≤ N/R0 then there is a high probability that Z (t)will become trapped close to the
boundary T2. It follows that we allow the hybrid diffusion process to switch between
CTMC dynamics and diffusion dynamics upon hitting a state in T MC

1 and force Z (t)
to switch from diffusion dynamics to CTMC dynamics upon hitting a state in T2.

As we are only using the hybrid diffusion process to approximate the distribution
of the final size of the epidemic, we only require the jump probabilities of Z (t). Let
z1 = (SZ

1 , Î ) be a state in T MC
1 , then it follows from Ethier and Kurtz (2008) that the

next hitting distribution of Z (t) on the set of states with Î infectious individuals is
normally distributed with mean SY2 (z1) (Eq. (7)) and variance

Σ1,1 (t (z1)) + Σ2,2 (t (z1))(
1 − 1/

(
R0 SY2 (z1)

))2 + 2Σ1,2 (t (z1))

1 − 1/
(
R0 SY2 (z1)

) , (13)

where Σ is governed by Eq. (6) and t (z2) is given by Eq. (8). Let F(u ; z1) denote
the cumulative density function of this hitting distribution, given that Z (t) switched
from CTMC dynamics to diffusion dynamics through the state z1 in T MC

1 . Then for
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all z1 = (SZ
1 , Î ) in T MC

1 and z = (SZ , Î ) in T MC , the positive jump probabilities are

pZ (z1, z) =

⎧⎪⎨
⎪⎩

F
( 1
2 ; z1

)
if SZ = 0,

F
(
SZ + 1

2 ; z1
) − F

(
SZ − 1

2 ; z1
)

if 1 ≤ SZ ≤ SZ
1 − 2,

1 − F
(
SZ
1 − 1

2 ; z1
)

if SZ = SZ
1 − 1.

(14)

To account for the event that Z (t) hits a state z = (SZ , Î ) in T MC
1 from a state in

YDE , we define the following switching rule: (i) with probability γ (N − 1)/(γ (N −
1) + βSZ ), Z (t) switches back to CTMC dynamics and has an instantaneous recov-
ery event, and (ii) with probability βSZ/(γ (N − 1) + βSZ ), Z (t) restarts diffusion
dynamics from the state z.

4.2 Final size of the epidemic

Let {Zn}n≥0 denote the embedded jump process of Z (t) which takes values in YMC .
Then, for all z in YMC\T MC

1 the positive jumpprobabilities ofZn are identical to those
of Yn , and for all z in T MC

1 the positive jump probabilities are given by Eq. (14), in
conjunction with the switching rule.

Fix z0 in B, and let hZ (z) denote the probability that Zn ever reaches the state z in
YMC , given the initial state z0. Then the hitting probabilities hZ (z) for all z in YMC

are the minimal non-negative solution to the system of linear equations

hZ (z) =
∑

z′∈YMC

hZ (z′) pZ (z′, z), (15)

with hZ (z0) = 1. The distribution of the final size of the epidemic, given the initial
state z0, is the (N + 1) × 1 vector with entries hZ (z), for all z in A.

4.2.1 Numerical results

Figure 4 shows the distribution of the final size of the epidemic calculated from the
hybrid diffusion model (red with triangles) and Scalia-Tomba (1985) (purple with
diamonds). The hybrid diffusion model and Scalia–Tomba’s model approximate the
sub-critical component of the final size accurately but neither model succeeds in fully
describing the non-normality exhibited by the super-critical component of the epi-
demic.

Figure 5 shows the runtime of the hybrid diffusion model (dotted ochre with trian-
gles). The asymptotic slope of the runtime line is approximately one, which indicates
that the asymptotic runtime of Algorithm 1 for the hybrid diffusion model is O(N ).
The time difference between the runtime of the hybrid fluid model and the hybrid dif-
fusion model corresponds to the time difference in calculating the hitting distributions
of Eqs. (9) and (14). Irrespective of N , Scalia–Tomba’s approximation is effectively
instantaneous to compute so its runtime has not been included in Fig. 5.
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Figure 5 also shows the L1-error of the hybrid diffusion model (solid ochre with
triangles) and Scalia–Tomba’s model (solid purple with triangles). As N increases,
the L1-error of the hybrid diffusion approximation decreases achieving a minimum
of a constant of order 10−2, thereby showing a significant improvement over the
accuracy of the hybrid fluid model. Although the L1-error can generally be decreased
by increasing the threshold, the hybrid diffusion model does not achieve a significant
improvement over Scalia–Tomba’s approximation unless the probability thatZ (t) hits
a state in YDE is very small.

5 Numerical implementation

This section presents the algorithm we use to calculate the distribution of the duration
of the epidemic and the distribution of the final size of the epidemic from the systems
of equations presented in Sects. 3 and 4, and describes our approach to calculating a
suitable value for the threshold Î .

5.1 Degree of advancement representation

The SIR CTMC is known as a population process because its state space is defined
using the population numbers S and I . Alternatively, the degree-of-advancement (DA)
representation (Jenkinson and Goutsias 2012; Black and Ross 2015) is a counting
process which tracks the number of infection events and recovery events.

Let {N (t)}t≥0 denote the DA representation of either the hybrid fluid process or
the hybrid diffusion process which takes values (NI , NR) from the state spaceN . The
DA numbers NI and NR are uniquely identified from the population numbers S and
I since

NI = N − S, NR = N − S − I.

We define the DA setsN ,N MC andN T
1 as the DA representations of the population

sets Y , YMC and T MC
1 , respectively.

The DA representation is more amenable to numerical analysis than the population
representation because the DA numbers NI and NR are monotonically increasing with
respect to time. Thus, in order to calculate a quantity for a particular state, one only
needs to calculate that quantity for all states leading up-to that state. For example,
in order to calculate the hitting probability of the state (NI , NR) in N MC , one only
needs to calculate the hitting probability of every state (N ′

I , N
′
R) in N MC such that

(N ′
I , N

′
R) �= (NI , NR) with N ′

I ≤ NI and N ′
R ≤ NR .

We order the states in N MC such that the state (NI , NR) precedes the state
(N ′

I , N
′
R), denoted (NI , NR)  (N ′

I , N
′
R), if and only if

NI − NR < N ′
I − N ′

R or NI − NR = N ′
I − N ′

R and NI > N ′
I . (16)

We index each state nk in N MC by k = 1, 2, . . . , |N MC | such that n1  n2  · · · 
n|N MC |. Define δk1 = N −NI +NR and δk2 = N +2−NI +NR as the change in the
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index k due to an infection event or a recovery event, respectively. We now describe
how we use the DA representation to calculate the distribution of the duration of the
epidemic and the distribution of the final size of the epidemic.

In order to calculate the distribution of the final size of the epidemic we must
calculate the solution to the systems of linear Eqs. (12) and (15). Letϕ be the |N MC |×1
vector whose kth element is the probability of ever hitting the state nk in N MC , for
k = 1, 2, . . . , |N MC |. In addition, let f (k, k′) be the jump probability from the state
nk to nk′ (with f (k, k) = 0), for k, k′ = 1, 2, . . . , |N MC |. Then, if ϕ is initialised as
the distribution of N (0) on N MC , the distribution of the final size of the epidemic is
calculated by iteratively updating the entries of ϕ via Algorithm 1, until the algorithm
terminates.

In order to calculate the distribution of the duration of the epidemic we must itera-
tively solve the system of linear Eqs. (10) and (11) over a grid of time points (Jenkinson
and Goutsias 2012). This can be achieved using Algorithm 1 by simply re-defining
ϕ and f (k, k′). Let ϕ be the |N MC | × 1 vector whose kth element is the probability
mass of the state nk in N MC at time t + Δt , for k = 1, 2, . . . , |N MC |. In addition,
let f (k, k′) be the transition rate from the state nk to nk′ , multiplied by Δt , (with
f (k, k) = ∑

k′ �=k f (k, k′)), for k, k′,= 1, 2, . . . , |N MC |. Then, if ϕ is initialised
as the distribution of N (t), the distribution of N (t + Δt) is calculated by iteratively
updating the entries of ϕ via Algorithm 1, until the algorithm terminates.

When calculating the distribution of the final size of the epidemic from the hybrid
diffusion model, we reduce the computational over-head of Algorithm 1 by only cal-
culating the mean and variance of the hitting distribution (14) for a subset of states in
T MC
1 , and then extrapolating to the rest of the states in T MC

1 using a linear interpolant.
More specifically, let θ(y1) = (

SY2 (y1),Σ1,1(t (y1)),Σ1,2(t (y1)),Σ1,1(t (y1))
)
for y1

in T MC
1 , and T ∗ = {(SY , Î ) ∈ T MC

1 : SY = SY0 , SY0 +k, SY0 +2k, . . . , N − Î }where
SY0 = �N/R0	 and k is a positive integer. Then we evaluate θ(y1) for every y1 in T ∗
and use the output to approximate θ(y1) for every y1 in T MC

1 \T ∗ using a linear
interpolant. We found 30 to be a robust choice for k which provides a substantial
computational advantage over the k = 1 case without accumulating too much error.

5.2 Choice of threshold

Our approach to determining a suitable threshold is based on using the branching
process approximation of the SIR CTMC to estimate how large the sub-critical epi-
demic will grow before it becomes extinct. Our reasoning for this approach is that
we want an expression for the threshold which effectively can be computed instan-
taneously and will provide a threshold that balances the accumulation of error with
a reduction in computational over-head. In order to achieve this, we condition our
underlying CTMC on extinction (Waugh 1958) and then investigate the distribution
of the maximum of the corresponding branching process approximation (Ball and
Donnelly 1995).

Let {U (t)}t≥0 denote the branching process approximation of the population
of infectious individuals (conditioned on extinction) at time t , which takes values
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Algorithm 1: Algorithm for calculating the distribution of the duration of the
epidemic and the distribution of the final size of the epidemic.
Initialise the index k as 2N + 1 and initialise ϕ.
for NR = 0, . . . , N do

Store the initial index k0 = k, and update the current entry of ϕ

ϕk = ϕk/(1 + f (k, k)),
for NI = NR + 1, . . . ,min{NR + Î − 1, N − 1} do

Update the elements of ϕ which correspond to states in N MC through
their relationship with states in N MC\N T

1 .
ϕk+δk1 = ϕk+δk1 + ϕk f (k, k + δk1),
ϕk−δk2 = ϕk−δk2 + ϕk f (k, k − δk2).
Update the state index k = k + δk1.

if NR < N − Î − �N/R0	 then
for j = 1, . . . , N − NI do

Provided the probability of ever hitting the state nk is greater than
10−7, update the elements of ϕ which correspond to states in N T

2
through their relationship with states in N T

1 .

– For the final size of the epidemic
ϕk− j = ϕk− j + ϕk f (k, k − j).

– For the duration of the epidemic, ϕk is stored in an additional
array and the delayed flux ϕ

delayed
k is used instead

ϕk− j = ϕk− j + ϕ
delayed
k f (k, k − j).

else if NR < N then
Update the elements of ϕ which correspond to states in N MC through
their relationship with states in N T

2 .
ϕk−δk2 = ϕk−δk2 + ϕk f (k, k − δk2).

Reset the state index k = k0 − 1.

0, 1, 2, . . . , and define M = sup0≤t≤∞ U (t). Then Î is defined as the minimumm, for
m = 0, 1, 2, . . . , which satisfies Pr(M ≥ m) ≤ ε. In particular, using Sect. 5 of Ball
and Donnelly (1995), the threshold Î is the minimum m which satisfies the inequality

m ≥ U (0) +
log

(
RU (0)
0 + ε − 1

)
− log(ε)

log(R0)
. (17)

In the event that R0 < 1, R0 is replaced by 1/R0 in inequality (17) as the process
U (t) will almost surely become extinct. However, inequality (17) can not be used if
R0 = 1. We determined that 5 × 10−3 is a suitable value for ε, in [0, 1), due to the
following observation. Note that, choosing a smaller ε leads to a larger choice of Î
and hence, generally, more accurate results but larger computational runtimes.
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Fig. 6 For the distribution of the final size (duration) of the epidemic, the ochre (green) curve with triangles
(circles) shows the minimum threshold Î which achieves an L1-error of 0.1 (0.25). The blue curve with
squares shows the threshold determined by inequality (17) using ε = 5 × 10−3 which achieves at most
0.1 (0.25) L1-error in the distribution of the final size (duration) of the epidemic, provided R0 is less than
approximately 7.5. Here we used N = 10,000 and the initial state (N − 1, 1) (color figure online)

For the distribution of the final size (duration) of the epidemic, the ochre (green)
curve with triangles (circles) in Fig. 6 shows the minimum threshold required to
achieve at most 0.1 (0.25) L1-error when calculated with the hybrid diffusion (fluid)
model. We chose these values because they correspond to the worst-case scenarios of
Scalia-Tomba (1985) and Barbour (1974). Taking ε to be 5× 10−3 produces the blue
curve with squares which ensures a higher threshold than the ochre and green curves
and hence ensures that the L1-error in the distribution of the final size (duration) of
the epidemic is at most 0.1 (0.25). However, this guarantee breaks down when R0
exceeds 7.5, which we discuss next. As N increases, the minimum threshold required
to achieve at most 0.1 (0.25) L1-error in the distribution of the final size (duration)
of the epidemic decreases and the threshold determined by inequality (17) stays the
same. In addition, the point at which inequality (17) breaks down for the distribution
of the final size of the epidemic increases.

Figure 7 shows the threshold determined by inequality (17) provides an L1-error for
the distribution of the final size of the epidemic which is at most 0.24. The divergence
of the approximate distribution from the exact distribution manifests as an inaccurate
approximation of the probability that the final size of the epidemic is N , N − 1 or
N − 2. This divergence occurs when the diffusion approximation comes close to the
absorbing boundary with S = 0 because the SIR CTMC is able to be absorbed by this
set but the diffusion approximation is not. Figure 7 shows that the L1-error decreases
for R0 ≥ 13 which is because the probability that the final size of the epidemic is
equal to N −1 or N −2 becomes negligible as R0 becomes very large. The loss of the
ability of inequality (17) to provide a reliable threshold is characterised as the region
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Fig. 7 The L1-error of the distribution of the final size of the epidemic using inequality (17) to calculate
the threshold. The error exceeds 0.1 on an interval of R0 from approximately 7.5 to 11 and is at most 0.24.
This issue arises when the fluid approximation of S falls below approximately eight susceptible individuals.
Here we used N = 10,000 and the initial state (N − 1, 1)

of R0 for which the mean number of susceptible individuals during the fluid dynamics
of Z (t) is than approximately eight.

6 Discussion

In this paper we have introduced two hybrid Markov chain models for approximating
the distribution of the duration/final size of the SIR CTMC. These models are novel
in the sense that no other hybrid models of the SIR CTMC have used the complete
dynamics of the SIR CTMC during the early and final stages of the epidemic. As
a result, these models preserve the important stochastic features of the SIR CTMC
which occur during these phases of the epidemic. Namely, the probability that the
epidemic becomes extinct close to S = N , and the variability in the amount of time
before the number of infectious individuals assumes an exponential-like trajectory.
For the case of the general stochastic epidemic, we have been able to use these hybrid
models to derive expressions for the distribution of the duration of the epidemic and
the distribution of the final size of the epidemic which can be solved numerically in
O(N ) time, as opposed to the O(N 2) of the original CTMC model. This has enabled
us to calculate the distribution of the duration of the epidemic and the final size of the
epidemic for populations up to order 107, within amatter of hours. Our approximations
of the distribution of the duration of the epidemic and the distribution of the final
size of the epidemic achieve a similar level of accuracy to the existing asymptotic
approximations and we believe that our methodology has the additional advantage of
being straightforward, intuitive and generalisable.
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6.1 Improvements

The hybrid models presented here provide an inaccurate approximation of the distri-
bution of the final size of the epidemic in a particular region of R0. This is because
the SZ component of the mean trajectory of the diffusion approximation comes close
to the S = 0 absorbing boundary of the Markov chain, thereby causing the diffusion
approximation to break down. This motivates modifying the diffusion hybrid model
to include an additional threshold on the number of susceptible individuals which is
conceptually similar to the two-stage model of Safta et al. (2015).

6.2 Extensions

The general stochastic epidemic is a simple model which is often embedded within
more complex models. The hybrid models presented here may be useful in scenarios
where the embedded SIRmodel has a large population size, as would be the case when
modelling disease dynamics within-hosts and between-hosts. A notable deficiency of
the general stochastic epidemic is that it is not biologically plausible for an infectious
period to be exponentially distributed. As such, the hybrid models presented here may
be extended to incorporate phase-type infectious periods as would be the case with an
SIIR model. Other compartmental models such as the SEIR model or the SIRS model
are also natural extensions. Finally, the hybrid modelling methodology could also be
used for developing a computationally efficient scheme for generating realisations
from an underlying, potentially complex, CTMC.
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