Skip to main content
Log in

Mouse pharmacokinetics and metabolism of the curcumin analog, 4-piperidinone,3,5-bis[(2-fluorophenyl)methylene]-acetate(3E,5E) (EF-24; NSC 716993)

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Curcumin, a keto-enol constituent of turmeric, has in vitro and in vivo antitumor activity. However, in vivo potency is low due to poor oral absorption. The mono-carbonyl analog, 3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone acetate (EF-24, NSC 716993), exhibited broad-spectrum activity in the NCI anticancer cell line screen and potent antiangiogenesis activity in a HUVEC cell migration assay. The purpose of this study was to characterize the preclinical pharmacology of EF-24 in mice.

Methods

EF-24 plasma stability, protein binding, pharmacokinetics, and metabolism were characterized utilizing an LC/MS/MS assay.

Results

An LC/MS/MS assay incorporated protein precipitation with methanol, reverse-phase HPLC separation under gradient elution using an aqueous methanol mobile phase containing 0.1 % formic acid, and positive electrospray ionization detection of the m/z 312 > 149 transition for EF-24. The assay was linear over the range 7.8–1,000 nM. Plasma protein binding was >98 % with preferential binding to albumin. EF-24 plasma disposition in mice after i.v. administration of a 10 mg/kg dose was best fit to a 3-compartment open model. The terminal elimination half-life and plasma clearance values were 73.6 min and 0.482 L/min/kg, respectively. EF-24 bioavailability was 60 and 35 % after oral and i.p. administration, respectively. NADPH-dependent metabolism of EF-24 loss in liver microsomal preparations yielded several metabolites consistent with EF-24 hydroxylation and reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, Hollingshead MG, Kaur G, Sausville EA, Rickles FR, Snyder JP, Liotta DC, Shoji M (2004) Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12:3871–3883

    Article  CAS  PubMed  Google Scholar 

  2. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  3. Mosley CA, Liotta DC, Snyder JP (2007) Highly active anticancer curcumin analogues. Adv Exp Med Biol 595:77–103

    Article  PubMed  Google Scholar 

  4. Adams BK, Cai J, Armstrong J, Herold M, Lu YJ, Sun A, Snyder JP, Liotta DC, Jones DP, Shoji M (2005) EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs 16:263–275

    Article  CAS  PubMed  Google Scholar 

  5. Kasinski AL, Du Y, Thomas SL, Zhao J, Sun SY, Khuri FR, Wang CY, Shoji M, Sun A, Snyder JP, Liotta D, Fu H (2008) Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol Pharmacol 74:654–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Selvendiran K, Tong L, Vishwanath S, Bratasz A, Trigg NJ, Kutala VK, Hideg K, Kuppusamy P (2007) EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J Biol Chem 282:28609–28618

    Article  CAS  PubMed  Google Scholar 

  7. Subramaniam D, May R, Sureban SM, Lee KB, George R, Kuppusamy P, Ramanujam RP, Hideg K, Dieckgraefe BK, Houchen CW, Anant S (2008) Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity. Cancer Res 68:1962–1969

    Article  CAS  PubMed  Google Scholar 

  8. Thomas SL, Zhong D, Zhou W, Malik S, Liotta D, Snyder JP, Hamel E, Giannakakou P (2008) EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1. Cell Cycle 7:2409–2417

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Shu HG, Brown A, Yoon Y, Gao H, Purcell J, Snyder JP, Liotta DC, Shim H (2008) Radiosensitization of glioma cells with the curcumin analogs EF24 and UBS109. Abstract, AACR 99th annual meeting

  10. Landais I, Hiddingh S, McCarroll M, Yang C, Sun A, Turker MS, Snyder JP, Hoatlin ME (2009) Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors. Mol Cancer 8:133

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kachnic LA, Li L, Fournier L, Willers H (2010) Fanconi anemia pathway heterogeneity revealed by cisplatin and oxaliplatin treatments. Cancer Lett 292:73–79

    Article  CAS  PubMed  Google Scholar 

  12. Thomas SL, Zhao J, Li Z, Lou B, Du Y, Purcell J, Snyder JP, Khuri FR, Liotta D, Fu H (2010) Activation of the p38 pathway by a novel monoketone curcumin analog, EF24, suggests a potential combination strategy. Biochem Pharmacol 80:1309–1316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Shoji M, Sun A, Kisiel W, Lu YJ, Shim H, McCarey BE, Nichols C, Parker ET, Pohl J, Mosley CA, Alizadeh AR, Liotta DC, Snyder JP (2008) Targeting tissue factor-expressing tumor angiogenesis and tumors with EF24 conjugated to factor VIIa. J Drug Target 16:185–197

    Article  CAS  PubMed  Google Scholar 

  14. Sun A, Shoji M, Lu YJ, Liotta DC, Snyder JP (2006) Synthesis of EF24-tripeptide chloromethyl ketone: a novel curcumin-related anticancer drug delivery system. J Med Chem 49:3153–3158

    Article  CAS  PubMed  Google Scholar 

  15. Sun A, Lu YJ, Hu H, Shoji M, Liotta DC, Snyder JP (2009) Curcumin analog cytotoxicity against breast cancer cells: exploitation of a redox-dependent mechanism. Bioorg Med Chem Lett 19:6627–6631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Buhrow SA, Reid JM, Jia L, Shoji M, Snyder JP, Liotta DC, Ames MM (2005) LC/MS/MS assay and mouse pharmacokinetics and metabolism of the novel curcumin analog EF-24 (NSC 716993). Proc Am Assoc Cancer Res 46: Abstract #4169

  17. Ernster L, Siekevitz P, Palade GE (1962) Enzyme-structure relationships in the endoplasmic reticulum of rat liver. J Cell Biol 15:541–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Harris JW, Rahman A, Kim BR, Guengerich FP, Collins JM (1994) Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 54:4026–4035

    CAS  PubMed  Google Scholar 

  19. Hanson KL, VandenBrink BM, Babu KN, Allen KE, Nelson WL, Kunze KL (2010) Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem. Drug Metab Dispos 38:963–972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Venkatesh G, Ramanathan S, Nair NK, Mansor SM, Sattar MA, Khan MA, Navaratnam V (2007) Permeability of atenolol and propranolol in the presence of dimethyl sulfoxide in rat single-pass intestinal perfusion assay with liquid chromatography/UV detection. Biomed Chromatogr 21:484–490

    Article  CAS  PubMed  Google Scholar 

  21. Ireson C, Orr S, Jones DJ, Verschoyle R, Lim CK, Luo JL, Howells L, Plummer S, Jukes R, Williams M, Steward WP, Gescher A (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61:1058–1064

    CAS  PubMed  Google Scholar 

  22. Pan MH, Huang TM, Lin JK (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486–494

    CAS  PubMed  Google Scholar 

  23. Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, Steward WP (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7:1894–1900

    CAS  PubMed  Google Scholar 

  24. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10:6847–6854

    Article  CAS  PubMed  Google Scholar 

  25. Vareed SK, Kakarala M, Ruffin MT, Crowell JA, Normolle DP, Djuric Z, Brenner DE (2008) Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev 17:1411–1417

    Article  CAS  PubMed  Google Scholar 

  26. Ireson CR, Jones DJ, Orr S, Coughtrie MW, Boocock DJ, Williams ML, Farmer PB, Steward WP, Gescher AJ (2002) Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers Prev 11:105–111

    CAS  PubMed  Google Scholar 

  27. Garcea G, Jones DJ, Singh R, Dennison AR, Farmer PB, Sharma RA, Steward WP, Gescher AJ, Berry DP (2004) Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90:1011–1015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Olivera A, Moore TW, Sun A, Liotta DC, Snyder JP, Shim H, Marcus AL, Miller AH, Pace TW (2010) Inhibition of the NF-kB signaling pathway by the curcumin analog, 3,5-bis(2-pyridinylmethylidene)-4piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol 12:368–377

    Article  Google Scholar 

  29. Zhu S, Moore TW, Lin X, Morii N, Mancini A, Howard RB, Culver D, Arrendale RF, Reddy P, Evers TJ, Zhang H, Sica G, Chen ZG, Sun A, Fu H, Khuri FR, Shin DM, Snyder JP, Shoji M (2012) Synthetic curcumin analog EF31 inhibits the growth of head and neck squamous cell carcinoma xenografts. Integr Biol 4:633–640

    Article  CAS  Google Scholar 

  30. Yamaguchi M, Moore TW, Sun A, Snyder JP, Shoji M (2012) Novel curcumin analogue UBS109 potently stimulates osteoblastogenesis and suppresses osteoclastogenesis: involvement in Smad activation and NF-kappaB inhibition. Integr Biol 4:905–913

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MS and JPS are grateful to Dennis Liotta (Emory University) for generous support of preparation of the curcumin analogs. This study was supported by National Cancer Institute Contract N01-CM-07105, US Department of Defense, Division of US Army DAMD17-00-1-0241 (MS and JPS), BC074220 (MS and JPS) and National Cancer Institute 5 R21 CA139035-2 (MS and JPS).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel M. Reid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reid, J.M., Buhrow, S.A., Gilbert, J.A. et al. Mouse pharmacokinetics and metabolism of the curcumin analog, 4-piperidinone,3,5-bis[(2-fluorophenyl)methylene]-acetate(3E,5E) (EF-24; NSC 716993). Cancer Chemother Pharmacol 73, 1137–1146 (2014). https://doi.org/10.1007/s00280-014-2447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2447-3

Keywords

Navigation