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Introduction

It is widely accepted from cosmochemical and geophysical 
arguments that the Earth’s core, as well as the cores of the 
terrestrial planets, is comprised of mainly iron alloyed with 
nickel and a small proportion of light element(s). However, 
the identity of the light element(s) is still in question. Sili-
con has long been a popular candidate (Poirier 1994), and 
much work has been carried out to investigate the FeSi sys-
tem and, to a lesser extent, the NiSi system (e.g. Lord et al. 
2010; Vočadlo et al. 2012; Fischer et al. 2013). It has been 
suggested that pure FeSi may be found in the D′′ layer of 
the Earth, formed as a result of the reaction between the 
Fe-Ni liquid outer core and the MgSiO3 perovskite or post-
perovskite of the lower mantle (Knittle and Jeanloz 1991). 
It has also been proposed that FeSi may form as a product 
of exsolution of the outer core during secular cooling (Buf-
fett et  al. 2000). Although it is more likely that a ternary 
Fe–Ni–Si alloy is to be found in the core of Earth and other 
terrestrial planets, investigating the ternary Fe–Ni–Si sys-
tem is a significant undertaking. By first understanding the 
two binary end members, FeSi and NiSi, a good foundation 
is established for further investigation into the Fe–Ni–Si 
ternary.

Both experiments and calculations find only two sta-
ble structures in the FeSi system, the ε-FeSi phase and the 
CsCl phase (Vočadlo et  al. 1999; Caracas and Wentzco-
vitch 2004; Lord et  al. 2010; Fischer et  al. 2013; Geballe 
and Jeanloz 2014). However, laser-heated diamond-anvil-
cell (LH-DAC) experiments disagree as to the phase 
boundary of the transition (Lord et al. 2010; Fischer et al. 
2013; Geballe and Jeanloz 2014). Both Fischer et al. (2013) 
and Geballe and Jeanloz (2014) find a vertical boundary 
between the two phases, although the two studies disa-
gree on the transition pressure; Fischer et  al. (2013) put 
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the phase boundary at 42 GPa, while Geballe and Jeanloz 
(2014) find the transition occurring at ~30 GPa. Although 
both studies observe a two-phase stability field, Fischer 
et  al. (2013) report a surprisingly large two-phase region 
between 14 and 42 GPa while Geballe and Jeanloz (2014) 
find a much smaller two-phase region, the size of which 
varies depending on the pressure medium used—in argon, 
the two-phase stability field exists between 23 and 30 GPa; 
in neon, between 30 and 32.3 GPa. In contrast to these two 
studies, Lord et al. (2010) find a negative Clausius–Clapey-
ron slope of −55 MPa/K, also from LH-DAC experiments. 
This slope is in agreement with multi-anvil press (MAP) 
experiments carried out by Dobson et  al. (2002), who 
found the CsCl-FeSi phase to be stable from 24 GPa and 
1950 ± 50  K. Computer simulations show a similar range 
of transition pressures: ab initio calculations carried out 
at 0 K in the Generalised Gradient Approximation (GGA) 
find the transition from ε-FeSi to CsCl-structured FeSi 
occurring at 13 GPa (Vočadlo et al. 1999), 40 GPa (Caracas 
and Wentzcovitch 2004) and 20 GPa (Zhang and Oganov 
2010). Caracas and Wentzcovitch (2004) also carried out 
calculations using the Local Density Approximation (LDA) 
and found the transition to occur at 30 GPa.

In contrast to the FeSi system, recent ab initio calcula-
tions on the NiSi system, carried out at 0 K, found that a 
number of structures were stable, with different phases 
coming into stability as pressure increased. The sequence 
of stable NiSi structures originally proposed was as fol-
lows: MnP → P4/nmm (or the CuTi phase) → Pbma-I → 
Pnma-III (FeB) → CsCl, with transitions occurring at 23, 
61, 168 and 247 GPa, respectively (Vočadlo et  al. 2012). 
Following this work, Wood et al. (2013) found a new stable 
phase of NiSi in experiments carried out in a MAP. This 
new phase of NiSi, with Pmmn symmetry (an orthorhom-
bic distortion of the tetragonal CuTi structure), had not 
originally been considered by Vočadlo et  al. (2012), but 
further ab initio calculations revealed that this Pmmn phase 
was indeed more stable than either of the P4/nmm, Pbma-
I or Pnma-III (FeB) phases, resulting in a much simpler 
phase diagram at 0 K. The new phase stability sequence in 
NiSi, therefore, became MnP → Pmmn → CsCl, with tran-
sitions occurring at 21 and 264 GPa (Wood et  al. 2013). 
More recent static computer simulations by Gavryushkin 
et al. (2015) confirmed the stability of the Pmmn phase but 
also suggested that a tetragonally distorted (a/c ~ 0.8) CsCl-
type structure formed above 213 GPa, becoming fully cubic 
above 522 GPa. In the static simulations of Vočadlo et al. 
(2012), it was, however, noticed that the enthalpy difference 
between the ε-FeSi structured form of NiSi and the thermo-
dynamically stable phases was as small as 8–12 meV/atom 
for part of the pressure range considered, suggesting that 
the ε-FeSi structure might become stable at finite tempera-
tures. A subsequent study using LH-DAC and synchrotron 

X-ray diffraction by Lord et al. (2012) confirmed that this 
was indeed the case, with a transformation to the ε-FeSi 
structure being observed at 12.5 GPa and 1550 K, prior to 
a transformation to the cubic CsCl structure at 46 GPa and 
1900 K; no evidence for the large tetragonal distortion sug-
gested by Gavryushkin et al. (2015) was found in the X-ray 
diffraction patterns of the quenched samples. More recently, 
a detailed experimental investigation of the NiSi phase dia-
gram to ~65 GPa using both MAP and LHDAC techniques 
(Dobson et  al. 2016) determined the boundaries between 
the MnP, Pmmn, ε-FeSi and CsCl phases. In particular, the 
ε-FeSi to CsCl boundary was found to have a Clapeyron 
slope of -67 MPa/K, with the ε-FeSi + CsCl + liquid invari-
ant point occurring at ~33 GPa and ~2125  K. (this study 
also found that, when the MnP-structured material is com-
pressed at 300 K, a transition to a further metastable phase 
of NiSi occurs, somewhere between 35 and 60 GPa, with 
the high-pressure structure corresponding to that labelled 
Pnma-II by Vočadlo et  al. (2012) for which the transition 
was predicted to occur at ~42 GPa).

In the present paper, we report static calculations on the 
FeSi system to determine whether any of the structures 
found to be stable, or close to stable, in NiSi are also stable 
in FeSi. We then present lattice dynamics calculations to 
determine the phase boundary of the ε-FeSi → CsCl phase 
transition in both FeSi and NiSi at high temperatures and 
pressures, and compare these to the experimental results.

Calculation method

The calculations presented here all make use of den-
sity functional theory, DFT (Hohenberg and Kohn 1964), 
within the generalised gradient approximation, GGA, using 
the VASP code (Kresse and Furthmuller 1996). All cal-
culations were spin polarised with a PBE functional (Per-
dew et  al. 1996); 14 electrons were treated as valence for 
Fe, 4 for Si and 10 for Ni. However, in all cases the mag-
netic moments went to zero, as has previously been found 
for FeSi (Moroni et al. 1999). Convergence tests were car-
ried out for all calculations, to ensure an error of less than 
0.001 eV per atom. For both FeSi and NiSi, k-point grids 
of 17 × 17 × 17 and 9 × 9 × 9 were used for the CsCl and 
ε-FeSi phases, respectively, with plane-wave cutoff ener-
gies of 600 eV for FeSi and 800 eV for NiSi. For the lattice 
dynamics calculations, electronic temperature was varied, 
being set to each temperature at which the phonons were 
calculated.

Static calculations

For the FeSi system, static calculations, at effectively 
0 K, were carried out on the known stable phases with the 
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ε-FeSi and CsCl structures (with the convergence param-
eters given above). In addition, the structures of other 
phases investigated for NiSi (Vočadlo et  al. 2012; Wood 
et  al. 2013) were also used as starting points (see section 
“Stability of NiSi-structured phases in FeSi at 0 K”), with 
convergence criteria to ensure errors of less than 0.001 eV 
per atom. Geometry optimisation was performed, generat-
ing internal energy values for a set of specified volumes. 
Volumes for these calculations ranged from ~7 to 15 Å3 per 
atom, equivalent to pressures up to ~400 GPa. The result-
ing energy–volume values were then fitted to an integrated 
third-order Birch-Murnaghan equation of state to deter-
mine enthalpy as a function of pressure (see, e.g., Vočadlo 
et al. 1999).

Lattice dynamics

Lattice dynamics calculations were carried out to deter-
mine the phase boundary of the ε-FeSi → CsCl phase tran-
sition in both FeSi and NiSi. At a given temperature, the 
vibrational free energy can be calculated from the phonon 
frequencies, which were obtained using the small-displace-
ments or “frozen phonon” method as implemented in the 
program Phon (Alfè 2009). For any system, the most stable 
structure is that which has the lowest Gibbs free energy, G:

where U is the internal energy, P is the pressure, V is the 
volume, T is temperature, S is entropy and F is the Helm-
holtz free energy. The total Helmholtz free energy, Ftotal, is 
a function of volume and temperature and can be split into 
two parts such that

where Fperfect(V,0) is the total energy of the static system 
and Fvib(V,T) is the vibrational free energy due to tem-
perature (including the zero point energy). Fperfect(V,0) is 
obtained through static calculations. Fvib(V, T) can be writ-
ten in terms of temperature and phonon frequencies

where ωi is the phonon frequency, kB is Boltzmann’s con-
stant, ħ is Planck’s constant divided by 2π, and T is the tem-
perature. In each case, Phon was used to generate a 2 × 2 × 2 
supercell, and the necessary displacements to calculate 
the phonon frequencies and the resulting summation over 
the phonon modes were converged in vibrational Q-points 
(15 × 15 × 15 and 11 × 11 × 11 for the CsCl and ε-FeSi 
phases, respectively). In this way, the vibrational free 
energy can be calculated and hence the total Helmholtz free 
energy can be obtained (in the quasi-harmonic approxima-
tion, ignoring anharmonic contributions). Having specified 

G = U + PV − TS = F + PV ,

Ftotal(V , T) = Fperfect(V , 0) + Fvib(V , T),
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a set of temperatures and volumes for the simulations, the 
pressure is then given by the derivative of the free energy 
with respect to volume at a constant temperature

and, therefore, fitting the isothermal F–V curve allows G 
to be determined. The F–V curves were fitted to integrated 
3rd order Birch–Murnaghan equations of state and also, as 
a check on the fitting sensitivity, to sixth-order polynomi-
als. Having determined the fitting parameters for F(V), G 
and P were then calculated at each temperature for a closely 
spaced set of appropriate volumes, and G was then plotted 
as a function of P. The transition pressures, defined by the 
intersection of the G(P) curves for each phase at each tem-
perature, were then determined by inspection. The results 
from the two functions used to fit F(V) gave essentially 
identical results, leading to transition pressures which dif-
fered by <1 GPa for FeSi and <2 GPa for NiSi.

Results and discussion

Stability of NiSi‑structured phases in FeSi at 0 K

Some of the stable NiSi structures seen in Vočadlo et al. 
(2012) were a result of spontaneous transformations after 
relaxation of the starting structure. In order to replicate 
these calculations as closely as possible, the same start-
ing structures have been used here, with the exception of 
the NiAs, ‘anti’-NiAs and NaCl structures, which were 
all found to be unstable by a large margin in NiSi. There-
fore, the structures that have been considered are the 
MnP, ‘anti-MnP’, Pbma-I and WC structures, as well as 
the new Pmmn phase found by Wood et al. (2013). Fur-
ther details of these structures can be found in Vočadlo 
et  al. (2012) and Wood et  al. (2013). The calculated 
energy–volume values were fitted to third-order Birch-
Muraghan equations of state to obtain the enthalpy–pres-
sure values. A plot of the enthalpy differences (equivalent 
here to the differences in the Gibbs free energy), relative 
to that of CsCl-FeSi, shows that the only two phases that 
are stable in the FeSi system are the ε-FeSi and CsCl 
structures (see Fig. 1). The remaining structures all have 
a much greater enthalpy difference, of more than 0.1 eV 
per atom at all pressures, meaning that even at high tem-
peratures, these phases are unlikely to become the most 
stable. The curve for the MnP-structure, however, shows 
a rapid decrease as pressure approaches zero; extrapo-
lation to negative pressures shows that the MnP curve 
crosses the ε-FeSi curve at around −34 GPa (Fig. 1).

P = −

(

dF

dV

)

T
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Lattice dynamics calculations on FeSi

Lattice dynamics calculations on the ε-FeSi and CsCl 
phases were carried out for volumes of 8–12.5 Å3 per 
atom (equivalent to pressures up to ~400 GPa) and tem-
peratures from 200 to 3000  K. However, only tempera-
tures up to 2000  K were used in the subsequent analysis 
once it became clear that the calculated phase boundary 
crossed the melting line at higher temperatures. The transi-
tion pressures, listed in Table  1, were determined at each 
temperature from the intersection of the G–P curves, fol-
lowing the method detailed above (“Lattice dynamics”). 
The lattice dynamics calculations indicate that the phase 
boundary between the ε-FeSi and CsCl structures is very 
steep with a negative Clapeyron-slope. Figure 2 shows the 
calculated phase boundary, together with the results from 
three experimental studies. From Fig. 2, it can be seen that 

the pressure of the calculated phase boundary is lower than 
that in all experiments, but matches best with the lower 
bound of the two-phase region defined by Fischer et  al. 
(2013) at 14 GPa. The Clapeyron slope of the calculated 
phase boundary matches best with the experimental slopes 
defined by both Fischer et al. (2013) and Geballe and Jean-
loz (2014), who report a vertical phase boundary, in sharp 
contrast to Lord et  al. (2010) who observed a much shal-
lower Clapeyron slope.

Estimates of the thermoelastic properties of both ε-FeSi 
and CsCl-structured FeSi can be also determined from the 
F(V) fits. The third-order Birch-Murnaghan equations of 
state parameters obtained at each temperature are shown in 
Table  2. It was found that for both structures, the incom-
pressibility at zero pressure, K0, varies linearly with tem-
perature with slope: dK0/dT = −0.0218(2) GPaK−1 and 
−0.03089(6) GPaK−1 for ε-FeSi and CsCl-structures, 
respectively. K′0 varies very little with temperature being 
~4.2 for ε-FeSi and ~4.4 for CsCl-FeSi. The volumet-
ric thermal expansion coefficient, at zero pressure, was 

Fig. 1   Plots of enthalpy, relative to that of CsCl-FeSi, against pres-
sure for different FeSi structures, from static ab initio simulations 
using VASP. At T = 0  K, the enthalpy is equal to the Gibbs free 
energy, G and so the structure with the lowest enthalpy will be ther-
modynamically most stable. Transitions can be seen from the MnP 
structure to ε-FeSi at −34 GPa and from ε-FeSi to CsCl-FeSi at 11 
GPa

Table 1   Calculated transition 
pressures from lattice dynamics 
for the ε-FeSi → CsCl transition 
in FeSi

Temperature (K) Transition 
pressure 
(GPa)

200 11.0
300 11.1
400 11.0
500 10.7
1000 8.5
1500 6.0
2000 2.9

Fig. 2   Phase diagram of FeSi, showing the calculated transition pres-
sures from ab initio simulations using VASP (red diamonds; filled 
for lattice dynamics calculations and open for static calculations); the 
transition pressure determined by Vočadlo et al. (1999) is also shown 
(red open circle). As a guide to the eye, the phase boundary line has 
been described by an equation of the form P = a + bT2 + cT3, such that 
it has the correct asymptotic behaviour as required by thermodynam-
ics (i.e. dP/dT tends to 0 as T tends to 0). Also plotted are the results 
from experimental studies. Blue squares are taken from Lord et  al. 
(2010) and circles from Dobson et al. (2002); filled symbols indicate 
ε-FeSi structure only, open symbols indicate CsCl-FeSi and half-filled 
indicate a mixture of two phases. The phase boundary (blue line) as 
determined by Lord et al. (2010) has also been plotted. Also shown 
is the melting curve (pink line) of FeSi as measured by Lord et  al. 
(2010). The phase diagram of Geballe and Jeanloz (2014) is shown as 
shaded regions to the limit of their experiments (red area for ε-FeSi, 
purple area for mixture of two phases and blue area for CsCl-FeSi). 
The phase boundaries of Fischer et al. (2013) are plotted as straight 
black lines
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obtained from the values of V0 shown in Table  2 using 
the method given in Vočadlo et  al. (2002; Eqs.  1 and 3). 
Assuming a temperature-independent expansion coef-
ficient, α0, this leads to values of α0 = 3.0(1) × 10−5 K−1 
and 3.59(7) × 10−5 K−1 for the ε-FeSi and CsCl-structures, 
respectively. Experimental values for K0 at 300  K for 
ε-FeSi are generally in the range 172–176 GPa (Guyot et al. 
1997; Ross 1996; Sarrao et al. 1994); for the CsCl phase of 
FeSi, K0 is not so well constrained with values of 184(5) 
GPa (Dobson et al. 2003),  225(2) GPa (Ono et al. 2007) 
and 223(9) GPa (Ono 2013) having been reported. In gen-
eral, in FeSi, the values for K0 obtained from DFT simu-
lations tend to be significantly greater than those obtained 
by experiment. For the ε-FeSi and CsCl structures respec-
tively, values of K0 of 227 and 226 GPa (Vočadlo et  al. 
1999), 221 and 220 GPa (Caracas and Wentzcovitch 2004), 
209 and 221 GPa (Moroni et al. 1999) have been reported. 
For ε-FeSi, the experimental values for the volumetric ther-
mal expansion coefficient at zero pressure of 5.1(4) × 10−5 
K−1 (Guyot et al. 1997) and 4.85(5) × 10−5 K−1 (Vočadlo 
et  al. 2002) are ~60–70% greater than that obtained here 
from lattice dynamics. No corresponding experimental val-
ues for the thermal expansion coefficient of CsCl-FeSi are 
available at present. It would be of interest to determine 
the thermal expansion of CsCl-FeSi as the present calcula-
tions suggest that it might be greater than that for ε-FeSi, 
despite the CsCl phase being denser. The experimental 
value for dK0/dT in the ε-FeSi phase is −0.043(8) GPaK−1 
(Guyot et  al. 1997), approximately twice that obtained in 
the present work, although the difference is only marginally 
greater than might be expected from the uncertainties in the 
quantities. Once again, no corresponding values for CsCl-
FeSi are apparently available at present.

Lattice dynamics calculations in the NiSi system

As with the FeSi system, the phase boundary between the 
ε-FeSi and CsCl-structured phases of NiSi was calculated 
using the lattice dynamics method. Volumes between 6 
and 11 Å3 per atom were used, equivalent to pressures 
of up to 400 GPa, and temperatures ranged from 300 to 

3000 K. As with the FeSi calculations, only temperatures 
up to 2000 K were used in the analysis due to the phase 
boundary approaching the melting line at higher tempera-
tures. The calculated transition pressures, determined in 
the same way as for FeSi, are listed in Table 3 and shown 
in Fig.  3. Figure  3 indicates that the calculated phase 
boundary corresponds reasonably well with the experi-
mentally constrained phase boundary (Lord et  al. 2012, 
2014; Dobson et  al. 2016) in that both calculations and 
experiments show a negative Clapeyron slope of similar 
magnitude at high temperature, and a similar transition 
pressure at low temperature. The experimental data are, 
however, fairly sparse. Additionally, there is good agree-
ment in the transition pressure at 0 K between the calcu-
lations carried out here, the static computer simulations 
of Vočadlo et al. (2012) and a linear extrapolation of the 
experimental phase boundary (Dobson et al. 2016).

As for FeSi, estimates of the thermoelastic properties 
of both ε-FeSi and CsCl-structured NiSi were determined 
from the F(V) fits. The third-order Birch–Murnaghan 
equation-of-state parameters obtained at each temperature 
are shown in Table  4. For both ε-FeSi and CsCl struc-
tures, the incompressibility at zero pressure, K0, varies 
linearly with temperature giving dK0/dT = −0.0333(1) 
and −0.0389(4) GPaK− 1 for ε-FeSi and CsCl-structured 
NiSi, respectively. Again, K0′ varies little with T, being 
~4.5 and ~4.7 for ε-FeSi and CsCl-structured NiSi, 

Table 2   Birch–Murnaghan 
3rd-order equation of state 
parameters from lattice 
dynamics for FeSi

T (K) ε-FeSi structure CsCl structure

V0 (Å3/atom) K0 (GPa) K0′ V0 (Å3/atom) K0 (GPa) K0′

200 11.083(5) 222.817(7) 4.24(1) 10.599(4) 232.768(7) 4.35(1)
300 11.105(5) 221.209(6) 4.22(1) 10.627(5) 229.789(7) 4.36(1)
400 11.133(5) 218.588(7) 4.23(1) 10.658(5) 226.746(7) 4.37(1)
500 11.161(6) 216.210(7) 4.24(1) 10.692(5) 222.544(8) 4.38(2)
1000 11.314(7) 205.496(8) 4.25(2) 10.876(7) 208.190(9) 4.41(2)
1500 11.478(10) 195.004(10) 4.27(2) 11.081(10) 192.588(11) 4.45(2)
2000 11.662(14) 183.590(12) 4.29(2) 11.306(14) 177.294(14) 4.49(3)

Table 3   Calculated transition 
pressures from lattice dynam-
ics for the ε-FeSi → CsCl phase 
transition in NiSi

Temperature (K) Transition 
pressure 
(GPa)

0 158.0
300 156.3
500 151.4
750 145.4
1000 136.6
1250 128.1
1500 119.2
2000 93.8
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respectively. The volumetric thermal expansion coeffi-
cient at zero pressure gave values of α0 = 5.0(1) × 10−5 
K−1 and 7.0(2) × 10−5 K−1 for the ε-FeSi and CsCl-struc-
tured NiSi, respectively. Corresponding experimental val-
ues for NiSi are extremely limited as both of these struc-
tures are only found at high pressures. Lord et al. (2012) 
determined the equation of state of both phases at 300 K 
reporting a value for the ε-FeSi structure of K0 = 161(3) 
GPa and K0′ = 5.6 for a fixed V0. Although the calculated 
value presented here [181.10(1) GPa] is higher than the 
experimental value, it is in excellent agreement with the 
result from the athermal simulations [181.143(4) GPa] of 
Vočadlo et al. (2012). For CsCl-structured NiSi it is diffi-
cult to make a meaningful comparison with experiments, 
since these give values ranging from ~150 < K0 < 240 

GPa depending on the details of the data analysis (Lord 
et al. 2012). There are no experimental data with which 
to compare our estimates of either the volumetric ther-
mal expansion coefficient at zero pressure or dK0/dT, 
although we note that, as for FeSi, the CsCl-structured 
material has the higher thermal expansion coefficient.

Discussion and conclusions

Calculations on the NiSi-structured phases in FeSi confirm 
that there are only two stable phases, those with the ε-FeSi 
and CsCl structures. The large energy gap separating the 
other structures means that, although these are static calcu-
lations (0 K), it is unlikely that any of these will become the 
most stable phase at high temperatures. However, extrapo-
lation of the H–P curves to negative pressures shows that 
the MnP-phase becomes stable at −34 GPa. Taking this 
into account, the stability sequence in FeSi with increasing 
pressure then becomes MnP-FeSi → ε-FeSi → CsCl-FeSi. 
This stability sequence is also observed in RuSi, OsSi and 
CoSi, as predicted by ab initio static calculations simi-
lar to those carried out here (Hernandez et  al. 2015). As 
with FeSi, Hernandez et al. (2015) find the MnP structure 
in these compounds is only stable at negative pressures at 
0 K, with transition pressures of −15, −6.3 and −10 GPa 
respectively for RuSi, OsSi and CoSi, indicating that (at 
0 K) the MnP phase is stabilised as one descends Group 8 
from Fe to Os. A similar pattern is seen with the Group 9 
elements. The calculations of Hernandez et al. (2015) did 
not extend past 300 GPa, and so the CsCl-structured phase 
was not found in either RhSi or IrSi, but it is possible that 
the same MnP → ε-FeSi → CsCl-FeSi stability sequence 
would be seen at higher pressures. However, for the sili-
cides of the group 10 elements, Hernandez et  al. (2015) 
found a different, possibly more complicated, structural 
sequence as exemplified by experiments and calculations 
on NiSi (Vočadlo et al. 2012; Lord et al. 2012; Wood et al. 
2013; Dobson et al. 2016).

Lattice dynamics calculations show that the calculated 
phase boundary between the ε-FeSi and CsCl phases in 

Fig. 3   The phase diagram of NiSi, showing (in red) the calculated 
phase boundary between the ε-FeSi and CsCl structures [filled red 
diamonds from this study, including also a static calculation; open 
red diamond from Vočadlo et al. (2012)]. As a guide to the eye, the 
phase boundary line has been described by an equation of the form 
P = a + bT2 + cT3 + dT4 such that it has the correct asymptotic behav-
iour as required by thermodynamics (i.e. dP/dT tends to 0 as T tends 
to 0). The experimentally determined melting curve is shown in blue 
(Lord et al. 2014) and the boundaries of the MnP, Pmmn, ε-FeSi and 
CsCl phases in black (from Dobson et al. 2016, with symbols defined 
therein). The ε-FeSi to CsCl phase boundary from these experiments 
is dashed to show extrapolation to zero K

Table 4   Birch–Murnaghan 
3rd -order equation of state 
parameters from lattice 
dynamics for NiSi

T (K) ε-FeSi structure CsCl-FeSi structure

V0 (Å3/atom) K0 (GPa) K0′ V0 (Å3/atom) K0 (GPa) K0′

300 11.69(1) 181.10(1) 4.36(2) 11.732(9) 158.028(6) 4.59(1)
500 11.79(2) 174.56(1) 4.39(2) 11.87(1) 149.894(7) 4.63(1)
750 11.92(2) 166.51(1) 4.41(2) 12.05(2) 139.937(9) 4.67(2)
1000 12.06(2) 158.00(1) 4.45(2) 12.25(2) 130.03(1) 4.72(2)
1250 12.21(3) 149.71(2) 4.47(3) 12.46(3) 120.52(1) 4.76(3)
1500 12.38(3) 141.23(2) 4.51(3) 12.69(4) 111.12(2) 4.80(3)
2000 12.74(5) 124.54(2) 4.58(4) 13.21(7) 92.76(2) 4.90(5)
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FeSi is lower in pressure at all temperatures than the exper-
imental phase boundaries. The calculated phase boundary 
is similar to the lower bound proposed by Fischer et  al. 
(2013), being near vertical with a negative Clapeyron slope, 
but in sharp contrast to that of Lord et al. (2010) who find a 
boundary with a much shallower negative Clapeyron slope. 
Indeed, it should be noted that none of the published DFT 
simulations support a shallow negative Clapeyron slope, 
as even the highest predicted transition pressure (that of 
Caracas and Wentzcovitch 2004: 40 GPa at zero K) is much 
lower than would be expected on the basis of extrapola-
tion of Lord et al.’s experimental phase boundary. That we 
find lower transition pressures in the computer simulations 
might suggest that there is an element of kinetic inhibition 
in the experiments, which may also explain the differences 
in the experimental phase boundaries observed. Evidence 
of kinetic inhibition can be seen in the experiments them-
selves—each of the experimental studies reports some 
degree of metastable persistence of ε-FeSi, with Lord et al. 
(2010) finding only one instance, at 46 GPa and 1830 K, 
where the transition reaches completion to yield pure CsCl-
FeSi. Differences in the size of the two-phase stability field 
observed in experiments may then be due to experimental 
differences that affect whether complete transformation 
could take place.

However, kinetic inhibition alone may not be sufficient 
to explain the large difference seen between experiments. 
Another credible explanation is the possibility of Si dif-
fusion during heating. Dobson et  al. (2002) used electron 
microprobe analysis to determine the exact stoichiometry 
of their samples, but this was not done in the LH-DAC 
experiments. It is possible that the stoichiometry of the 
samples differed sufficiently in the LH-DAC experiments 
which, when combined with the effect of kinetic inhibi-
tion, is enough to explain the large discrepancies between 
them. Giving credence to this argument is the fact that 
experiments have shown that small changes in composition 
affect the structure adopted by RuSi, an analogue mate-
rial of FeSi; a small excess of Ru (~1%) favours the CsCl-
structure, whereas samples deficient in Ru show a mixture 
of ε-FeSi and Ru2Si3 structures (Buschinger et  al. 1997; 
Vočadlo et al. 2000).

In contrast to FeSi, although the experimental data are 
sparse, both the calculated and experimentally determined 
phase boundaries in NiSi show moderate negative Clap-
eyron slopes. The experimental (Dobson et  al. 2016) and 
calculated transition pressures agree well at high pressures 
and low temperatures, but less so at lower pressures and 
high temperatures where anharmonic effects may become 
important and methods based on lattice dynamics may 
begin to fail. The fact that FeSi and NiSi behave so differ-
ently makes it difficult to predict which phases would be 
stable in the Fe–Ni–Si system—a composition more likely 

to be found in the cores of terrestrial planets than either 
pure FeSi or pure NiSi. Although at the extreme conditions 
of the Earth’s core—temperatures in the region of 6000 K 
and pressures up to 360 GPa (Anzellini et  al. 2013)—the 
CsCl-structured phase is stable for both FeSi and NiSi, at 
lower pressures (e.g., <40 GPa) the two systems have very 
different phase diagrams, with the ε-FeSi and CsCl struc-
tures being stable in FeSi, and the MnP, Pmmn, ε-FeSi and 
possibly even the CsCl structures being stable in NiSi. This 
becomes particularly relevant when considering the cores 
of smaller terrestrial planets such as Mercury and Mars, 
where core pressures are much lower than in the Earth, 
with the core of Mars estimated to be between 24 and 42 
GPa and 2000 and 2600  K (Fei and Bertka 2005), while 
the core of Mercury is thought to be between 8 and 40 
GPa, and 1700–2200 K (Chen et al. 2008). It is, therefore, 
important both to understand exactly how and why phase 
stability differs in FeSi and NiSi and to properly investigate 
the Fe-Ni-Si ternary phase diagram.
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