Skip to main content
Log in

Major histocompatibility complex and mate choice in a monogamous rodent

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

A growing number of studies indicate that females can increase the viability of their offspring by gaining direct benefits such as parental care or genetic advantages through selective mating with certain males. Among the best candidates for the genetic basis of mate choice in vertebrates are the genes of the major histocompatibility complex (MHC) because these highly polymorphic genes may increase offspring viability and provide direct cues for mate choice. A free-ranging, pair-living rodent was used as an example to investigate MHC-dependent mate choice in an obligate monogamous species, the Malagasy giant jumping rat Hypogeomys antimena. Two possible mechanisms of mate choice were tested. First, mate choice may occur to increase the heterozygosity of MHC genes in the progeny and, second, mates might choose each other according to the degree of dissimilarity of their functional MHC DRB (exon 2) proteins in order to maximise the allelic divergence in their offspring. Analyses of 65 Hypogeomys couples failed to confirm associations of mating patterns with the MHC genotype to increase heterozygosity or MHC allelic divergence in the progeny. Also, no evidence for mechanisms to increase the allelic divergence was found in sex-specific analyses where a male or female, respectively, migrated to and was accepted by a territory and burrow holder of the opposite sex. However, the frequency distribution of 0, 1 or 2 new alleles potentially available for the progeny differed significantly when a new male was chosen by a territory-holding female. In contrast to current models, genetically similar instead of dissimilar mates seem to be the preferred choice. This is the first study investigating the role of the MHC in mate selection in an obligate monogamous rodent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

  • Beauchamp GK, Yamazaki K, Bard J, Boyse EA (1988) Preweaning experience in the control of mating preferences by genes in the major histocompatibility complex of the mouse. Behav Genet 18:537–547

    Google Scholar 

  • Blouin MS, Parsons M, Lacaille Y, Lotz S (1996) Use of microsatellite loci to classify individuals by relatedness. Mol Ecol 3:393–401

    Google Scholar 

  • Brown JL (1997) A theory of mate choice based on heterozygosity. Behav Biol 8:60–65

    Google Scholar 

  • Brown JL, Eklund A (1994) Kin recognition and the major histocompatibility complex: an integrative review. Am Nat 143:435–461

    Google Scholar 

  • Brown JH, Jardetzky TS, Saper MA, Samraoui B (1988) A hypothetical model of foreign antigen binding site of Class II histocompatibility molecules. Nature 332:845–850

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  CAS  PubMed  Google Scholar 

  • Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, Goedert JJ, Kaslow R (1999) HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283:1748–1752

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock TH (1989) Mammalian mating systems. Proc R Soc Lond B 236:339–372

    CAS  PubMed  Google Scholar 

  • Cook JM, Trevelyan R, Walls SS, Hatcher M, Rakotondraparany F (1991) The ecology of Hypogeomys antimena, an endemic Madagascan rodent. J Zool Lond 224:191–200

    Google Scholar 

  • Darwin C (1859) The origin of the species by means of natural selection. Murray, London

  • Ditchkoff SS, Lochmiller RL, Masters RE, Hoofer SR, van Bussche RA (2001) Major-histocompatibility-complex-associated variation in secondary sexual traits of white-tailed deer (Odocoileus virginianus): evidence for good-genes advertisements. Evolution 55:616–625

    Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52

    Google Scholar 

  • Eggert F, Muller-Ruchholtz W, Ferstl R (1999) Olfactory cues associated with the major histocompatibility complex. Genetica 104:191–197

    Google Scholar 

  • Egid K, Brown JL (1989) The major histocompatibility complex and female mating preferences in mice. Anim Behav 38:548–549

    Google Scholar 

  • Eklund A (1997) The major histocompatibility complex and mating preferences in wild house mice (Mus domesticus). Behav Ecol 8:630–634

    Google Scholar 

  • Eklund A, Egid K, Brown JL (1991) The major histocompatibility complex and mating preferences of male mice. Anim Behav 42:693–694

    Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223

    CAS  PubMed  Google Scholar 

  • Fan E, Levin DB, Glickman BW, Logan DM (1993) Limitations in the use of SSCP analysis. Mutat Res 288:85–92

    Google Scholar 

  • Freeman-Gallant, Meguerdichian M, Wheelwright NT, Sollecito SV (2003) Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird. Mol Ecol 12:3077–3083

    Google Scholar 

  • Froeschke G, Sommer S (2005) MHC Class II DRB constitution and parasite load in the striped mouse, Rhabdomys pumilio, in the Southern Kalahari. Mol Biol Evol, in press

  • Ganzhorn JU, Sorg J-U (1996) Ecology and economy of a tropical dry forest in Madagascar. Primate Report vol 46–1. Goltze, Göttingen

  • Ganzhorn JU, Porter P, Lowry II, SchatzGE, SommerS (2001) Madagascar: one of the world’s hottest biodiversity hotspot on its way out. Oryx 35:346–348

    Google Scholar 

  • Girman DJ (1996) The use of PCR-based single-stranded conformation polymorphism analysis (PCR-SSCP) in conservation genetics. In: Smith TB, Wayne RK (eds) Molecular genetic approaches in conservation. Oxford University Press, New York, pp 167–182

  • Goodman SM, Rakotondravony D (1996) The holocene distribution of Hypogeomys (Rodentia: Muridae: Nesomyinae) on Madagascar: In: Lourenco WR (ed) Biogéographie de Madagascar. l’Orstom, Paris, pp 283–293

  • Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474

    Google Scholar 

  • Harf R, Sommer S (2005) Association between MHC Class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the Southern Kalahari. Mol Ecol 14:85–91

    Google Scholar 

  • Hartl DL, Clark AG (1989) Principles of population genetics. Sinauer, Sunderland, Mass

  • Hayashi K (1992) PCR-SSCP: a method for detections of mutations. GATA 9:73–79

    Google Scholar 

  • Hedrick PW (1992) Female choice and variation at the major histocompatibility complex. Genetics 132:575–581

    Google Scholar 

  • Hedrick PW, Black FL (1997) HLA and mate selection: no evidence in South Amerindians. Am J Hum Genet 61:505–511

    Google Scholar 

  • Hongyo T, Buzard GS, Calvert RJ, Weghorst CM (1993) Cold SSCP—a simple rapid and non-radioactive method for optimised single strand conformation polymorphism analyses. Nucleic Acids Res 21:3637–3642

    Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, Oxford

  • Hughes A, Hughes M (1995) Natural selection on the peptide-binding regions of major histocompatibility complex molecules. Immunogenetics 42:233–243

    Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435

    Article  CAS  PubMed  Google Scholar 

  • Ihara Y, Aoki K, Tokumaga K, Takahaski K, Juji T (2000) HLA and human mate choice: tests on Japanese couples. Anthropol Sci 108:199–214

    Google Scholar 

  • Jacob S, McClintock MK, Zelano B, Ober C (2002) Paternally inherited HLA alleles are associated with women’s choice of male odor. Nature Genet 30:175–179

    Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

  • Landry C, Garant D, Duchesne P, Bernatchez L (2001) ‘Good genes as heterozygosity’: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proc R Soc Lond B 268:1279–1285

    Article  CAS  PubMed  Google Scholar 

  • Law JC, Facher EA, Deka A (1996) Nonradioactive single-strand conformation polymorphism analysis with application for mutation detection in a mixed population of cells. Anal Biochem 236:373–375

    Google Scholar 

  • Lessa EP, Applebaum G (1993) Screening techniques for detecting allelic variation in DNA sequences. Mol Ecol 2:119–129

    Google Scholar 

  • Manning C, Potts WK, Wakeland EK, Dewsbury DA (1992) What’s wrong with MHC mate choice experiments? In: Doty RL, Müller-Schwarze D (eds) Chemical signals in vertebrates. Plenum, New York, pp 229–235

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Nei M (1991) Relative efficiencies of different tree making methods for molecular data. In: Miyamoto MM, Cracraft J (eds) Phylogenetic analysis of DNA sequences. Oxford University Press, New York, pp 90–128

  • Ober C, Weitkamp LR, Cox N, Dytch H, Kostyu D, Sherman D (1997) HLA and mate choice in humans. Am J Hum Genet 61:497–504

    Article  CAS  PubMed  Google Scholar 

  • Ober C, Hyslop T, Elias S, Weitkamp LR, Hauck WW (1998) Human leucocyte antigen matching and fetal loss: results of a 10-year prospective study. Hum Reprod 13:33–38

    Google Scholar 

  • Ohta T (1998) On the patterns of polymorphisms at major histocompatibility complex loci. J Mol Evol 46:633–638

    CAS  PubMed  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 9:408–412

    Google Scholar 

  • Paterson S, Pemberton JM (1997) No evidence for major histocompatibility complex-dependent mating patterns in a free-living ruminant population. Proc R Soc Lond B 264:1813–1819

    Google Scholar 

  • Paterson S, Wilson K, Pemberton JM (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc Natl Acad Sci USA 95:3714–3719

    Article  Google Scholar 

  • Penn DJ (2002) The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology 108:1–21

    Google Scholar 

  • Penn DJ, Potts WK (1998a) MHC-disassortative mating preferences reversed by cross-fostering. Proc R Soc Lond B 265:1299–1306

    Google Scholar 

  • Penn DJ, Potts WK (1998b) How do major histocompatibility complex genes influence odor and mating preferences? Adv Immunol 69:411–435

    Google Scholar 

  • Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153:145–164

    Article  Google Scholar 

  • Potts WK, Slev P (1995) Pathogen-based models favoring MHC genetic diversity. Immunol Rev 143:181–197

    Google Scholar 

  • Potts WK, Wakeland EK (1990) Evolution of diversity of the major histocompatibility complex. Trends Ecol Evol 5:181–187

    Google Scholar 

  • Potts WK, Manning CJ, Wakeland EK (1991) Mating patterns in seminatural populations of mice influenced by the MHC genotype. Nature 352:619–621

    Article  CAS  PubMed  Google Scholar 

  • Promislow DE, Smith EA, Pearse L (1998) Adult fitness consequences of sexual selection in Drosophila melanogaster. Proc Natl Acad Sci USA 95:10687–10692

    Google Scholar 

  • Rammensee HG (1995) Chemistry of peptides associated with MHC class I and II molecules. Curr Opin Immunol 7:85–96

    Google Scholar 

  • Reusch TBH, Häberli MA, Aeschlimann PB, Milinski M (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300–302

    Article  CAS  PubMed  Google Scholar 

  • Ryan KK, Lacy RC (2003) Monogamous male mice bias behaviour towards females according to very small differences in kinship. Anim Behav 65:379–384

    Google Scholar 

  • Sauermann U, Nürnberg P, Bercovitch FB, Berard JD, Trefilov A, Widdig A, Kessler M, Schmidtke J, Krawczak M (2001) Increased reproductive success of MHC class II heterozygous males among free-ranging rhesus macaques. Hum Genet 108:249–254

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin, ver 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva

  • Searcy WA (1982) The evolutionary effects of mate selection. Annu Rev Ecol Syst 13:57–85

    Google Scholar 

  • Simon JL (1997) Resampling Stats. The new statistics, version 4.1. Resampling Stats, Arlington, Va

  • Singh P (1998) The present status of the ‘carrier hypotheses’ for chemosensory recognition of genetic individuality. Genetica 104:231–233

    Google Scholar 

  • Singh PM, Brown RE, Roser B (1987) MHC antigens in urine as olfactory recognition cues. Nature 327:161–164

    Google Scholar 

  • Sommer S (1996) Ecology and social structure of Hypogeomys antimena, an endemic rodent of the dry deciduous forest in western Madagascar. In: Lourenco WR (ed) Biogeographie de Madagascar. l’Orstom, Paris, pp 295–302

  • Sommer S (1997) Monogamy in Hypogeomys antimena, an endemic rodent of the deciduous dry forest in western Madagascar. J Zool Lond 241:301–314

    Google Scholar 

  • Sommer S (2000) Sex specific predation rates on a monogamous rat (Hypogeomys antimena, Nesomyinae) by top predators in the tropical dry forest of Madagascar. Anim Behav 59:1087–1094

    Google Scholar 

  • Sommer S (2001) Reproductive ecology of the endangered monogamous Malagasy giant jumping rat, Hypogeomys antimena. Mamm Biol 66:111–115

    Google Scholar 

  • Sommer S (2003a) Social and reproductive monogamy in rodents: the case of the Malagasy giant jumping rat (Hypogeomys antimena). In: Reichard U, Boesch C (eds) Monogamy: partnerships in birds, humans and other mammals. Cambridge University Press, Cambridge, pp 109–124

  • Sommer S (2003b) Effects of habitat fragmentation and changes of dispersal behaviour after a recent population decline on the genetic variability of non-coding and coding DNA of a monogamous rodent. Mol Ecol 12:2845–2851

    Google Scholar 

  • Sommer S (2003c) Natural history of the Malagasy giant jumping rat, Hypogeomys antimena. In: Goodman S, Benstead J (eds) The natural history of Madagascar. University of Chicago Press, Chicago, pp 1383–1385

  • Sommer S, Hommen U (2000) An individual based model to explore the effects of changing ecological parameters on the population dynamics and persistence of the endangered monogamous Malagasy giant jumping rat (Hypogeomys antimena). Anim Conserv 4:333–343

    Google Scholar 

  • Sommer S, Tichy H (1999) MHC-Class II polymorphism and paternity in the monogamous Hypogeomys antimena, the endangered, largest endemic Malagasy rodent. Mol Ecol 8:1259–1272

    Google Scholar 

  • Sommer S, Schwab D, Ganzhorn JU (2002a) MHC diversity of endemic Malagasy rodents in relation to range contraction and social system. Behav Ecol Sociobiol 51:214–221

    Google Scholar 

  • Sommer S, Toto Volahy A, Seal US (2002b) A population and habitat viability assessment for the highly endangered giant jumping rat (Hypogeomys antimena), the largest endemic rodent of Madagascar. Anim Conserv 5:263–273

    Google Scholar 

  • Thornhill R, Gangestad SW, Miller R, Scheyd G, McCollough JK, Franklin M (2003) Major histocompatibility complex genes, and body scent attractiveness in men and women. Behav Ecol 14:668–678

    Google Scholar 

  • Thursz MR, Thomas HC, Greenwood BM, Hill AV (1997) Heterozygote advantage for HLA class II-type in hepatitis virus infection. Nat Genet 17:11–12

    CAS  PubMed  Google Scholar 

  • Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027

    Article  CAS  PubMed  Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In: Campell B (ed) Sexual selection and the descent of man 1871–1971. Aldine, Chicago, pp 136–179

  • Von Schantz T, Göransson G, Andersson G, Fröberg I, Grahn M, Helgí A, Wittzell H (1989) Female choice selects for a viability-based male trait in pheasants. Nature 337:166–169

    Google Scholar 

  • Von Schantz T, Wittzell H, Goransson G, Grahn M, Persson K (1996) MHC genotype and male ornamentation: genetic evidence for the Hamilton-Zuk model. Proc R Soc Lond B 263:265–271

    PubMed  Google Scholar 

  • Wedekind C, Seebeck T, Bettens F, Paepke AJ (1995) MHC-dependent mate preferences in humans. Proc R Soc Lond B 260:245–249

    CAS  PubMed  Google Scholar 

  • Wegner KM, Kalbe M, Kurtz J, Reusch TBH, Milinski M (2003) Parasite selection for immunogenetic optimality. Science 301:1343

    Article  CAS  PubMed  Google Scholar 

  • Wenink PW, Groen AF, Roelke-Parker ME, Prins HHT (1998) African buffalo maintain high genetic diversity in the major histocompatibility complex in spite of historically known population bottlenecks. Mol Ecol 7:1315–1322

    Google Scholar 

  • Westerdahl H (2004) No evidence of an MHC-based female mating preference in great reed warblers. Mol Ecol 13:2465–2470

    Google Scholar 

  • Yamazaki K, Singer A, Beauchamp GK (1998) Origin, functions and chemistry of H-2 regulated odorants. Genetica 104:235–240

    Google Scholar 

Download references

Acknowledgements

I am grateful to the “Commission Tripartite” of the Malagasy Government, the Laboratoire de Primatologie et des Vertébrés de l’Université d’Antananarivo, the Ministère pour la Production Animale et des Eaux et Forêts for their collaboration and permission to work in Madagascar. Many thanks go to the Centre de Formation Professionnelle Forestière de Morondava, B. Rakotosamimanana, R. Rasoloarison, L. Razafimanantsoa, and P. Kappeler for logistical support. I thank J. Ganzhorn for unflagging support in numerous ways. I am grateful to P. Duchesne for comparing simulations and discussions, and to M. Hingston for language corrections. G. Wilkinson and three anonymous reviewers provided very useful comments on an earlier version of the manuscript. This study was made possible by the German Science Foundation (So 428/1-1, 428/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sommer.

Additional information

Communicated by G. Wilkinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, S. Major histocompatibility complex and mate choice in a monogamous rodent. Behav Ecol Sociobiol 58, 181–189 (2005). https://doi.org/10.1007/s00265-005-0909-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-005-0909-7

Keywords

Navigation