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Abstract Langerhans cells, a subset of skin dendritic
cells in the epidermis, survey peripheral tissue for invading
pathogens. In recent functional studies it was proven that
Langerhans cells can present exogenous antigen not merely
on major histocompatibility complexes (MHC)-class II
molecules to CD4+ T cells, but also on MHC-class I mole-
cules to CD8+ T cells. Immune responses against topically
applied antigen could be measured in skin-draining lymph
nodes. Skin barrier disruption or co-application of adju-
vants was required for maximal induction of T cell
responses. Cytotoxic T cells induced by topically applied
antigen inhibited tumor growth in vivo, thus underlining
the potential of Langerhans cells for immunotherapy. Here
we review recent work and report novel observations relat-
ing to the potential use of Langerhans cells for immuno-
therapy. We investigated the potential of epicutaneous
immunization strategies in which resident skin dendritic
cells are loaded with tumor antigen in situ. This contrasts
with current clinical approaches, where dendritic cells gen-
erated from progenitors in blood are loaded with tumor
antigen ex vivo before injection into cancer patients. In the
current study, we applied either Xuorescently labeled

protein antigen or targeting antibodies against DEC-205/
CD205 and langerin/CD207 topically onto barrier-dis-
rupted skin and examined antigen capture and transport by
Langerhans cells. Protein antigen could be detected in Lan-
gerhans cells in situ, and they were the main skin dendritic
cell subset transporting antigen during emigration from
skin explants. Potent in vivo proliferative responses of
CD4+ and CD8+ T cells were measured after epicutaneous
immunization with low amounts of protein antigen. Target-
ing antibodies were mainly transported by langerin+ migra-
tory dendritic cells of which the majority represented
migratory Langerhans cells and a smaller subset the new
langerin+ dermal dendritic cell population located in the
upper dermis. The preferential capture of topically applied
antigen by Langerhans cells and their ability to induce
potent CD4+ and CD8+ T cell responses emphasizes their
potential for epicutaneous immunization strategies.
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Abbreviations
CFSE Carboxy-Xuorescein diacetate succinimidyl ester
MHC Major histocompatibility complexes
OVA Ovalbumin
TLR Toll like receptors

Langerhans cells: an introduction

Exactly 140 years ago Paul Langerhans discovered the net-
work of Langerhans cells in the epidermis of the skin and
assumed that they were nerve cells given that they exhib-
ited very long extensions and thin long cell bodies, and that
they were detected by a histochemical staining method used
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for the identiWcation of nerve cells at that time. Many years
later Ralph Steinman and Zanvil Cohn described a new cell
type in murine spleen that displayed long pseudopods
which made them look stellate or dendritic, hence the name
“dendritic cells” [48, 50]. This new cell type was found in
other tissues such as bone marrow, lymph nodes and many
more. Shortly thereafter, the “nerve cells” described by
Paul Langerhans cells were re-investigated and found to be
of bone marrow origin and share markers with other cells of
the immune system. In vitro studies demonstrated that Lan-
gerhans cells stimulated allogeneic T cells, thus classifying
them as a member of the dendritic cells system that resides
in the epidermis (reviewed in [42, 43]).

Functions of Langerhans cells

Studies performed in Ralph Steinman’s lab revealed that
Langerhans cells isolated from the epidermis matured into
powerful immunostimulatory cells during in vitro culture
[44]. Besides, Langerhans cells proved to be capable of
processing protein antigen and presenting immunogenic
peptides on the cell surface by major histocompatibility
complexes (MHC)-class II molecules to naïve CD4+ T cells
[41]. Processing capacity was down-regulated upon in vitro
culture. These seminal Wndings gave birth to the idea to
consider Langerhans cells as a model to investigate the role
of dendritic cells in general.

We demonstrated recently that Langerhans cells capture
exogenous skin-derived antigen, process it and cross-pres-
ent antigenic peptides on MHC-class I to CD8+ T cells in
vitro and in vivo [53]. Langerhans cells thus represent a
major subset of skin dendritic cells that, together with
dermal dendritic cells, are equipped to fulWll the task of
surveying skin for invading pathogens and stimulating
immune responses against skin-borne pathogens [43]. On
the other hand, there is some evidence that cutaneous den-
dritic cells may play an important role in maintaining
peripheral tolerance against self-antigens expressed in the
skin [60]. Thus, the ability of Langerhans cells to induce
immunity and tolerance would ensure that both responses
are balanced [51]. It should be emphasized, however, that
most of our knowledge on the functions of Langerhans cells
was derived from in vitro studies.

Current views on Langerhans cell function in vivo

The Langerhans cell community was quite surprised by
recent Wndings about the absence of in vivo antigen presen-
tation by Langerhans cells in case of some viral and para-
sitic infections of the skin and mucosa [2, 40, 64]. The
almost concomitant development of murine Langerhans
cell ablation models [4, 23, 24] made it possible to investi-
gate the immunogenicity of Langerhans cells in skin

immune responses in vivo. Surprisingly, the Wrst studies
performed with these models caused more uncertainty than
certainty. Contact hypersensitivity responses had diVerent
outcomes in the three models. Some of the confusion could
be resolved recently, and Langerhans cells were indeed
shown to be mandatory for the induction of contact hyper-
sensitivity [5]. Moreover, a novel subset of dermal
dendritic cells that expresses the Langerhans cell marker
langerin/CD207, a C-type lectin receptor [57], was identi-
Wed and described to participate in skin immune responses
[8, 17, 37]. There is some indication that Langerhans cells
and dermal dendritic cells perform diVerent tasks in the
skin immune system. Langerhans cell generated from
CD34+ precursors were found to stimulate T cell responses,
whereas interstitial dermal-like dendritic cells induced anti-
body secretion from B cells [11]. In support of this Wnding,
migratory Langerhans cells are localized deep in the T cell
area; in contrast, dermal dendritic cells accumulate around
B cell follicles [24]. Currently, there is consensus that all
skin dendritic cells subsets, Langerhans cells and both
dermal dendritic cell subsets, are major players of the skin
immune system. However, functional diVerences might
exist and need to be examined.

Langerhans cell functions relevant to cancer 
immunotherapy: induction of cytotoxic T cell 
responses in vitro

Langerhans cells are powerful inducers of CD4+ T cell
responses, yet it was long unclear if they are capable of
cross-presenting exogenous antigen to CD8+ T cells. Studies
performed with Langerhans cells generated from CD34+

precursors demonstrated that Langerhans cell-like cells were
able to capture apoptotic tumor cells and stimulate autolo-
gous CD8+ T cell responses in vitro [9, 38]. In one of the
studies, Langerhans cell-like cells proved to be superior to
in vitro generated interstitial dermal dendritic cells in the
induction of cytotoxic T cell responses [38]. In another
study Langerhans cells derived from CD34+ precursors were
also eYcient in cross-presenting protein antigen provided
that they had been stimulated with IFN-� [30]. We reported
recently that Langerhans cells isolated from epidermis or
emigrated from skin explants cross-presented soluble pro-
tein or cell-associated antigen on MHC-class I molecules to
CD8+ T cells. Activated CD8+ T cells produced IFN-� upon
restimulation and exerted cytotoxic activity [53].

Langerhans cell functions relevant to cancer 
immunotherapy: induction of cytotoxic T cell 
responses in vivo

From the in vitro studies mentioned above it became obvious
that Langerhans cells are equipped with the machinery to
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stimulate cytotoxic T cells. However, not much is known
about the eYciency of these T cells to kill tumor and
infected cells in vivo. Immunization strategies through the
skin became popular in the last few years since they might
be an easy and cheap, and perhaps more eYcient approach
to load skin dendritic cells with antigen in situ. Application
of antigen onto the skin together with adjuvants induced
potent CD4+ and CD8+ T cell responses [36, 62]. So far, the
question, which skin dendritic cell subset mediates the T
cell response had not been adequately addressed, mainly
due to the lack of suitable experimental tools. We reported
recently that protein antigen applied onto barrier-disrupted
skin induced powerful long-lasting cytotoxic CD8+ T cell
responses that could be aimed at transplantable melanoma.
In this model, Langerhans cells were indeed required for
the induction of anti-tumor responses as evidenced by the
use of Langerhans cell-depleted mice: topically applied
protein antigen was cross-presented to CD8+ T cells in the
draining lymph nodes by epidermis-derived Langerhans
cells, though not in an exclusive fashion. Other skin den-
dritic cell subsets also contributed to the immune response
[54]. We therefore concluded that dermal dendritic cells
may participate in the activation of T cells when they gain
access to epicutaneously applied antigen which is likely to
happen when antigen doses are high.

It should be mentioned, though, that many studies
(including some of our own work) were or are being con-
ducted in the highly useful “OT mouse model”, where oval-
bumin (OVA) peptide-speciWc, MHC I- (OT-I cells) and
MHC II (OT-II)-restricted T cells are used as a convenient
read-out. One must take into account, however, that these
OT cells are highly sensitive, being responsive to antigen
even at picomolar levels. For this reason it is mandatory, to
extend such studies and measure the responses of the few
endogenous antigen-speciWc T cells, rather than of the
many adoptively transferred OT cells. Indeed, even under
such experimental conditions was epicutaneous immuniza-
tion able to induce protective immunity in that it delayed
the growth of an experimentally transferred tumor [54].
Nonetheless, much more work needs to be done along these
lines. In addition, studies must be done in tumor models
that behave more like tumors in human patients, particu-
larly in that they arise spontaneously.

Dendritic cell-based immunotherapy of cancer

Cancer develops when normal tissue cells undergo muta-
genic alterations which allow them to overcome the con-
trols of cell cycle. Accordingly, many tumor antigens are
normal self-antigens for which the immune system has suc-
cessfully established tolerance resulting in ignorance of the
tumors by the immune system. To solve this hazardous

situation the immune system has to be instructed to over-
come tolerance and attack the tumor cells. The unique abil-
ity of dendritic cells to activate naïve T cells makes them
prime candidates for immunotherapeutical approaches and
therefore many, though not enough, clinical trials are cur-
rently ongoing which aim at harnessing their properties
[49].

Transfer of in vitro generated dendritic cells

For immunotherapeutical trials, dendritic cells are gener-
ated in culture from either monocytes or CD34+ precursors
isolated from cancer patients and loaded with tumor anti-
gens in various ways such as co-culture with killed tumor
cells, incubation with peptides or transfection with mRNA
encoding for tumor antigens [35, 45]. Fully mature den-
dritic cells are injected subcutaneously into patients where
they migrate to draining lymph nodes to stimulate T cells
speciWc for tumor antigens. One of the major problems in
these trials is the poor migration of dendritic cells. Indeed,
most of the injected dendritic cells remain at the injection
site and undergo apoptosis and very few (under 5%) make
it to the lymphoid organs [58]. A recent report demon-
strated that the migration of injected dendritic cells can be
improved by conditioning the injection site with either den-
dritic cells or proinXammatory cytokines like TNF-� [29].
In a mouse model that closely resembled the human den-
dritic cell trials, we tested the eVect of pre-treating the den-
dritic cell application site with various inXammatory
stimuli. We observed minor increases in the migration
eYcacy of fully mature bone marrow derived dendritic
cells with a variety of toll like receptors (TLR) ligands and
with gentle mechanical stress applied to the skin such as
tape-stripping (i.e., removal of stratum corneum with adhe-
sive tape). Interestingly, the corresponding T cell responses
seemed hardly aVected indicating that increased numbers of
dendritic cells may not correlate with stronger T cell
responses under all circumstances (C.H. Tripp, manuscript
in preparation). This inaptness of dendritic cells to leave the
injection site might be one of the reasons why the immune
responses measured in treated patients are limited, how-
ever, there are many other causes for the lack of potent T
cell responses. Nevertheless, some of the patients do show
partial to complete clinical responses and survival times
appear to be clearly prolonged [15] which strongly argues
for perseverance in improving immunotherapeutical strate-
gies involving dendritic cell transfer.

Strategies for immunizing cancer patients through resident 
dendritic cells

An alternative attractive approach is to harness the resi-
dent dendritic cells in the patients, thereby avoiding the
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cumbersome isolation and culture of precursor cells. The
idea is to target tumor antigen to dendritic cells in
patients in several ways. First of all, epicutaneous immu-
nization seems suitable because antigen is deposited
directly above the network of Langerhans cells and
should therefore readily gain access to these cells.
Indeed, it was shown that topically applied antigen
induced CD4+ and CD8+ T cell responses in the skin-
draining lymph nodes, most probably through presenta-
tion by migratory skin dendritic cells [36, 62]. In several
studies peptides or protein antigens were applied either
onto barrier-disrupted skin [46] which is achieved by
repeated application of adhesive tape onto the skin [20],
or on untreated skin in combination with adjuvants like
cholera toxin or TLR ligands [22, 25, 39]. We reported
recently that protein antigen applied onto tape stripped
skin induced proliferation of CD4+ and CD8+ T cells and
development of long-lasting cytotoxic T cells. Immuniza-
tion through tape stripped skin inhibited tumor growth
and eYciency could be further improved by mixing the
antigen into TLR-7 ligand containing Aldara™ (imiqui-
mod) cream. Furthermore, we demonstrated that Langer-
hans cells presented the tumor antigen in the draining
lymph nodes [54]. The importance of epicutaneous
immunization for cancer immunotherapy became obvi-
ous recently in a Wrst trial performed with this technique
in tumor patients. Tumor-speciWc peptides applied onto
barrier-disrupted skin stimulated CD8+ T cell prolifera-
tion and eVector function that could mediate inWltration
and regression of some tumor lesions [63]. Moreover, the
potential value of Langerhans cells for immunotherapy
was highlighted by Banchereau’s group both by the in
vitro demonstration of a strong CTL-inducing capacity
of human Langerhans cells [9] and by a series of clinical
trials in melanoma patients, where CD34-derived popula-
tions were used that contained Langerhans cell-like
dendritic cells [16].

A powerful means to potentiate such responses would be
to conjugate antigens to antibodies that speciWcally bind to
the cell surface of dendritic cells [56]. Interesting candi-
dates for targeting approaches are members of the C-type
lectin receptor family, such as DEC-205/CD-205, langerin/
CD207, dectin-2. Antigens targeted to these receptors were
presented much more eYciently to T cells than unconju-
gated soluble antigen, and, when dendritic cell-activating
stimuli were concomitantly provided, strong immunity
ensued [6, 10, 21, 28]. Though usually performed by intra-
dermal injection of the conjugates, such targeting strategies
have not been studied yet in the speciWc context of the skin.
This prompted us to study in more detail the very Wrst
step in epicutaneous immunization, namely the uptake

of topically applied antigen into skin dendritic cells, partic-
ularly Langerhans cells.

Recent studies on the mechanism of immunization 
through the skin

Epicutaneous immunization with protein antigen

We wanted to visualize how well a protein antigen applied in
a cream onto tape stripped skin is taken up by Langerhans
cells in situ. For this purpose we used OVA protein conju-
gated to the Xuorescent label Alexa 488. After repeated
application of adhesive tape onto ear skin of mice to disturb
the skin barrier, we applied either PBS or 100 �g OVA-
Alexa 488 in cream. After overnight incubation epidermal
cell suspensions were prepared from ear skin by trypsiniza-
tion. Around 20% of the MHC-class II+ Langerhans cells
were positive for OVA-Alexa 488 (Fig. 1a). Not unexpect-
edly, a substantial proportion of keratinocytes also bound
OVA-Alexa. When we checked Langerhans cells in situ in
epidermal sheet specimens for capture of OVA-Alexa after
epicutaneous immunization, we were unable to detect OVA-
Alexa 488 in the Langerhans cells. This was most probably
due to low amounts of OVA taken up into the cells (data not
shown). Subsequently, we wished to determine whether Lan-
gerhans cells would transport OVA-Alexa 488 during migra-
tion. Skin explants obtained from mice immunized with PBS
or OVA-Alexa 488 were cultured on medium for 72 h. Den-
dritic cells that migrated into the medium were examined for
the presence of topically applied antigen. The majority of
them were epidermal Langerhans cells as determined by co-
expression of the adhesion molecule Ep-CAM/CD326 and
the C-type lectin langerin/CD207. Most of the migratory Ep-
CAM+ Langerhans cells carried OVA-Alexa 488 when leav-
ing the skin explants (Fig. 1b). CD11c+/Ep-CAM¡ cells, that
comprise langerin¡ as well as langerin+ dermal dendritic
cells, also took up OVA to some extent (Fig. 1b). These
populations were too small, however, as to allow a reliable
comparative evaluation of their antigen uptake and antigen
carriage properties. As we have demonstrated before, appli-
cation of 500 �g OVA in cream onto barrier-disrupted skin
led to proliferation of antigen-speciWc CD8+ T cells in vivo
[54]. Therefore, we wondered whether such a small amount of
100 �g OVA, that was applied in the experiments described
above, would also induce T cell activation. To this end, we
applied graded doses of OVA in cream onto tape stripped
skin and measured proliferation of intravenously injected
antigen-speciWc CD4+ and CD8+ T cells. Maximum prolifer-
ation of CD4+ and CD8+ T cells in skin-draining lymph
nodes was already observed with as low amounts as 100�g
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of OVA (Fig. 1c). We directly demonstrate here the uptake
and carriage of a topically administered protein antigen by
epidermal Langerhans cells in situ. This is the precondition

that Langerhans cells can present these antigens in the lymph
nodes, and that this capacity could ultimately be harnessed
for clinical immunization purposes.

Fig. 1 Langerhans cells capture 
and present protein antigen to 
T cells. a Ear skin of C57BL/6 
mice was tape stripped ten times 
before either PBS or 100 �g 
OVA-Alexa 488 were applied in 
cream. After overnight treat-
ment, skin was trypsinized to 
isolate epidermal cells, followed 
by MHC-class II staining. The 
histogram shows the Xuores-
cence intensity of OVA-Alexa 
488 (thick line) versus PBS (thin 
line) in MHC-class II+ Langer-
hans cells (n = 2). b Ear skin of 
C57BL/6 mice was treated as in 
a. After overnight treatment ear 
skin explants were cultured on 
medium for 3 days and migra-
tory dendritic cells were identi-
Wed by gating on CD11c+. Most 
migratory cells are Langerhans 
cells that are double-positive for 
Ep-CAM and langerin (lower 
right). Both Ep-CAM+ and Ep-
CAM¡ cells take up the antigen 
(upper panels). Histogram 
shows the Xuorescence intensity 
of OVA-Alexa 488 (thick line) 
versus PBS (thin line) in Ep-
CAM+ cells (n = 2). c Ear skin of 
C57BL/6 mice was tape stripped 
or left untreated and immunized 
with either PBS or various 
amounts of OVA in cream. 
1 £ 106 CFSE-labeled OT-I or 
OT-II T cells were injected intra-
venously into immunized mice. 
Three days later, skin-draining 
lymph nodes were analyzed for 
T cell proliferation (groups of 
three mice)
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Epicutaneous immunization with targeting antibody 
against skin dendritic cells

In an attempt to combine epicutaneous immunization with
the dendritic cell targeting strategy we performed experi-
ments in which we administered targeting antibodies
topically onto the epidermis. For this purpose we used
monoclonal antibodies against CD205/DEC-205 (clone
NLDC-145) and CD207/langerin (clone L31) and applied
them onto tape stripped ear skin for a few hours or over-
night. These puriWed antibodies were used as surrogates for
antibody–antigen conjugates that would eventually serve as
a vaccine. With as low amounts as 10 �g of anti-langerin
antibody we noticed that most Langerhans cells captured
the antibody. With increasing amounts of antibody the
staining intensity was enhanced in Langerhans cells in the
epidermis as observed by immunoXuorescence on epider-
mal sheets (Fig. 2a). We performed skin explant cultures
after topical application of the targeting antibodies against
DEC-205 and langerin on tape stripped skin. More than
half of the langerin+ cells, containing Langerhans cells and
the dermal langerin+ dendritic cells, were positive for the
targeting DEC-205 antibody. In contrast, the targeting anti-
body against langerin was detected in only a small propor-
tion of the langerin+ cells that migrated out of skin explants

indicating a less eYcient antibody capture (Fig. 2b). To fur-
ther dissect the subsets of migratory skin dendritic cells
after epicutaneous immunization with targeting antibody
NLDC-145, we used CD103 as a marker to discriminate
between CD103¡ Langerhans cells from the epidermis and
CD103+ dermal langerin+ dendritic cells as described
recently [8]. We found that both populations captured the
targeting antibody NLDC-145. The deeper lying dermal
dendritic cells did not take up antibody, possibly as a result
of ineYcient diVusion of targeting antibody (Fig. 3). These
data emphasize that, indeed, targeted delivery of protein
antigen via the surface of the skin can improve the uptake
by Langerhans cells and, as inferred from the literature [6],
thereby augment ensuing T cell responses.

Conclusion

Epicutaneous immunization with either protein antigen or
antigen conjugated to targeting antibodies are new promis-
ing approaches to improve dendritic cell immunotherapy.
As we have shown earlier, application of protein antigen on
barrier-disrupted skin induces proliferation of CD8+ T cells
which diVerentiate into long-lasting eVector T cells. The
resulting cytotoxic T cell response inhibited the growth of

Fig. 2 Langerhans cells capture targeting antibodies against DEC-205
and langerin. a After repeated (8£) tape-stripping, Wlter paper discs
(8 mm diameter) soaked with PBS or 10–100 �g of langerin targeting
antibody (clone L31, 20 �l/disc) were applied for 3 h onto the ears of
C57BL/6 mice. Eighteen hours later epidermal sheets were stained
with secondary antibody to visualize capture of targeting antibody
(n = 3). b Ten micrograms of isotype control or targeting antibodies

against DEC-205 (clone NLDC-145) and langerin (clone L31) were
applied to the ears of BALB/c mice. After 3 h the dorsal halves of
immunized ears were cultured for 3 days. Migratory cells were stained
for intracellular expression of langerin (clone 929F3) and targeting
antibodies were visualized with a Xuorescently conjugated secondary
antibody. Density plots show capture of targeting antibodies in gated
langerin+ migratory dendritic cells (n = 2)
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transplantable melanoma [54]. In the study here, we were
interested in the visualization of antigen capture and trans-
port by skin dendritic cells after application onto barrier-
disrupted skin. For this purpose, we immunized mice with
either Xuorescently labeled protein antigen or targeting
antibodies against dendritic cells. We demonstrate here that
Langerhans cells were able to capture Xuorescently labeled
protein antigen in situ and that amounts of 100 �g of OVA
protein was suYcient to induce CD4+and CD8+ T cell pro-
liferation in skin-draining lymph nodes. Langerhans cells
co-expressed langerin and Ep-CAM. Both markers were
described to be speciWc for Langerhans cells [7, 8, 57]. The
majority of dendritic cells migrating out of skin explant cul-
tures are langerin+ cells [52] which was believed to be a
Langerhans cell speciWc marker until recently, when a new
subset of langerin+ dermal dendritic cells sitting in the
upper part of the dermis and around hair follicles was dis-
covered [8, 17, 37]. In our hands, the main skin dendritic
cell subset that emigrated from skin explants prepared from
tape stripped immunized ear skin, represented Langerhans
cells, while only very few dermal dendritic cells migrated.
Protein antigen was mostly detected in migratory Langer-
hans cells underlining their importance in epicutaneous
immunization. Wang et al. reported recently that after
immunization with Xuorescently labeled protein onto
hydrated intact ear skin, protein antigen can be mainly
found in the epidermis and upper layers of the dermis on
skin sections [61]. In support of this Wnding, we demon-

strated recently that in Langerhans cell-depleted mice the
anti-tumor responses were impaired, particularly when lim-
iting amounts of protein antigen were used for epicutaneous
immunization. Moreover, Langerhans cells sorted from
skin-draining lymph nodes after epicutaneous immuniza-
tion were able to cross-present protein antigen to CD8+ T
cells [54]. It should be emphasized, however, that much
less is known about the situation in human skin, that is
thicker and more variable in terms of thickness as com-
pared to the relatively uniform mouse skin. It remains to be
seen, whether human Langerhans cells play an equally
dominant role in epicutaneous immunization. Moreover,
the contributions of the less well deWned subsets of human
dermal dendritic cells need to be studied thoroughly. They
may certainly inXuence the Wnal outcome.

The delivery of antigen directly and speciWcally to den-
dritic cells can be achieved by conjugating the protein anti-
gen to antibodies against dendritic cells, such as DEC-205,
langerin and dectin-2 [6, 10, 21]. In an attempt to target res-
ident skin dendritic cells we topically applied antibodies
against DEC-205 (clone NLDC-245) and an extracellular
part of langerin (L31, [21]) onto barrier-disrupted skin.
Indeed, we were able to detect the antibodies in Langerhans
cells in situ in the epidermis. We observed that langerin+

cells were the main dendritic cells transporting antibodies
against DEC-205 and langerin out of skin explants, compa-
rable to immunization with protein antigen. The antibody
against DEC-205 was captured more eYciently than the

Fig. 3 Migratory skin dendritic 
cells transport targeting anti-
body. After repeated (8£) tape-
stripping Wlter paper discs 
soaked with 10 �g of anti-
DEC205 targeting antibody 
(clone NLDC-145) or IgG2a iso-
type control (20 �l/disc) were 
applied onto the ears of BALB/c 
mice. Eighteen hours later the 
dorsal halves of immunized ears 
were cultured on medium for 
3 days. Migratory cells were 
stained for CD103 and intracel-
lular langerin (clone 929F3). 
Targeting antibody NLDC-145 
was visualized with a Xuores-
cently conjugated secondary 
antibody. Density plots show 
capture of targeting antibody on 
langerin+ (upper row) and lang-
erin¡ (lower row) migratory 
cells (n = 2 for BALB/c, n = 1 
for C57BL/6)
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one against langerin which might be explained by the lower
cell surface expression levels of langerin as compared to
DEC-205 on skin dendritic cells. Furthermore, langerin is
internalized during migration and maturation of Langer-
hans cells [13] so that in vivo bound langerin antibody
could perhaps be more rapidly degraded than DEC-205
antibody during the 3-day culture period of skin explants.
Langerhans cells and the recently described dermal lang-
erin+ dendritic cells can be distinguished by the expression
of the integrin CD103, epidermis-derived, “classical” Lan-
gerhans cells being CD103-negative [8]. CD103¡ Langer-
hans cells and dermal CD103+/langerin+ dermal dendritic
cell subsets were the main subsets targeted since they are
localized in the epidermis and upper areas of the dermis,
respectively, the latter sometimes close to hair follicles [8,
17]. Dermal langerin¡ dendritic cells, that also express
DEC-205 [14, 18] and are situated deeper in the dermis,
were ineYcient in capturing the targeting antibody indicat-
ing a limited diVusion of the antibodies in the skin. In con-
trast, when targeting antibody against NLDC-145 was
injected intradermally, all skin dendritic cell subsets are
capable of binding, according to their surface expression of
DEC-205 (V. Flacher, manuscript in preparation). Hence,
the route of delivery will be a decisive factor for the capture
and immune response induced by cutaneous immunization.

We are convinced that it is worthwhile to further study
immunization strategies through the skin, particularly with
antigen–antibody conjugates. According to the human situ-
ation, where the vast majority of dendritic cell immunother-
apy studies are conducted with tumor patients (mostly
melanoma and renal cell carcinoma), future studies in the
mouse will be primarily done in tumor models. Neverthe-
less, this approach would be equally well applicable in the
Weld of infectious diseases. First such attempts are already
published [31]. Epicutaneous immunization would oVer a
number of advantages over conventional vaccination
schemes including dendritic cell vaccination. (1) Even
though injection of an immunogen is not a complicated pro-
cedure, the epicutaneous application of an antigen would
still be simpler, safer, and possibly even feasible for self-
administration. (2) Given the problems with insuYcient
migration of intracutaneously injected dendritic cells to the
draining lymph nodes due to a “cellular traYc jam” in the
dermis [1, 59], it seems conceivable that targeting skin den-
dritic cells on a large area of skin may lead to a larger inXux
of immunogenic dendritic cells into the nodes and, as a
consequence, to better immunity. (3) The preferential selec-
tion of Langerhans cells as antigen presenting cells in
epicutaneous immunization may result in more robust cyto-
toxic anti-tumor responses [38]. (4) Antigen uptake and
presentation in the absence of inXammation, i.e., of den-
dritic cell maturation stimuli, leads to peripheral tolerance
[51]. It may be envisaged, that Langerhans cells might also

be particularly suited to induce tolerance when targeted
with autoantigens as they possess tolerogenic potential
under certain experimental circumstances [47]. (5) Finally,
one should also not forget, that the epicutaneous approach
is certainly less costly than other immunization schemes.

Outlook

Many questions still need to be addressed and answered.
First and foremost, we will need further information about
possible diVerences in the function of skin dendritic cell
subsets. Our poor knowledge on the various dendritic cell
types in the dermis needs to catch up with the relatively bet-
ter developed knowledge on epidermal Langerhans cells.
This will be particularly important in human skin. Then,
conventional skin injection protocols need to be compared
side-by-side with epicutaneous immunization protocols in
mouse models. Transfer of this knowledge to design proto-
cols for human cancer patients will require solutions for
several open questions. (1) How can one optimize the form
of epicutaneous application? Expertise from the pharma-
ceutical industry will have to be combined with Langerhans
cell research to achieve a maximal penetration of antigen
into the epidermis and uptake into Langerhans cells. (2)
What are the best adjuvants for epicutaneous immuniza-
tion? We used tape-stripping as an inXammatory stimulus.
The most “popular” candidate would be imiquimod, a TLR
7/8 ligand that is widely used in the clinic (Aldara®) and
that has already been shown to augment dendritic cell
migration [33]. (3) Little is known about the induction of
regulatory T cells by Langerhans cells except that Langer-
hans cells from inXamed skin can indeed lead to an increase
in regulatory T cells [26]. Nothing is known about interac-
tions of skin dendritic cells with myeloid-derived suppres-
sor cells [32]. Notwithstanding these uncertainties, it must
be maintained that, at least in our above-described tumor
models such down-regulatory pathways—if induced—did
not prevent the protective eVect [54].

Some of this necessary research is ongoing, some of it
should be tackled soon. We are convinced that at some
point we will indeed be able to selectively harness the
immunogenic and/or tolerogenic potential of Langerhans
cells in therapeutic or prophylactic protocols.

Methods

Mice

Breeding pairs of the inbred mouse strains C57BL/6 and
BALB/c, as well as OT-I mice and OT-II mice expressing
transgenic V�2/V�5.1/5.2 T cell receptors speciWc for
Kb + OVA 257-264 and I-Ab + OVA323-339 [3, 19] were obtained
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from Charles River (Sulzfeld, Germany). All mice were bred
at the animal facility of the Innsbruck Medical University
and used for experiments at 7–12 weeks of age. All experi-
mental protocols were approved by Austrian Ethics Commit-
tee and performed according to institutional guidelines.

Epicutaneous immunization with OVA protein

Ear skin of C57BL/6 mice was tape stripped ten times
before we applied either PBS or 100 �g OVA-Alexa 488
(Invitrogen-Molecular Probes, Eugene, OR, USA), mixed
with Ultrasicc™ cream (Intendis, Vienna, Austria) onto
each ear. After overnight treatment with PBS or OVA-
Alexa 488 we incubated ear skin on 0.8% trypsin (Merck,
Germany) to isolate epidermal cell suspensions. Langer-
hans cells were identiWed with an anti-MHC-class II mAb
(clone M5/114, BD Biosciences, San Jose, CA, USA) and
analyzed by FACS. For analysis of migratory dendritic
cells from explant cultures see below. Gentle tape-strip-
ping, as performed in our experiments, means the removal
of the stratum corneum by means of adhesive tape and
thereby the generation of inXammation [20]. Langerhans
cell are not extracted by this treatment in contrast to earlier,
harsher protocols [55].

Epicutaneous immunization with targeting antibodies

After repeated (8£) tape-stripping, Wlter paper discs (8 mm
diameter) soaked with 10–100 �g of anti-DEC-205 (clone
NLDC145, Invitrogen, Austria) or anti-langerin (clone L31,
kind gift of R. Steinman, Rockefeller University, NY, USA
[12]) targeting antibodies (20 �l/disc) were applied for 3 h
or overnight onto the ears of BALB/c or C57BL/6 mice.
Ear skin was used for preparation of epidermal sheets for
immunoXuorescence stainings or skin explant cultures.

Skin explant cultures

Complete culture medium used for skin explant cultures
was RPMI-1640 (PAA, Linz, Austria) supplemented with
10% heat-inactivated fetal bovine serum (Lonza-Biowhit-
taker, Belgium), 2 mM L-glutamine (Invitrogen-Gibco,
Paisley, Scotland), 50 �g/ml gentamicin (PAA) and 50 �M
2-mercaptoethanol (Sigma-Aldrich, St Louis, MO, USA).
After treatment with PBS, OVA-Alexa 488 or targeting
antibodies for 3 h or overnight, the dorsal halves of the ears
were cultured on medium for 3 days as described earlier
[34]. Cells that had migrated into the medium (typically
between 10,000 and 30,000 DC per ear half) were har-
vested and stained with PE-conjugated anti-Ep-CAM/
CD326 (clone G8.8, BD), anti-langerin (clone 929F3,
Dendritics, Lyon, France) or PE-conjugated CD103 (clone
M290, BD). In experiments where uptake of OVA-Alexa

488 was studied, dendritic cells were identiWed by staining
with anti-CD11c. Targeting antibodies were visualized by
goat anti-rat Ig/APC secondary antibody (BD). For langerin
staining or visualization of targeting antibody, cells were
permeabilized with BD CytoWx/Cytoperm™ Fixation/
Permeabilization Solution Kit (BD).

ImmunoXuorescence stainings of the skin

After overnight incubation with targeting antibodies, ear
skin was incubated on 0.5 M ammoniumthiocyanate for
20 min. Epidermal sheets were peeled oV, Wxed in acetone
for 20 min and stained for 1 h at 37°C with chicken anti-rat
Ig/Alexa 594 secondary antibody (Invitrogen).

In vivo proliferation of T cells after epicutaneous 
immunization

Spleens and lymph nodes from OT-I and OT-II mice were
pressed through a cell strainer and red blood cells were
lysed with ammonium chloride buVer. Cells were then
incubated with anti-CD8 or anti-CD4 mAb conjugated to
magnetic beads (MACS™, Miltenyi Biotec, Bergisch-
Gladbach, Germany) and positively sorted with magnets
(Miltenyi). Cell purity was routinely over 85%. C57BL/6
mice were tape stripped 12 times on ear skin and on the
same day 1 £ 106 T cells isolated from OT-I and OT-II
mice were labeled with 0.2 �M CFSE and injected intrave-
neously. One day later, PBS or 500 �g unconjugated OVA
(Sigma-Aldrich) was applied onto untreated, or varying
doses of OVA were applied onto tape stripped ear skin. T
cell proliferation was measured 3 days later in skin-drain-
ing lymph nodes by analyzing dilution of CFSE by Xow
cytometry as described earlier [27].
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