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Abstract We exploited dendritic cells (DC) to vaccinate
melanoma patients. We recently demonstrated a statistical
significant correlation between favorable clinical outcome
and the presence of vaccine-related tumor antigen-specific
T cells in delayed type hypersensitivity (DTH) skin biop-
sies. However, favorable clinical outcome is only observed
in a minority of the treated patients. Therefore, it is obvious
that current DC-based protocols need to be improved. For
this reason, we study in small proof of principle trials the
fate, interactions and effectiveness of the injected DC.
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Antigen-presenting dendritic cells

DC are the professional antigen-presenting cells (APC) of
the immune system that instruct and control the activation
of B and T lymphocytes, the mediators of specific immu-
nity [5]. DC are highly mobile cells and by their sequential
migration from peripheral tissues to lymphoid organs they
serve as sentinels of the immune system. Immature DC are
very efficient in antigen uptake, mediated by high endocy-
totic activity and expression of an array of cell surface
receptors capable of capturing antigens [34, 53]. Inflamma-
tory mediators and ‘danger signals’ promote maturation
and re-routing of DC to the secondary lymphoid organs [5,
43]. In the secondary lymphoid tissues, DC are mature and
well equipped to attract, interact and activate naive T cells
to initiate a primary immune response [1, 5]. DC are also
able to directly activate NK cells [26] and can produce
large amounts of interferon upon encounter with viral
pathogens [36], thus, providing a link between the adaptive
and innate immune system. In murine tumor models, pro-
tective immunity as well as regression of established
tumors have been observed after vaccination with DC
loaded with tumor antigens [13, 44, 66]. Their unique
capacity to initiate and modulate immune responses is cur-
rently exploited by many groups, including ours, to fight
infectious diseases and cancer.

One aspect of DC biology that is rapidly evolving is the
apparent diversity of DC-subsets [59]. At least two distinct
ontogenic pathways for DC development have been
reported, the myeloid progenitor- and the lymphoid progen-
itor-derived DC [40]. Part of these different DC-subsets
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may also be explained by differences in the maturation
stage of DC and the local cytokine environment. The geo-
graphical localization of the DC-subsets in secondary lym-
phoid tissues is distinct, myeloid derived DC mainly
migrate to or reside in the marginal zone (a primary entry
point for blood-born antigens), whereas the lymphoid DC
mainly reside in the T-cell areas. This supports distinct
functions for the DC-subsets, as shown in murine studies
[5, 40]. It is now well appreciated that the DC subset, its
maturation state and the microenvironment or type of path-
ogen a DC encounters in the periphery, determine the type
of immune response that is induced, ranging from a TH1 or
TH?2 response to immune tolerance [38, 40, 51].

Data are now accumulating that immature DC can
induce tolerance and are able to induce regulatory T cells in
vitro [35, 54] and in vivo [20]. Regulatory T cells are
involved in the control of peripheral tolerance [57] and the
prevention of vigorous inflammatory reactions. These regu-
latory T cells affect immune responses at the level of anti-
gen-presentation and during the effector phase of T cells at
the site of the tumor. Although the exact mechanisms by
which regulatory T cells exert their suppressive functions
are not yet elucidated, direct cell—-cell contact and cytokines
like IL-10 and TGFp have demonstrated to play a role. Our
data on vaccination of melanoma patients also demonstrate
that mature DC, but not immature DC, induce strong
immune responses in vivo [19].

Another aspect in the evolving field of immunotherapy is
the re-acknowledgement of the role of the innate immune sys-
tem. The eradication of a malignancy is the result of a con-
certed action of adaptive and innate immunity, in which
natural killer (NK) cells and natural killer T (NKT) cells are
important effector cells [37]. Next to the direct cytotoxic effect
on tumor cells, NK cells produce type I interferons that con-
tribute to a great extent to a proinflammatory microenviron-
ment. Clinical studies on adoptive NK-cell immunotherapy
have shown that NK cells can target human tumors [45, 52].

DC-based cancer vaccines: current status

Over 60 different clinical studies have been carried out
between 1996 and 2004, applying tumor antigen-loaded
DC-based vaccines [60]. The vast majority of these studies
have been performed in melanoma patients [27, 49]. In our
studies, as well as in other groups, immunological and,
notably long-lasting, clinical responses have consistently
been observed following cellular therapy [6, 27, 46]. In
several patients these clinical responses coincide with the
induction of specific cytotoxic T-cell responses.

We have explored vaccination of cancer patients with
monocyte-derived DC loaded with peptides derived from
tumor-associated antigens. In our current culture protocol
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[17], we routinely generate large amounts of clinical grade
mature and immature DC. DC maturation is induced using
MCM, TNFu« and PGE,. The first DC trial at our institution
has been initiated in 1998. Herein, the safety of DC-based
vaccines and the efficacy of immature DC versus mature
DC was studied. HLA-A2.1+, gp100+, tyrosinase+ meta-
static melanoma patients were treated with peptide-pulsed
immature or mature DC. As peptides we used two HLA-
A2.1 restricted gpl00 peptides (either native or modified
peptides to improve their HLA-A2.1 binding affinity) [3, 4]
and a tyrosinase peptide [10]. All DC vaccines were
co-loaded with the foreign protein KLH (Calbiochem,
Darmstadt, Germany) that serves as a control for immune
competence and stimulation of a T-helper response. Vacci-
nations were given 3 times with 2-week intervals, followed
by injections with the peptides alone. Immune monitoring
consisted of (1) DTH responses with pulsed DC and
unpulsed DC, (2) ELIspot-assays [31, 55] and (3) tetramer
assays [2, 22, 30]. In addition to peripheral blood, immune
monitoring was also performed using biopsies taken from
DTH sites (see later).

The results of the first clinical trial have been published
[19], and unequivocally demonstrated that mature but not
immature DC are capable of inducing potent anti-KLH-spe-
cific T-cell, and B-cell responses [19]. Clinical results dem-
onstrated that 3/20 objective remissions were observed in
stage IV melanoma patients vaccinated with mature DC. In
this group 10 patients were vaccinated with mature DC, of
these patients 1 was not evaluable because of detoriating
condition and of the remaining 9 patients, 3 showed stable
disease >4 months (respectively, 4.5, 7.5 and 22) 1 patient
showed a mixed response and 1 patient achieved a partial
response with complete remission after surgical intervention,
that now lasts >7 years. All patients in this study were mela-
noma patients with metastatic disease (Mlc, 1 patient M1a)
in WHO performance status 0. Moreover, clinical results
correlated with the presence of vaccine-induced immune
responses against the tumor peptides (see later) [15].

To date, >200 melanoma patients have been vaccinated
in our ongoing DC-trials, we observed no clinical benefit
from vaccinations in patients with high-tumor load (as
judged by the clinician), elevated serum LDH, brain metas-
tases or rapid progressive disease. Therefore, we excluded
these patients, with a life expectancy less than 3 months, in
ongoing studies. While on the down side the vaccine is not
yet very effective, with an objective clinical response rate
(i.e. >1 year SD or better, stage IV melanoma patients) of
approximately 10-15%, the positive message is that we
clearly find T cell-mediated immunological responses: 60%
in patients with regional lymph node metastasis and 30% in
patients with metastatic disease. Patients exhibiting these
responses show an significantly improved progression free
survival.
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Nevertheless, a number of variables need to be evaluated
and controlled to further improve clinical outcome in cellu-
lar therapies, among these are generation of DC, use of
different DC-subsets, route of administration, optimal acti-
vation stimuli for DC [8], antigen loading of dendritic cells,
selection of tumor-derived antigens and so on [27]. These
variables are in ongoing debate, but one can conclude that
the full potential of DC-based cellular therapy has not yet
fully been exploited. However, the current consensus is to
continue cellular therapy in well-designed small trials that
meet a standardized list of quality criteria. This consensus
list should at least describe quality-control criteria for ex
vivo generated DC, patient characteristics, trial design
including the different variables that are investigated, and
tests for clinical and immunological responses [27, 33].

Significant progress in cellular therapy against cancer,
including DC vaccination, is only to be expected by careful
immune monitoring studies in order to obtain detailed
insight of the underlying (pathological) physiological pro-
cesses that determine the success or failure of treatment.
Different compartments and modalities are considered to
monitor induced immune responses; e.g. accuracy of deliv-
ery, immune responses in peripheral blood, tumor and
delayed type hypersensitivity (DTH) test biopsies, and clin-
ical evaluation. Recently, it was shown that the modality of
vaccination with a tumor-specific antigen influences the
differentiation pathway of the anti-vaccine CD8 T cells,
which may have an effect on their capacity to trigger a
tumor rejection response [14]. Palucka et al. [48] observed
that patients with a high-baseline level of melanoma anti-
gen-specific immunity more often show an immune
response to the vaccine. Furthermore, they show that
patients who survived longer are those who showed
immune response against two melanoma antigens presented
on the DC vaccine [25]. Although sometimes correlations
between tumor regression and T-cell responses are
observed [25, 41], the immunological studies performed so
far are too diverse in their setup to pool them in a meta-
analysis [11]. However, some lessons can be drawn from
these studies. For example, an intact and proper functioning
immune system seems to have a higher potential to react on
immune therapy. From our immune monitoring data, men-
tioned below, we might not only conclude that the presence
of tetramer-specific T cells is correlated with an improved
progression free survival. Another conclusion should be
that in the end-stage melanoma patients these tetramer-spe-
cific T cells are less frequently induced (8 of 26 patients)
than in melanoma patients with regional lymph node metas-
tasis (24 of 31 patients).

Secondly, upon induction of tumor antigen-specific T
cells, the next hurdle to take is the local immune suppres-
sive environment created by the tumor. In the end-stage
melanoma patients, the misbalance is already in favor of

the metastasizing tumor. In our ongoing studies we have
seen that in some patients tetramer-specific T cells are pres-
ent after DC vaccination, but still experience progression. It
became clear that these tetramer-specific T cells did not
produce interferon-y nor showed cytotoxic activity upon
tumor challenge. Apparently, these effector cells were not
capable of breaking the local suppressive tumor-environ-
ment.

We might take better advantage of the unique capacity of
DC to direct the immune response by exploiting DC-based
cellular therapy earlier in the disease course. It has been
demonstrated that already in sentinel nodes melanoma-spe-
cific T cells are present, together with antigen-presenting
cells. In this window between primary tumor and metasta-
sis, immunological processes can be crucial. It might be
at this turning point in the development of melanoma, that
ex vivo generated DC can assist the immune system.

DC migration in vivo

For DC to induce potent immune responses their migration
towards lymph nodes is essential. In mice, we have demon-
strated that major differences can be found in numbers of
migrating DC depending on the route of administration
(subcutaneous gave the best results) and the maturation
state (mature gave the best results) [23]. With respect to the
latter we were able to confirm these data in stage III mela-
noma patients with lymph node metastases who were
scheduled for radical lymph node resection [18]. During the
first vaccination these patients received an injection of
""Indium-labeled mature or immature DC to allow scinti-
graphic imaging to study in vivo migration [18]. Regardless
of the route of administration (intradermal or intranodal)
mature DC were more efficient than immature DC in reach-
ing the draining lymph node in vivo [18].

The results described earlier were obtained by our devel-
oped method of radioactive labeling of DC (Fig. 1) [18,
23]. DC have therefore been labeled with radionuclides for
scintigraphic imaging of cell trafficking, which is until to
date the only FDA-approved clinical cellular imaging
modality [18, 42]. A major drawback of scintigraphy, how-
ever, is the lack of anatomical detail allowing only gross
anatomical determination of migration between LNs with-
out the ability to assess the intranodal distribution pattern of
DC within each LN. Furthermore, due to its low spatial dis-
tribution, accurate delivery of cells which may be essential
for subsequent migration into nearby lymph nodes cannot
be properly evaluated using scintigrapy. In contrast, MR
imaging is well suited to obtain 3D whole body high-reso-
lution images and is widely used in clinical practice. The
currently most sensitive markers to label cells for MR
detection are (ultrasmall) superparamagnetic iron oxide
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Fig. 1 Monitoring the accuracy
of delivery of SPIO-labeled cells
using MR imaging and scintigra-
phy. Monocytes are obtained

by cytopheresis from stage III {
melanoma patients (a), they are a
cultured and labeled with SPIO

particles and ''Indium (b). The r’
cells are then injected intrano-
dally into the lymph node basin
that is to be resected and their
biodistribution is monitored in
vivo by scintigraphy (c) and (

Monocytes

MRI (d). The lymph node basin
is resected (e) and separate
lymph nodes are visualized with
high-resolution MRI at 7 Tesla
(f) and histology (g)

Dendritic cells

SPIO labeling
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[(U)SPIO] particles [12]. We took advantage of the fact that
DC naturally endocytose clinically applied, FDA-approved
SPIO-labels in significant amounts, obviating these con-
cerns. This provided us with the opportunity to label cells
with high efficiency without affecting their function and use
these cells in humans [63].

We investigated the biodistribution of these SPIO-prela-
beled DC applied as cancer vaccines in melanoma patients
using MR imaging. In our DC vaccination protocols, in
vitro generated DC loaded with tumor-derived antigenic
peptides were administered to stage III melanoma patients
as outlined in Fig. 1 [18, 19]. DC were labeled with
"Mn-oxine and SPIO (Endorem®) separately and co-injected
in LN in the lymph node basin to be resected. This provided
the unique opportunity to not only obtain MR scans at
3 Tesla (T) before surgery but also to generate high-resolu-
tion MR images at 7 T of individual resected LNs, and to
correlate the results with scintigraphy and (immunology)
histopathology. Interestingly, we found that in only approx-
imately 50% of the cases DC were correctly injected into
the LN, despite ultrasound guidance of the injection needle
by a highly experienced radiologist. Subsequent migration
could be observed only when DC were correctly injected
into the lymph node, demonstrating not only the impor-
tance of accurate delivery but also of careful monitoring of
cell tracking in cellular therapy. Inadequate delivery may
be an important reason why only a limited proportion
of patients respond in ongoing clinical trials using DC
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vaccines. We found that the accuracy of MR imaging to
visualize truly DC-positive LNs was significantly better
than scintigraphy. These findings illustrate the power of
additional anatomical information, which can also be of
value for other fields of biomedical research.

With Prussian blue staining we can visualize SPIO-
labeled cells. We observed immunohistologically that the
SPIO-labeled DC that do migrate enter the lymph nodes via
the sinuses and reach the T-cell areas where the actual DC—
T cell interaction takes place. At this stage we were able to
demonstrate that intranodally injected SPIO-labeled DC,
electroporated with RNA encoding the tumor antigen
gpl00, express the gpl00 protein. From resected lymph
nodes rosettes, containing SPIO-labeled DC surrounded by
enlarged and activated T cells, were isolated. So we dis-
closed the desired “functional unit” within a lymph node.

Ve ol

)

Immune monitoring in tissues

Another aspect is monitoring the immune response that is
thought to induce tumor regression. Immune monitoring is
most straightforward after vaccination with defined anti-
gens, however, responses have also been detected after
lysate or total RNA-loaded DC vaccines. Fortunately, many
novel tools are now available to detect immune responses
against known and unknown tumor antigens, including
MHC-tetramers, Eli-spot assays and cytokine release/catch
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assays [2, 22, 31, 55]. No correlation was observed between
the reactivity against KLH and the clinical outcome. We
developed a novel approach to efficiently monitor DC vac-
cine related T-cell responses in vaccinated patients using
biopsies derived from DTH sites [15]. The results of this
monitoring method correlated with the clinical outcome in
stage III and IV melanoma patients.

DTH challenges consisting of peptide-loaded DC plus or
minus KLH, DC loaded with KLH, and unloaded DC
revealed that essentially all patients mounted a positive
DTH response with indurations up to 33 mm. As both
unloaded DC and DC loaded with KLH and/or peptides
were positive, indurations at the DTH site were not predic-
tive of vaccine-related T-cell responses in our setting. How-
ever, as no DTH was detected after the first intradermal
injection of the vaccine, the occurrence of a positive DTH
reaction should be directly related to the vaccination. The
reason for the DTH response to unloaded DC is not clear
but could be explained by the vast amount of chemokines
produced by mature DC [17].

Punch biopsies (6 mm) were taken from positive DTH
sites and divided in half. One part was used for histochem-
istry and the other part was used to isolate DTH-infiltrating
leukocytes (DIL). Immune staining showed clusters of
CD2+ and CD3+ infiltrating cells of which 50-70% were
CD4+ and 50-30% were CD8+ T cells. No clusters of infil-
trating cells were observed in unchallenged control skin
biopsies. DIL were generated by cutting the biopsies in
pieces and culturing of the outgrowing cells for 2-3 weeks
in the presence of low dose IL-2 (100 U/ml) without restim-
ulation. Interestingly, DIL specific for KLH could easily be
found in biopsies from KLH-pulsed DC, not in DIL from
peptide or unpulsed DTH biopsies. Moreover, in 11 (6
stage III, 5 stage IV) of 22 patients tested, gp100/tyr tetra-
mer-positive T-cell populations were readily detected. In 5
additional patients, antigen-specific cytotoxic T cells in
DIL cultures were detected after additional vaccination
cycles. No tetramer-positive T cells were detected in DTH
biopsies injected with unloaded DC or KLH-loaded DC.
Strikingly, in 6 of 7 patients in whom no tetramer-positive
cells were found in freshly isolated PBMC, significant
numbers (up to 45%) of tetramer-positive T cells were pres-
ent in their cultured DTH biopsies taken at the same time
point. Cytokine production and cytotoxicity of DIL upon
co-culture with the appropriate target cells were fully corre-
lated with the specificity in the tetramer analysis. More-
over, DTH reactions induced with DC pulsed with the
gp100 peptides accumulated gp100-specific T cells and not
tyrosinase and vice versa (Fig. 2). Finally, in situ tetramer
staining on cryo-sections revealed that gp100/tyr-specific
tetramer-positive cells were specifically present in the infil-
trating T-cell clusters. Control tetramers against MART-1,
HIV or EBV were negative [16]. Collectively, these data

not only indicate that significant numbers of tetramer-posi-
tive T cells accumulate in the DTH site but also demon-
strated that these T cells specifically produced cytokines
(Fig. 2) and/or are cytotoxic for tumor antigen expressing
target cells (data not shown)[15].

Next, we compared the clinical and immunological data
of 26 stage IV melanoma patients (Fig. 3). Inclusion criteria
of patients are described previously [19]. Patients had docu-
mented progressive disease within 2 months before study
entry, serum lactate dehydrogenase <2x the upper limit of
normal, no prior chemotherapy or immunotherapy within
3 months before study entry, and no residual toxicity from
prior treatments. Of these patients, 15 patients had progres-
sive disease (PD), 9 patients had stable disease with
>4 months duration (SD), and 2 patients, one with multiple
liver metastases at time of inclusion, are in complete remis-
sion (CR). No tumor-reactive DIL were found in 13 of the
15 patients with PD. Of the 9 patients with SD, 4 patients
with specific T cells had a progression free survival of >42,
22, 12, and 4.5 months (median 12 months). In the 5
patients with SD without tumor-reactive DIL the median
progression free survival was 6 months (range 11-4.5).
Both patients in CR (>60 and >42 months) had tumor-spe-
cific T cells. Although the number of patients in this study
is limited, a statistically significant (P = 0.0012) correlation
was observed between the presence of tumor-specific T-cell
reactivity and progression free survival [15]. The results
were confirmed in 31 stage III melanoma patients.

Optimizing DC capabilities by RNA technology

Besides the production of highly reproducible GMP quality
controlled batches of DC vaccines, in vitro and in vivo
tools to analyze B and T-cell responses are developed and
injected DC can now be visualized in the patient by
advanced imaging technology. Another major breakthrough
is the application of RNA transfected DC that express com-
plete tumor antigens. This has now proven to be effective
and safe in patients and, in comparison to gene therapy,
RNA transfection is much more straight forward.

Cellular therapy with dendritic cells is still in its infancy,
but a number of variables are recognized that can contribute
to exploit its full potential. In particular, monocyte-derived
DC may not seem optimally equipped for their task in vivo.
In this context, RNA technology is a promising new tool to
achieve temporarily expression or suppression of specific
proteins to optimize DC function.

Recent findings have shown that DC transfected with
RNA encoding the full-length tumor antigens express the
corresponding protein in vivo for a prolonged period of
time. Moreover, these RNA transfected DC are able to
induce anti-tumor responses in patients. But one can think
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Fig. 2 Specificity in DTH-infil- A
trated leukocyte (DIL) cultures
derived from patients vaccinated DTH performed with: gp100:154 tyrosinase IFN-y (pg/ml)
with peptide-loaded DC. a In 2.3%
DIL cultured from a DTH per- 6000
formed with DC loaded with 5000
gp100 and KLH only T cells 4000
positive for the gp100 tetramers DC+9gp100+KLH 3000
were observed. Tyrosinase tetra- 2000
mer-positive cells were observed 1000
in the DIL derived from a DTH 0
induced with tyrosinase peptide- 2100
loaded DC. The production of 1% 1800
IFNy corresponded with the ob- w 1500
served tetramer positivity. b DIL o 1200
derived from a DTH site induced DC +tyro + KLH ° = 900
by DC loaded with gp100 and E , =5
KLH did not produce cytokines Z i A 600
in response to the HLA-A2.1- = i . . 3(:]0
ositive melanoma cell line ~ -
Fl;’»LM transfected with control . Irr 154 tyro
antigen G250 (a) whereas BLM B
transfected with gp100 was rec-
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Fig. 3 Presence of tetramer-specific T cells highly correlates with pro-
gression free survival in melanoma patients. Correlation between the
presence of specific T cells and clinical outcome is shown in this plot
comparing the progression free survival of stage IV melanoma patients
with (closed line) and without (hatched line) tumor-specific T cells in
their DTH-infiltrated lymphocytes
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of a broad range of applications of this technology to
improve the functional capabilities of monocyte-derived
dendritic cells.

During our investigations we observed that the majority
of injected DC die early by apoptosis and necrosis. After
injection the cells encounter hypoxic conditions and it is
known that hypoxia inhibits migration of DC, likely
because it blocks the production of metalloproteases [65].
Similarly, Decoy receptor 3 was shown to be upregulated
by DC that propagates apoptotic signals [64]. Inhibition of
this and other death inducing pathways may significantly
increase DC survival.

Secondly, migration of current monocyte-derived DC in
vivo is poor, their migration may be impaired due to limited
chemokine receptor and cell adhesion receptor functioning.
By exploiting RNA technology we might enhance expres-
sion of the chemokine CCR7, crucial for lymph node migra-
tion. Similarly, induced production of GM-CSF and IL-15
[47] might directly or indirectly enhance DC migration.

Next, RNA technology can be exploited to improve
DC maturation and T-cell stimulation. Toll-like receptors
have been shown to be of key importance in DC matura-
tion and subsequent induction of immunity through the
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upregulation of cytokines/chemokines and co-stimulatory
molecules. To enhance DC maturation DC might be trans-
fected with RNA encoding constitutively active TLRs or
RNAs encoding co-stimulatory molecules, like CD70 and
CDA40L, can be introduced [67]. Expression of CD40L in
DC has previously been reported to enhance the magnitude
of CD4+ and CD8+ T-cell responses in preclinical
models [21, 28]. Recently, CD70 has emerged as a key
molecule for priming of CD8+ T-cell responses [7]. RNA
interference to optimize T-cell stimulation by ex vivo
generated DC by another means is to induce expression of
pro-inflammatory cytokines like interleukin-12 and type I
interferons.

Aside expression of activatory molecules in DC, it is
becoming more and more evident that down regulatory
mechanisms are in place that limit the DC’s potential as a
vaccine adjuvant. Recent murine data have demonstrated
that SOCS1 (suppressor of cytokine signaling 1) expression
restricts the dendritic cells’ ability to break tolerance and
induce antitumor immunity [24, 56]. We have recently
demonstrated that upon human DC maturation SOCS1 as
well as SOCS3 are also rapidly upregulated. Therefore,
silencing of inhibitory molecules like SOCS 1 and IL-10 by
RNA interference might be another means to improve
human DC-based cancer vaccines.

Furthermore, one of the most potent factors limiting vac-
cine efficacy is the immune suppressive activity of the regu-
latory T cell (Treg). Remarkably, several reports indicate
the rapid expansion of Treg following immunotherapy,
including following DC vaccination. TGFf is a cytokine
required for the development of regulatory T cells. Another
Treg stimulatory molecule/pathway in DC as a candidate to
silence concerns the enzyme indoleamine-2,3-dioxygenase
(IDO). IDO1 appears most crucial for tryptophan catabo-
lism and immune suppression [32, 50].

In vivo targeting of DC

Direct targeting of antigens to DC surface receptors in vivo
might replace laborious and expensive ex vivo culturing,
and facilitate large-scale application of DC-based vaccina-
tion therapies. A major advantage of in vivo targeting strat-
egies is that they can be produced in bulk quantities,
whereas vaccines based on DC loaded with antigens ex
vivo require tailor-made procedures for each individual. In
addition, the opportunity to target natural DC-subsets and
at multiple sites in vivo might be preferable above loading
more artificial ex vivo cultured DC. However, ex vivo cul-
ture conditions allow careful control of maturation and acti-
vation [62].

Many of the receptors that are studied in targeting strate-
gies belong to the C-type lectin receptor (CLR) family. The

CLRs are a family of calcium-dependent lectins that share
primary structural homology in their carbohydrate domain.
Through this domain, CLRs bind to specific self or non-self
sugar residues and are implicated in antigen capture and
endocytosis. In our targeting studies we mainly investigated
the targeting of DC-SIGN. DC-SIGN is predominantly
expressed on immature DC and at lower levels on mature
DC and macrophages [9, 29, 58]. By cloning the hypervari-
able domains of a mouse antibody specific for human DC-
SIGN into human framework regions, we obtained a
humanized antibody. We demonstrated that this antibody
efficiently targets myeloid APC in vivo and reached satura-
tion with one single dose. The binding of the humanized
antibody to DC-SIGN showed high affinity and facilitated
endocytosis. Furthermore, targeted delivery to human
monocyte-derived DC of a model antigen conjugated to the
humanized DC-SIGN-specific antibody leads to presenta-
tion of the antigen by MHC class I and II molecules and
elicits both naive and memory T-cell responses in vitro
[61].

The CLR targeting strategies that are most likely to enter
the clinic in the near future target DC-SIGN, CD205
(DEC205) and the mannose receptor. Of these, DC-SIGN
seems the most DC/macrophage lineage-specific receptor,
which might be advantageous since the targeting vector
will not be scavenged by other cell types that could result in
lower targeting efficiencies and undesirable side-effects.
The expression of CD205 for example is in humans less
restricted than in mice. Although human CD205 expression
levels are highest in mature DC, CD205 is also expressed
by B cells, T cells, monocytes, macrophages and NK cells
[39]. CD205 however seems to be more potent in mediating
cross-presentation in vitro compared to the other two recep-
tors. Furthermore, due to lack of direct control in these tar-
geting strategies, the duration and stability of the vaccine
following administration will be difficult to determine.

Conclusions and future prospects

Dendritic cell immunotherapy has been introduced in the
clinic. It has proven to be feasible, non-toxic and effective
in some cancer patients, particularly if the DC are appropri-
ately matured and activated. However, many questions still
remain. One of the concerns related to ex vivo generated
DC is how to ensure effective migration to the T-cell areas
in the lymph node. In this context, we are pursuing the
enhancement of migration of ex vivo generated DC by pre-
conditioning the skin with inflammatory cytokines. The
recent application of RNA technology in cellular therapy
has paved the way to the next generation of dendritic cell-
based therapies. Different aspects of DC biology can now
be optimized to enhance immunological and clinical
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responses. One can think of exploiting ex vivo generated
DC equipped with enhanced expression of chemokine
receptors to locate lymph nodes, silenced apoptotic path-
ways to increase longevity and upregulated production of
pro-inflammatory cytokines to skew naive T cells. These
multiple approaches need to be investigated in small two-
armed principle of concept trials with thorough immune
monitoring, in order to increase the clinical efficacy of DC-
based cancer vaccines. A second promising approach that
circumvents many of the posed hurdles with ex vivo loaded
DC is in vivo targeting. Targeting studies using members of
the CLR family have paved the way to clinical studies.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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