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Abstract
Purpose  The purpose of this guideline is to provide comprehensive information on best practices for robust radiomics 
analyses for both hand-crafted and deep learning-based approaches.
Methods  In a cooperative effort between the EANM and SNMMI, we agreed upon current best practices and recommenda-
tions for relevant aspects of radiomics analyses, including study design, quality assurance, data collection, impact of acqui-
sition and reconstruction, detection and segmentation, feature standardization and implementation, as well as appropriate 
modelling schemes, model evaluation, and interpretation. We also offer an outlook for future perspectives.
Conclusion  Radiomics is a very quickly evolving field of research. The present guideline focused on established findings 
as well as recommendations based on the state of the art. Though this guideline recognizes both hand-crafted and deep 
learning-based radiomics approaches, it primarily focuses on the former as this field is more mature. This guideline will be 
updated once more studies and results have contributed to improved consensus regarding the application of deep learning 
methods for radiomics. Although methodological recommendations in the present document are valid for most medical 
image modalities, we focus here on nuclear medicine, and specific recommendations when necessary are made for PET/CT, 
PET/MR, and quantitative SPECT.
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Preamble

The Society of Nuclear Medicine and Molecular Imaging 
(SNMMI) is an international scientific and professional 
organization founded in 1954 to promote the science, tech-
nology, and practical application of nuclear medicine. The 
European Association of Nuclear Medicine (EANM) is a 
professional non-profit medical association that facilitates 
communication worldwide between individuals pursuing 
clinical and research excellence in nuclear medicine. The 
EANM was founded in 1985. SNMMI and EANM mem-
bers are physicians, technologists, and scientists special-
izing in the research and practice of nuclear medicine.

The SNMMI and EANM will periodically define new 
guidelines for nuclear medicine practice to help advance 
the science of nuclear medicine and to improve the quality 
of service to patients throughout the world. Existing prac-
tice guidelines will be reviewed for revision or renewal, 
as appropriate, on their fifth anniversary or sooner, if 
indicated.

Each practice guideline, representing a policy statement 
by the SNMMI/EANM, has undergone a thorough con-
sensus process in which it has been subjected to extensive 
review. The SNMMI and EANM recognize that the safe 
and effective use of diagnostic nuclear medicine imag-
ing requires specific training, skills, and techniques, as 
described in each document. Reproduction or modification 
of the published practice guideline by those entities not 
providing these services is not authorized.

These guidelines are an educational tool designed 
to assist practitioners in providing appropriate care for 
patients. They are not inflexible rules or requirements of 
practice and are not intended, nor should they be used, to 
establish a legal standard of care. For these reasons and 
those set forth below, both the SNMMI and the EANM 
caution against the use of these guidelines in litigation in 
which the clinical decisions of a practitioner are called 
into question.

The ultimate judgment regarding the propriety of any 
specific procedure or course of action must be made by 
the physician or medical physicist in light of all the cir-
cumstances presented. Thus, there is no implication that 
an approach differing from the guidelines, standing alone, 
is below the standard of care. To the contrary, a conscien-
tious practitioner may responsibly adopt a course of action 
different from that set forth in the guidelines when, in the 
reasonable judgment of the practitioner, such course of 
action is indicated by the condition of the patient, limita-
tions of available resources, or advances in knowledge or 
technology subsequent to publication of the guidelines.

The practice of medicine includes both the art and 
the science of the prevention, diagnosis, alleviation, and 

treatment of disease. The variety and complexity of human 
conditions make it impossible to always reach the most 
appropriate diagnosis or to predict with certainty a par-
ticular response to treatment.

Therefore, it should be recognized that adherence to 
these guidelines will not ensure an accurate diagnosis or a 
successful outcome. All that should be expected is that the 
practitioner will follow a reasonable course of action based 
on current knowledge, available resources, and the needs of 
the patient to deliver effective and safe medical care. The 
sole purpose of these guidelines is to assist practitioners in 
achieving this objective.

Purpose and scope

The purpose of this guideline is to provide comprehensive 
information on best practices for robust radiomics analyses, 
including study design, quality assurance, data collection, 
impact of acquisition and reconstruction, detection and 
segmentation, feature standardization and implementation, 
as well as appropriate modeling schemes and evaluations. 
Interpretation of results along with possible pitfalls is also 
covered. At the end of the guideline, an outlook for future 
perspectives is provided. Radiomics is a very quickly evolv-
ing field of research. The present guideline will thus focus on 
established findings as well as recommendations based on 
the state of the art. This guideline recognizes hand-crafted 
and deep radiomics frameworks, though it primarily focuses 
on the former, i.e., radiomics workflows involving hand-
crafted features because this field is more mature than deep 
radiomics. An update will be carried out in the future once 
more studies and results have contributed to some consensus 
regarding the use of deep learning methods in radiomics. 
Although most methodological recommendations in the pre-
sent document are valid for most medical image modalities, 
we focus here on nuclear medicine, and specific recommen-
dations when necessary are made for PET/CT, PET/MR, and 
quantitative SPECT.

Introduction

Origins and evolution of radiomics

The notion of relating imaging information to prognostic 
and diagnostic clinical endpoints traces its origins to appli-
cations of computer pattern recognition in the 1960s, but 
its systematic application to quantitative imaging analysis 
dates to the beginning of the 1980s in areas such as com-
puter-aided decision or diagnosis (CAD) [1]. Interest in this 
area was further spurred by the need to meet personalized 

353European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:352–375

1 3



medicine requirements analogous to the success of genomics 
in biological sciences at the turn of the millennium. Some 
early examples (not using the term “radiomics” at the time) 
include the investigation of correlations between ultrasound 
signal and breast tissue malignancy [2], CT imaging pheno-
types with gene expression [3, 4], and between PET-based 
features and radiotherapy response [5].

Radiomics as a term was introduced in 2010 [6] and later 
formalized as a workflow based on machine learning in 2012 
to denote the high throughput extraction of numerous quan-
titative metrics (including shape, intensity, filter-based, or 
textural features) [7] (Fig. 1). At the time, the scope was 
limited to radiological images (more specifically computed 
tomography (CT) in the field of radiotherapy applications). 
The aim was to provide a full macroscopic phenotyping 
of tumors that could reflect at least in part the underlying 
pathophysiological processes (such as necrosis, prolifera-
tion, etc.), down to the transcriptomic and genomic levels. 
The idea to extract features that could be computed by apply-
ing mathematical operations to the images (also referred 
to as engineered or handcrafted features) is not recent as 
stated above. Specifically, the use of such features in pattern 
recognition has existed for decades; e.g., Haralick texture 
analysis (subsequently becoming a very popular category of 
radiomics features) was introduced in 1973 [8] and quickly 
applied to computer-vision problems. Engineered features 

were also utilized as early as 1976 [9] in pathology (cytol-
ogy) applications (and later introduced in commercial prod-
ucts in the 1980s). In the 1990s, engineered features were 
applied various modalities, including ultrasound [2], MR or 
SPECT to images of, as part of CAD systems [4, 10–12], 
while for positron emission tomography (PET) studies began 
to appear in 2003 [13], 2009 [5], and 2010 [14]. Radiom-
ics is obviously not restricted to CT images of tumors and 
can be applied to images from other modalities in order to 
characterize both normal tissue and abnormal regions. As a 
field, it has seen an exponential growth (< 10 publications 
used the “radiomics” keyword in 2014, ~ 250 in 2018, and 
almost 2000 in 20201). The vast majority of these studies 
investigated the characterization of tumors in CT, PET, and 
MR images with the usual clinical goals of improving or 
facilitating diagnosis (“digital biopsy”), discovering corre-
lation with biological and genomics markers (radiogenom-
ics), identifying aggressive or resistant tumor profiles, and 
predicting outcome (response to therapy, survival).

We can demarcate 4 eras for CAD relying on medical 
images, before and after the rise of radiomics. The period 

Fig. 1   Top part illustrates the typical standard radiomics workflow, 
whereas the bottom part illustrates two different (among a myriad of 
possibilities) use of deep neural networks: direct training of a network 

using the input images or using a pre-trained network for extracting 
additional/alternative features from segmented tumor

1  Source Web of Science (searching in all databases, restricted to 
journal papers). Note these numbers thus do not incorporate any 
study before 2012. All studies using textural or other handcrafted fea-
tures but not relying on the term “radiomics” are not included either 
in these numbers.
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before the term was taken up in the seminal paper of P. 
Lambin in 2012 [7] could be called the “pre-radiomics” 
era. Studies during that period mostly design/extract a lim-
ited number of features from images in small cohorts of 
patients, and rely on basic statistical analysis to evaluate 
the differentiating/predictive power of these features. The 
era between 2012 and 2015 could be referred to as the “rise 
of radiomics” era. Following the seminal paper of 2012 and 
the highly cited work by Aerts et al. published in Nat. Com-
munications [15] in 2014 (despite its flaws that were later 
emphasized [16]), the term “radiomics” was quickly adopted 
and increasingly used in publications. Studies started rely-
ing on a similar (although clearly not standardized yet) and 
larger set of handcrafted features, mostly intensity, shape, 
and textural features, still relying however on mostly basic 
statistical modeling in relatively modest cohort sizes. Start-
ing around 2015, two eras evolved in parallel and con-
tinue to do so today. The first one could be called the era 
of “standardized radiomics.” It mostly consisted of studies 
aiming to improve practices and standardization of work-
flow and methods, driven by the development and success 
of the image biomarker standardization initiative (IBSI) that 
helped standardizing/standardize radiomic features nomen-
clature and implementation [17]. Cohorts of patients tended 
to increase in size, and the modeling step relied more and 
more on appropriate machine learning (ML) methodology. 
Most studies follow an established workflow, which consists 
in extracting handcrafted/engineered intensity, shape, and 
textural features from delineated volumes of interest (VOI). 
Starting around the same date [18], another era started: the 
era of “deep radiomics.” There, studies started/began to rely 
on deep neural networks to automate the detection/segmenta-
tion step, to extract alternative features, to directly model the 
endpoint with respect to the input image (with or without seg-
mentation), or all of this simultaneously. Today, there are thus 
mainly three types of radiomics studies being published: first, 
the studies that still rely on the standard workflow, by extract-
ing IBSI-compliant standardized handcrafted features, that are 
then used in the modeling step. Most of these studies rely on a 
ML pipeline for the modeling step. Second, the studies that use 
a deep learning (DL) approach for the entire analysis, without 
relying at all on the IBSI and the usual radiomics workflow 
[19]. Third, studies that address the task at hand with a com-
bination of standard radiomics and DL. In these studies, DL is 
used only to improve, facilitate, or automate a specific part of 
the workflow, such as the detection and segmentation step or 
the extraction of alternative/additional features such as “deep” 
features (e.g., using pre-trained networks).

Any clinical application relying at least in part on imaging 
could potentially benefit from the development of radiomics. 
This includes prevention and screening, diagnosis, staging, 
prognosis, response to therapy, as well as radiotherapy plan-
ning guidance [20]. Radiomics has shown promising results 

in identifying tumor subtypes, aggressiveness as well as in 
predicting response to therapy and outcome of patients in 
several cancers, although most of these results have been 
obtained in small, retrospective, and monocentric cohorts 
[21, 22]. Reaching a higher level of evidence regarding the 
clinical value of radiomics requires carrying out studies of 
higher design quality and rigor, analyzing large (potentially 
prospective) multicentric cohorts of patients. Addition-
ally, even the single-center studies have often had multiple 
limitations. Firstly, there are issues related to the image-
degrading effects in PET, such as noise and partial volume 
effects, which can adversely impact the reliability of features 
quantified from PET images [23]. Further, computation of 
radiomic features may be affected by multiple factors such as 
variability in the acquisition and reconstruction parameters, 
the process to segment the tumors, and protocols to compute 
features [14, 24–27]. Following this, even in the computed 
features, studies have observed strong correlations, calling 
into question about whether these features are complemen-
tary [16, 28–31]. Another question has been that of the 
required number of patient samples, as evaluation of a large 
number of radiomic features with a small patient dataset can 
easily lead to false discovery [32, 33]. Furthermore, com-
parison of published PET radiomics studies is confounded 
by the variability in the definitions and protocols used to 
compute radiomic features [17]. Finally, there is a lack of 
consensus on the radiomic features that must be extracted, 
and the validation methodologies [32, 34]. Recent reviews of 
PET radiomic studies concluded that while PET radiomics is 
a promising field, very few papers perform in-depth valida-
tions, and the number of patient samples in most studies is 
insufficient [35, 36]. These reviews also emphasized on the 
role of standardization in the near future. Guidelines and rec-
ommendations constitute a tool that can help in addressing 
these concerns and facilitating the efforts in PET radiomics 
to come to fruition, thereby avoiding false discovery and 
waste of efforts.

Definitions and overall workflow

Radiomics can currently be defined as the high-throughput 
extraction of image features from medical images in order to 
build diagnostic (e.g., differentiating between malignant and 
benign tumors), predictive (e.g., identifying non-respond-
ers to a specific treatment), and prognostic (e.g., predicting 
recurrence-free survival) models [7]. One very appealing 
promise of radiomics is its potential to identify informative 
combinations of features or patterns that cannot necessarily 
be appreciated with the naked eye, even the expertly trained 
ones [37].

Over the last few years, ML methods have become a 
crucial tool in radiomics for building and validating mul-
tiparametric models [19, 20, 38, 39]. Such methods are 
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necessitated by the number and diversity of features, as 
typically hundreds of radiomics features are computed for 
each region of interest in addition to clinical contextual 
data and omics data, such as transcriptomics and genom-
ics. The rapid advancement of DL in medical imaging [40] 
has also led to evolution of radiomics workflows towards 
the use of techniques based on deep neural networks 
(DNN). These can be used to automate and improve parts 
of the radiomics workflow, especially the detection and 
segmentation step or the feature extraction process [21], 
but ultimately these techniques could replace entirely the 
usual analysis workflow illustrated in Fig. 1 by simply 
inputting images into one or several DNNs [41]. Con-
sequently, we subdivide radiomics-based approaches to 
imaging into 3 broad categories [19]:

1)	 Hand-crafted (or Explicit/Engineered) radiomics: this 
refers to approaches that perform explicit extraction of 
pre-designed radiomic features from the images. This is 
commonly followed by (i) univariate analysis (e.g., how 
much does each feature predict a certain outcome), and/
or (ii) multivariate analysis using regression or ML algo-
rithms. Such algorithms are used to identify a subset of 
relevant, non redundant features in the extracted radiom-
ics feature set, as well as additional variables from non-
imaging data. The selected subset of features are then 
used to train a model (also called radiomics signature, 
i.e., a specific combination of radiomics and potentially 
non-radiomics variables). In addition, we note that radi-
omics analysis can be applied at the region/volume-of-
interest (R/VOI) level, or at a finer scale; e.g., generat-
ing a “parametric” image of a given radiomic feature, 
where feature value at a given pixel/voxel is computed 
via analysis of a neighborhood of that pixel/voxel [42].

2)	 Representation learning (RL)-based radiomics: this 
refers to approaches that aim to automatically dis-
cover features and patterns inherent in the images, and 
forgo the use of hand-crafted features. Neural networks 
(NN) are commonly used for this purpose, but other 
approaches exist as well, e.g., dictionary learning [43]. 
Neural networks directly learn from the images, and 
potentially, from additional inputs (e.g., non-imaging 
data). Neural networks can be shallow (1 hidden layer), 
but far more commonly, they have multiple hidden lay-
ers, which has resulted in an explosion of applications 
utilizing such deep NNs (DNNs) in the field of DL.

3)	 Hybrid radiomics: this approach involves combining 
the above-mentioned two frameworks in a number 
of possible ways. Examples include utilizing DL to 
generate features (e.g., from an intermediate convolution 
layer in a DNN; or from the final fully connected layer) 
followed by application of ML to the extracted features, 
to arrive at a radiomics signature [44], or combining 

deep features extracted from pre-trained DNN and 
handcrafted features [45].

Radiomics, as a whole concept, addresses both the data 
collection, curation and imaging aspects, as well as the 
aspects more related to artificial intellgience (AI), such as 
machine and deep learning techniques that can be used for 
either characterization of the images’ content or for mod-
eling, or both.

Frameworks 2 and 3 are also sometimes referred to under 
the umbrella term deep radiomics, given the prevalence of 
DL methods in representation learning, and the use of DL 
somewhere along the workflow.

Regardless of the specific approach, data is required to 
first train and then evaluate a radiomics model. The dataset 
used to create a model is referred to as a training, develop-
ment, discovery, or exploratory dataset. To assess the model, 
additional data are used that were not used for training. 
These datasets in the radiomics literature are often referred 
interchangeably to as test or validation datasets. However, it 
is important to distinguish between these two terms. Valida-
tion datasets are used for optimizing the modeling process 
(e.g., hyperparameters of a model), whereas test datasets are 
completely set aside until the final evaluation of the model. 
In this context, an external test dataset is understood to refer 
to a dataset that is only used for final evaluation and is also 
distinct from the training and validation sets in the sense of 
being obtained in a different institution, using a different 
scanner, during a different time frame or even analyzed by 
different readers. Such “externality” of the test set should be 
described thoroughly. For instance, a testing set that differs 
from training only by its time frame likely demonstrates less 
generalizability than a testing set from another institution 
with additional variability factors.

Goals and scope of these guidelines

Goals: these guidelines aim at providing researchers and 
clinicians an updated and state-of-the-art relevant guide 
of good practices and recommendations for conducting 
radiomics studies in nuclear medicine imaging. Although 
the radiomics field is a quickly evolving field, the present 
document will try focusing on established recommendations 
and demonstrated pitfalls that should (and can) be avoided 
by researchers in the field or clinicians that would like to 
explore the transferability of radiomics in clinical practice. 
By relying on the present document, researchers and clini-
cians will contribute in improving the overall quality and 
reproducibility of radiomics investigations.

Scope: The present guidelines are dedicated to nuclear 
medicine imaging applications so most references and exam-
ples are related to these. Readers should nonetheless keep in 
mind that most of the methodological aspects addressed here 
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are very often relevant to other image modalities as well, 
as they are quite independent on what image type is being 
exploited. The following aspects will be addressed: study 
design, data curation, image pre-processing, tumor detec-
tion and segmentation, features calculation, and modeling. 
In addition, the present guidelines focus on the “standard” 
radiomics workflow, as established in the beginning of the 
2010’s, before methods based on DNN gained traction. 
Radiomics relying on DL techniques is developing quickly, 
but “deep” radiomics are less mature, and it would be quite 
difficult to provide a full set of guidelines and recommenda-
tions regarding specificities of the required amount of data, 
preferred architectures, and training procedures, etc. This is 
nonetheless addressed in the present document, especially as 
potential solutions for specific issues and challenges.

Recommendations for radiomics in nuclear 
medicine

Quantitative image analysis has deep roots in the usage of 
nuclear medicine and especially positron emission tomog-
raphy (PET) in clinical and research settings to address a 
wide variety of diseases. It has been extensively employed 
to assess molecular and physiological biomarkers in vivo in 
healthy and disease states, in oncology, cardiology, neurol-
ogy, and psychiatry. Quantitative PET allows relating the 
time-varying activity concentration in tissues/organs of 
interest and the basic functional parameters governing the 
biological processes being studied. First radiomic studies 
in nuclear medicine have focused on PET, however given 
that SPECT images are now also quantitatively reliable [46], 
applying radiomics to SPECT is also feasible and relevant 
[45]. Radiomics can of course be applied to PET/MR simi-
larly as in PET/CT, at least as far as the PET component is 
concerned.

This section is divided into subsections that follow the 
usual sequential steps in the workflow of radiomics stud-
ies, namely study design (2.1), imaging and data collection 
(2.2), image pre-processing (2.3), detection and segmenta-
tion of regions of interest (2.4), computing handcrafted fea-
tures (2.5), and training and evaluation of models (2.6). To 
facilitate the use of this guideline, the actual recommenda-
tions made by the authors are highlighted in specific sections 
named “recommendations.”

Study design

Overall, the majority of existing radiomics studies have 
moderate to poor quality, leading to non generalizable 
results and relatively low levels of evidence [47]. In order 
to improve over this current state of the art and avoid poten-
tial pitfalls, researchers and clinicians willing to carry out 

a radiomic study are encouraged to ensure they follow the 
most rigorous study design and quality assurance.

First, the clinical question to address must be clinically 
relevant and fully identified before the next steps can be 
considered. Secondary goals and other aspects of the study 
can be adapted and modified along the following steps, for 
example depending on the amount, details, and/or quality of 
data that are subsequently identified as available for analysis.

After identifying a clinically relevant question, the 
requirements to adequately answer the question must be 
listed and defined properly. These requirements are, for 
example, the number of patients required, performance 
of the current standard (clinical or other), type of image 
modality, the data analysis strategy, etc. Pre-registration of 
the requirements and the analysis plan may moreover reduce 
the chance of optimistically biasing findings [48].

There are already some recommendations published that 
can help properly design, auto-evaluate, and carry out a radi-
omics study.

Recommendations

Radiomics as a whole concept heavily relies on tools 
of AI applied to imaging, so position papers on AI 
for nuclear medicine are obviously relevant and are 
complementary to this guideline [49–53], as are some 
well-written reviews and position papers specifically 
on radiomics [21, 54–58].
For example, issues such as a discriminative bias due 
to data selection (race, gender, ethnicity...) are very 
important for “fairness” of developed models. Thus, 
potential sources of bias should be identified during 
data selection and be further investigated during the 
analysis. We recommend the involvement of an expert 
(bio)statistician to estimate an appropriate sample 
size for a given study. As mentioned elsewhere, e.g. 
[59], appropriate sample size strongly depends on 
the signal present in the images. The following “rule 
of thumb” can be followed: If the problem can eas-
ily be solved by an expert human observer, less than 
100 images may suffice. If an expert human observer 
would really struggle to solve the issue, more than sev-
eral hundreds of images are likely to be required, and 
excellent results may be difficult to achieve. Require-
ments for intermediate difficulty tasks fall somewhere 
in between. As a general rule, more and more diverse 
data are almost always better.
Other general recommendations such as the TRIPOD 
(Transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis) guide-
lines [60] or QUADAS (Quality Assessment of Diag-
nostic Accuracy Studies)-2 [61] that addresses patient 
selection, index test, reference standard, and flow and 
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timing can be relevant for radiomics studies devel-
oping prognostic models. Other more specific ones 
should be relied upon [57, 62], such as for instance 
the IBSI workflow, nomenclature, implementation 
and reporting standards [17], and the radiomics qual-
ity scoring system, which can be used for auto-eval-
uation and relied upon to identify important points to 
address when designing studies [47, 59], although it 
should not be taken as an assessment of the correct-
ness of results interpretation (see the example of Aerts 
et al. [16]). A very recent work provides a checklist 
and recommendations that can be followed for car-
rying out a rigorous radiomics study [63]. The recent 
“best practices for algorithm development” [49] and 
“best practices for evaluation (the RELIANCE guide-
lines)” [52] published by the SNMMI AI task force 
also largely apply to radiomics and are therefore highly 
relevant and complementary to the present guidelines. 
Finally, in order to optimize the impact on the research 
and clinical community, efforts should be made during 
the design of the study to promote and adhere to FAIR 
(Findable, Accessible, Interoperable, and Reusable 
data) principles [64], in order to increase availability 
of data and models and facilitate their sharing.
Beyond these general considerations, a reliable study 
design for radiomics consists in being well aware of 
all potential pitfalls associated with each step of the 
workflow for the envisioned analysis. Therefore, a 
proper study design should be prepared by accounting 
for all potential pitfalls and addressing them by their 
associated solutions or recommendations listed in the 
following guidelines in Sect. 2.2 to 2.6.

Data acquisition, collection, and curation

The current guideline presents a multidisciplinary approach 
resulting from a group of professionals that are involved in 
preparing and extracting quantitative features from nuclear 
medicine images. Nuclear medicine technologists (NMTs) 
and nuclear medicine physicians are health professionals 
responsible for undertaking a range of nuclear medicine 
diagnostic and therapeutic procedures [65]. It is therefore 
the responsibility of the NMTs to ensure that the conditions 
prior, during, and after imaging will be compatible with the 
present guidelines, especially within the context of a pro-
spective collection of images for radiomics investigations.

On the one hand, while preparing the acquisition and 
reconstruction protocols, it is fundamental that the medi-
cal physicist, NMT, and reporting physician communicate 
their specific needs. These needs should especially take into 
consideration that modern high-end PET/CT scanners may 
experience some image degradation, in order to comply 
with harmonization needs such as EARL [66, 67], which 

might require additional reconstructions for different use 
of the same acquired raw data. The NMT should critically 
carry out all acquisition and reconstruction protocols, being 
informed of their application. This integrative approach will 
guarantee the generation of high quality data for radiomics 
analysis, particularly if there are artifacts or irregularities 
in the process of image acquisition or reconstruction. For 
a number of diagnostic procedures, there is a strong com-
ponent of patient preparation that aims at reducing tracer 
uptake in normal tissue while maintaining an optimal uptake 
in target structures [68]. The NMT is responsible for car-
rying out and documenting patient preparation. If it is not 
possible to carry out the recommended patient preparation 
procedure, feature extraction may be rendered invalid, or 
at best will need a specific training to identify images with 
artifacts.

One recent study evaluated the performance of existing 
EARL harmonization guidelines for PET/CT imaging to 
reduce the variability of radiomic features across different 
scanner models and reconstruction settings [66], with a 3D 
printed phantom scanned on different systems. Although 
EARL1 and 2 increased the number of comparable features 
compared to original clinical reconstruction in each center, 
a large percentage of radiomic features still exhibited signifi-
cant differences even after harmonization, suggesting that, 
although useful, it may be insufficient to make all radiomic 
features usable in such a setting.

Finally, it should be emphasized on that although it has 
been suggested that alternative reconstruction settings com-
pared to the standard clinical ones, which have been a priori 
optimized for visual analysis and detection rather than finer 
radiomics characterization, could perhaps lead to more dis-
criminative features [25, 34], recent results suggest that it 
may not always be the case [69].

Recommendations

We cannot currently recommend optimized clinical 
acquisition/reconstruction settings specifically for 
the purpose of radiomics studies. We thus recom-
mend to rely on current harmonization guidelines for 
PET/CT imaging that have been developed to make 
PET imaging as reliable and reproducible as possible 
across centers, as this for sure can improve robustness 
and reproducibility of the derived radiomic features 
[66]. Future harmonization guidelines are expected to 
more closely consider radiomics applications and build 
upon other recent investigations suggesting acquisition 
parameters and settings to minimize the variability of 
resulting radiomic features [25].

For radiomics analyses drawing on retrospective data 
images are typically already reconstructed and raw data are 
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no longer available. Direct harmonization of reconstruction 
protocols is therefore usually not possible in the retrospec-
tive setting. It is well established that variability of a number 
of acquisition and reconstruction factors (including but not 
limited to scanner model and/or generation, uptake time, 
scan duration, reconstruction algorithm and parameters, 
post-filtering settings) can influence usual radiomic features 
values in PET, as reported in several studies [14, 27, 66, 
70], although the resulting impact on their clinical relevance 
and differentiation power may not necessarily be strongly 
impacted [69, 71]. However, these studies also highlighted 
the fact that the sensitivity of radiomic features can vary 
greatly, with some exhibiting higher robustness to various 
factors than others.

Different use cases can be considered and different asso-
ciated recommendations can be made for dealing with het-
erogeneity in acquisition and reconstruction factors:

Recommendations

Training a model for local use

If the goal is to build a model for internal future use, we 
recommend collecting data with similar acquisition and 
reconstruction settings, in line with the established (and 
future) local clinical acquisition and reconstruction proto-
cols, in order to minimize the variability of radiomic fea-
tures distributions. However, note that the developed model 
will likely be more difficult to validate in an external setting 
with different acquisition and/or reconstruction parameters. 
The developed model is therefore unlikely to be used by 
other centers or research groups, unless the features selected 
for building the model are highly robust to the changes in 
acquisition and/or reconstruction parameters. Additionally, 
the model will need to be updated (i.e., re-trained or har-
monized in some way) if changes occur in the local setting 
such as replacement of the scanner model and evolution of 
the acquisition and reconstruction protocols to meet clinical 
needs. Additionally, such a model would likely not be able 
to be used beyond research studies.

Building a more generalizable model (i.e., heterogeneous 
imaging data)

A more ambitious goal is to build a model with potential 
for external use (and an actual wide translation to clinical 
routine); we recommend collecting data used for training, 
tuning (validation), and testing exhibiting variability in 
acquisition and reconstruction parameters.

Given the major impact of these factors on radiomic 
features, the main recommendation in that context is there-
fore not to exploit uncorrected raw features in case of data 
presenting variability in acquisitions/reconstructions. It has 

been shown that in such a setting, either spurious correla-
tions could be found or others could be hidden [72].

As a consequence, taking care of the issue in some way or 
another should always be performed in order to investigate if 
results can be improved. Given this issue is relatively recent 
and an active field of research, we recommend that all stud-
ies exploiting heterogeneous datasets should systematically 
report their results without and with the chosen correction/
normalization/harmonization procedure(s). Given this spe-
cific issue has been under thorough investigation for only a 
few years, the advantages, disadvantages, and caveats for 
these procedures have not been explored fully within the 
radiomics context. Hence, we cannot make a recommen-
dation concerning the method to use for dealing with het-
erogeneous imaging data. A number of methods have been 
proposed [73, 74]. Such methods operate either in the image 
domain or in the features domain. In the image domain, 
methods such as processing images with standard interpo-
lation and filtering tools or using DL techniques such as con-
volutional neural networks (CNN) [75] and image synthe-
sis, e.g., generative adversarial networks [76, 77], have been 
published in order to harmonize images and thus resulting 
radiomic features. In the feature domain several approaches 
have been investigated, such as eliminating non-robust fea-
tures [78], modifying the features definition and implemen-
tation [79–81], or processing the features values using sta-
tistical methods such as normalization [82] or batch effect 
removal [72]. It is likely more efficient to perform some kind 
of harmonization or correction, rather than eliminating the 
non-robust features beforehand, which could lead to a loss 
of potential clinically relevant information [83], as most fea-
tures exhibit at least some sensitivity to these factors. Using 
a posteriori harmonization through statistical methods of 
already extracted features has the advantage of being easier 
and faster to use than harmonizing images prior to feature 
extraction [73]. Among these, ComBat [84] seems to provide 
an available, operational, and efficient way of addressing the 
issue [85], although it is not without limitations and should 
not be used as is when its underlying assumptions are not 
met [85]. One limitation is that sufficient data with highly 
similar acquisition and reconstruction parameters, forming 
a single batch, should be present to estimate transforma-
tion parameters. Moreover, batch normalization methods 
assume that differences between batches reflect differences 
in acquisition and reconstruction parameters, and not actual 
differences related to patient characteristics. This assump-
tion should be checked to avoid removing clinically rele-
vant differences in feature values. Note that ComBat allows 
modeling actual differences related to patient characteristics 
(through a covariate matrix) to preserve them [84]. Varia-
tions of Combat providing improved robustness, as well as 
harmonization of previously unseen data, have also been 
proposed [86, 87].
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Image pre‑processing

Various pre-processing steps can be envisioned for nuclear 
medicine images, including denoising [88] and partial vol-
ume effects correction (PVC) methods that generate cor-
rected images to be used in subsequent steps [89]. These 
usually aim at improving the signal-to-noise ratio (for 
denoising) and the spatial resolution and quantification accu-
racy of images (for PVC) beyond what the reconstruction 
algorithm initially produced. Numerous methods have been 
published over the years, more recently including methods 
based on DL demonstrating state-of-the-art performance.

Recommendations

Although the repeatability of radiomic features obvi-
ously improves with better noise properties [70], the 
available literature does not suggest a significant 
impact of PVC using standard PET metrics [90] and 
a fortiori does not currently provide evidence that 
pre-processing images with denoising and/or partial 
volume effects provides significant improvement for 
radiomics application. We currently cannot recom-
mend that such pre-processing should be systemati-
cally applied. If investigators wish to include such pre-
processing of images they should include in the study 
a comparison with/without pre-processing in order to 
demonstrate their potential benefit on the resulting 
model performance.

Detection and segmentation

The standard radiomics workflow relies on the assump-
tion that the object(s) of interest to characterize (e.g., an 
organ, a tumor, thus in the present context of nuclear medi-
cine imaging, a specific radiotracer uptake) first needs to be 
detected and then delineated in the image, before features 
are calculated.

In this specific step of the workflow, the reliance on 
manual or semi-automatic tools combined with the lack of 
standards forms one additional factor limiting reproducibil-
ity and acceptability of radiomics in PET. Even if all the 
other steps of the workflow would be perfectively standard-
ized and similar across all users, relying on different deline-
ation algorithms and therefore exploiting different volumes 
of interest would still lead to major differences and prevent 
reproducibility of the results, as various studies have shown 
specifically for PET radiomic features, including for their 
resulting clinical value [70, 91–93]. Beyond the segmenta-
tion of a single volume of interest, a much more challeng-
ing task is the accurate and precise delineation of multiple 
lesions. Most semi- or fully automated techniques developed 
prior the use of CNN assumed the object of interest was 

first detected and placed in a volume of interest as a pre-
processing step, most often relying on a user intervention. 
This is why the delineation step is often considered as the 
most time-consuming bottleneck of the radiomics workflow, 
especially in the case of multiple lesions.

A large number of methods have been developed to 
address fully automatic segmentation of volumes of interest 
in PET images [94]. Initial efforts heavily relied on very 
basic threshold-based methods, which then evolved towards 
adapting more modern image segmentation techniques. This 
has now culminated in the use of state-of-the-art DL-based 
techniques such as the U-Net CNN architecture [95, 96]. 
This approach won the first challenge on PET image seg-
mentation organized with MICCAI [97]. Likewise, all par-
ticipants in the recent HECKTOR segmentation challenge 
on delineating primary tumors in head and neck PET/CT 
images used a U-Net variant [98, 99].

Recommendations

Based on existing results and previously published recom-
mendations, including the report by the AAPM Task group 
211 [94] and the MICCAI PETseg challenge [97]. For the 
purpose of radiomics studies:

i)	 Methods favoring positive predictive value over sensitiv-
ity in the segmentation performance should be preferred, 
as including parts of the uptake on the borders is likely 
to introduce more bias in resulting measurements of fea-
tures (especially mean uptake but also specific textural 
features) due to partial volume effects (if no compensa-
tion/correction was applied to the images first) [28, 94].

ii)	 Methods based on fixed thresholding (e.g., 40 or 50% 
of maximum SUV) have the advantage of being quite 
reproducible across multiple readers. However, they 
should not be used without strong expert adjustments 
or correction for the purpose of radiomic studies, as they 
have been demonstrated to perform poorly especially in 
heterogeneous lesions [94, 97].

iii)	 (Semi)automated methods, rather than manual 
delineation, should be relied upon. Ideally, a consensus 
of several methods could be considered for improved 
performance. If no automated algorithm is available and 
only manual delineation can be considered, then ideally 
a consensus of at least three delineations by experts 
should be obtained, for example using approaches 
such as simultaneous performance and performance 
level estimation (STAPLE) technique [100]. However, 
this would likely restrict the analysis to small datasets. 
Alternatively, if only manual delineation by a single 
observer is feasible for the entire study, proper study 
design should include an analysis on a subset of 
patients to investigate the potential impact of inter-user 
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variability on the model’s performance. For example, a 
model trained on patients delineated by one expert could 
be applied to test patients for which the delineation was 
done by a different expert.

iv)	 The current state-of-the-art methods for achieving fully 
automated PET image detection and segmentation are 
almost all based on DNN such as the U-Net architecture 
[101, 102], which has been very successful in medical 
image segmentation tasks, including in PET/CT imag-
ing [98, 99, 103]. As the learning process relies on 
pixels/voxels or patches (i.e., each voxel, rather than 
the entire image, carries a label), the amount of data 
(i.e., the number of patients) required for an efficient 
training can be relatively small (i.e., ~ 100 datasets, not 
thousands). DL-based methods integrating objects of 
interest detection and segmentation may facilitate the 
full automation of this step of the radiomics pipeline 
[95, 104], allowing for radiomic analyses of hundreds 
or thousands of patients datasets in a more convenient 
and less time-consuming fashion. One limitation is that 
a sufficiently reliable ground-truth needs to be available 
to train the algorithm in the first place. To address this 
issue, simulation-based strategies are being proposed, 
where realistically simulated PET images with known 
ground-truth tumor boundaries are used to train the net-
work [105], leading to more accurate segmentation and 
to further reduction in required amount of training data, 
with training with even N = 30 patients yielding a Dice 
score of 0.7. The generalizability and performance of 
these algorithms are however questionable as they may 
fail in new, previously unseen cases. Fully automated 
segmentation should therefore always keep human 
experts in the loop for quality assurance.

	   Given the large number of segmentation methods that 
are present, a common question is how to choose the 
segmentation method to measure the radiomic feature. 
Preferably, the segmentation method chosen should be 
such that it yields accurate, precise, repeatable, and 
reproducible model prediction. Thus, these criteria may 
be used to evaluate segmentation methods prior to their 
application [94]. More recently, a framework to evaluate 
PET segmentation methods based on the task of quan-
tifying features was proposed [106]. Additionally, no-
gold-standard evaluation strategies are being developed, 
which are showing promise in evaluating segmentation 
methods based on how reliably these methods compute 
the true quantitative value, without access to a gold 
standard [107]. However, the evaluation of segmenta-
tion methods for radiomic feature quantification remains 
an area of active and future research.

Finally, it should be remarked that the recommenda-
tions above assume the desired radiomic workflow involves 

extracting features from the tumor’s metabolically active vol-
ume, that is delineated as accurately as possible. However, 
recent studies have highlighted that although good models 
could be obtained by relying on features extracted from 
accurately delineated tumor volumes, similar (or in some 
cases even better) performing models could be obtained by 
extracting features from different volumes of interest, such 
as for example smaller volumes within the lesion (avoiding 
the impact of partial volume effects on the borders) [108] or 
larger volumes of interest containing the tumor as well as its 
surrounding tissues or organs [109].

Features calculation

Available software/open code

Radiomics software processes medical images and computes 
features from the region of interest. The choice of software 
has been shown to affect feature values [110–113]. Impor-
tant image processing steps and commonly used features 
were standardized by the IBSI [17]. The use of IBSI-com-
pliant software reduces or mitigates the effect of software 
on feature values, as long as the same image processing and 
feature computation parameters are used [114–116].

Several open-source radiomics software packages are 
available [19], which differ in use (e.g., command line or 
graphical user interface), degree of compliance with the 
IBSI standard, and support for PET imaging (such as e.g., 
automated SUV conversion or auto-segmentation tools). 
We do not provide an exhaustive list (which would never 
be up to date); however, some of the more commonly used 
packages are pyradiomics [117], SERA [118], LIFEx [119], 
MITK phenotyping [120], and CERR [121]. Others are cited 
in [113, 116]. Commercial software for radiomics analysis 
is also becoming available. Users should ensure commercial 
developers follow IBSI standards. A potential solution is 
that users could use the commercial software to process the 
publicly available IBSI benchmark datasets in order to check 
they obtain compliant values for their features of interest. 
Developers should be forthcoming about how their methods 
were validated.

Recommendations

We recommend using an existing software pack-
age unless there is an interest in developing specific 
image analysis and feature-calculation algorithms not 
provided by the existing packages. The package used 
should always be tested for compliance with the IBSI 
standard prior to use, as there is currently no accredi-
tation procedure for new software releases. However, 
in future, researchers may propose novel approaches 
to quantify radiomic features with the objective of 
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characterizing these features even more accurately 
and precisely. In that case, it is important that these 
approaches be entered in the IBSI process prior to 
usage.

Computing features

When computing features from a region of interest, resulting 
feature values depend on how images are processed, as well 
as on feature-specific parameters. In recent years, experi-
ence has been gained on how to process PET imaging and 
set reasonable parameters, which is reflected in the recom-
mendations below:

Recommendations

1.	 PET voxel values should be converted into SUV values 
prior to feature computation. An external tool may be 
required, depending on the software used. It is recom-
mended to cross-reference the produced SUV values to 
clinically certified viewing software.

2.	 If physical voxel spacing, determined by in-plane resolu-
tion and the distance between subsequent slices, differs 
between measurements in a dataset, voxel intensities 
should be resampled to a grid with a common (ideally 
isotropic for textural features) voxel spacing [57]. Resa-
mpling should preferably be done with a higher-order 
interpolator, such as a cubic spline, to avoid smoothing 
texture in the image [122]. Note that downsampling, i.e., 
to a common voxel spacing that is larger than that in the 
original image, may lead to aliasing artifacts and may 
require application of a low-pass filter [57, 123] prior 
to resampling. At the moment there are no clear indi-
cations whether upsampling or downsampling schemes 
are preferable but maintaining consistent isotropic voxel 
spacing across different measurements and devices is 
important for reproducibility. Also note that post hoc 
harmonization of features using statistical methods (see 
Sect. 2.2) is a possible alternative solution to interpolat-
ing to isotropic voxel sizes.

3.	 Textural features should be computed in 3D, unless there 
is a clear reason not to, e.g., because voxels are non-
isotropic as the distance between slices exceeds in-plane 
resolution considerably.

4.	 Textural features can be computed with either a fixed 
bin number (FBN) or fixed bin size (FBS) methods. It 
has been shown in PET that FBS yields features with 
lower correlation with the corresponding number of vox-
els involved in the calculation (i.e., tumor volume) than 
with FBN [124]. However, since FBS instead introduces 
spurious correlation with SUV [125], there is no consen-
sus as to the superiority of one over the other in terms of 

modeling performance. For comparison purposes, it may 
be useful to systematically implement and report both.

5.	 For the FBN discretization method, the recommended 
number of bins should lie between 4 and 64 bins. A 
higher number of bins typically leads to very sparse 
and uninformative texture matrices [30]. For the FBS 
discretization method the lower bound should gener-
ally be placed at 0.0 SUV. The recommended bin size 
is problem dependent. Typical bin sizes lead to forming 
between 8 and 64 bins in the ROI. Exceedingly small 
bin sizes, e.g., 0.01 SUV, should be avoided as this again 
will lead to very sparse and uninformative texture matri-
ces.

6.	 Typically, texture matrices should be computed with 
default parameters as listed in the IBSI reference docu-
ment.2 Caution should be taken with respect to software 
that may not use the same default settings.

Choosing which features to implement

The number of features to implement in a given study is a 
design choice driven by several factors, including the statis-
tical analysis methodology and the sample size. The larger 
the number of features, the larger the feature space and the 
chance to “discover” a useful feature, if the modeling step 
appropriately takes care of the dimensionality curse issue 
(see modeling Sect. 2.6). On the other hand, reducing the 
set of features to non redundant, reliable, robust ones (which 
requires defining criteria relied upon for the selection) has 
the advantage of simplifying the modeling step, since the 
statistical analysis will explore a smaller set of features, with 
the added benefit to reduce the chance of accidently identify-
ing noise as being relevant.

Recommendations

Features can be selected based on a number of criteria, 
including redundancy (with each other as well as with estab-
lished clinical factors or tumor volume for example) and 
reliability (e.g., test–retest reproducibility, robustness with 
respect to changes in acquisitions, and/or reconstruction 
settings, etc.) and/or overall ability to discriminate specific 
patterns, relying on phantom and simulations analyses (see 
supplemental material Sect. 1).

We recommend using an existing software package 
and relying first on IBSI-compliant and standardized 
radiomic features (i.e., most commonly used 
handcrafted features). Alternative metrics such as 

2  https://​ibsi.​readt​hedocs.​io/​en/​latest/.
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e.g., heterogeneity-shape statistical metrics [13, 126, 
127], CoLlAGe (Co-occurrence of Local Anisotropic 
Gradient Orientations) [128], or Riesz-covariance 
texture [129] not currently included in the IBSI can 
be of course added. In that case, the appropriate 
references should be provided along with a description 
of the feature(s), and most importantly, they should 
be evaluated alongside IBSI-compliant ones. Any 
newly designed handcrafted feature should be well 
described and justified, checked for redundancy 
with the existing features, and fairly evaluated for its 
potential discriminative power or benefit for endpoint 
under investigation.

Dealing with multiple lesion cases

Two recommendations in the context of managing patients 
with multiple lesions (as in the case of lymphomas or meta-
static diseases) can be made:

Recommendations

Whatever the strategy adopted (e.g., lesion-based or 
patient-based) or endpoint studied, data from the same 
patient should be contained to one set and not split 
across training, validation, and test sets.
For lesion-based endpoints, such as digital biopsies or 
response to therapy, each lesion can be considered an 
instance, as in the single lesion context.

However, based on the current literature, it is not entirely 
clear what strategy or approach is to be recommended in the 
case of multiple lesions per patient when patient-based end-
points, such as survival, are investigated. Learning from mul-
tiple lesions is likely easier to do using any DL-strategy, e.g., 
as a single image, multiple instance learning, etc., compared 
to relying on handcrafted features extracted from each lesion. 
For handcrafted features, the main issue to address is that 
data from multiple lesions needs to be aggregated in some 
way. There are several strategies that could be used [130], and 
it is currently unclear if any could be recommended: (i) Use 
features from the merged collection of lesions, i.e., as if they 
were a single object, (ii) Use features for each lesion and then 
aggregate these, e.g., by averaging, (iii) Use features for only 
one of the lesions, chosen based on some criterion, e.g., the 
largest or the one with the highest SUV.

Modeling

Most of the papers during the 2010–2015 period were criti-
cized for relying on basic, inappropriate statistical analyses 
that led to overfitting and overoptimistic claims. The main 

limitations of these studies lay in the use of univariate analy-
sis only (as opposed to multivariate analysis), no corrections 
for false discovery, (very) small sample sizes (< 100 – 50), 
and lack of evaluation of the findings in data not used for dis-
covery/training [32, 57]. Radiomic researchers thus switched 
to techniques based on ML algorithms in order to better 
rank and select features, as well as combine them into mul-
tiparametric models through classifiers [38]. This move also 
included relying on a more comprehensive methodological 
framework compared to basic univariate statistical correla-
tions, such as a proper split of data between training (for 
building models), validation (for optimizing models), and 
testing (for actually evaluating their performance) [19, 39].

The main modeling methods in radiomics used regression 
methods (e.g., logistic regression) and more recently ML-
based methods, including those based on DL.

Supervised, semi‑supervised, or unsupervised techniques

ML can be defined as “a field of study that gives computers 
the ability to learn without being explicitly programmed” 
[131]. ML first relied on calculating handcrafted features 
in the raw data (through, e.g., computer vision methods) 
and using these features as inputs of an algorithm designed 
to learn a specific task. This process is denoted today shal-
low learning (SL). In contrast, DL is a type of ML relying 
on the use of artificial neural deep nets with representation 
learning [132].

Supervised learning denotes the use of ML algorithms 
that learn using labeled data, i.e., the training dataset is 
provided along with the true labels that should be pre-
dicted. Unsupervised learning denotes the use of ML algo-
rithms that learn with no labels being provided, which 
means the algorithm has to infer patterns from the data. 
Semi-supervised learning denotes ML training relying on 
part of the training data being labeled and the rest without 
label. In DL, semi-supervised training consists in itera-
tively updating the network parameters and the labels of 
the unlabeled data. If the algorithm learns to map inputs 
into optimized actions, this is denoted as reinforcement 
learning, i.e., goal-oriented tasks. These algorithms cur-
rently represent the main categories of ML, with super-
vised learning being the most common type in radiologi-
cal sciences with applications ranging from detection, to 
diagnosis, to therapeutic interventions. However, several 
techniques are emerging to relieve the burden and cost 
of data labeling in supervised learning including: the 
semi-supervised approach mentioned above, transfer 
learning (using knowledge from other domains, such as 
natural images when learning medical ones), active learn-
ing (an interactive approach with human being involved), 
and more recently weak supervised learning, where the 
labels are assumed to be imprecise or noisy. Unsupervised 

363European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:352–375

1 3



learning is typically used for clustering or data reduction 
tasks while reinforcement learning is applied for optimiz-
ing sequential decision-making processes, in clinical man-
agement for instance [132].

Data leakage issue (training/validation/testing)

Learning algorithms are susceptible to overfitting. There-
fore, a model’s performance should be evaluated in data 
that are different from the data used to build the model. 
Typically, the model architecture or hyperparameters need 
to be optimized and compared. In that case, the dataset 
designated for training should be used for this optimization 
using strategies such as K-fold cross-validation, leave-one-
out cross-validation, or keeping a portion of the dataset 
exclusively for validation. Only after the model’s param-
eters have been fixed should the model’s performance be 
evaluated on the testing data set. Careful attention must be 
paid to prevent data leakage, which occurs when informa-
tion from the testing data set is directly or indirectly shared 
with the model during training.

The training (sometimes called discovery, exploratory, 
or development) dataset is used to discover correlations 
and patterns between variables (among radiomic features 
themselves or between radiomic features and clinical fac-
tors) or between radiomic features and the chosen end-
point. An example of this would be to discover in a cohort 
that the tumor SUVmax is correlated with the response to 
chemoradiotherapy status (e.g., non-responders exhibit 
statistically higher SUVmax than responders). The vali-
dation dataset is then used to select and optimize some 
parameters of the trained model. In the same example, it 
would consist in identifying a threshold of SUVmax val-
ues leading to the best result for a specific criterion (e.g., 
accuracy to classify patients as non-responders). Finally, 
the performance of a finalized model is evaluated using 
the testing (also called evaluation) dataset, which con-
tains only samples never seen in the training/validation 
phase(s). In the example, this would consist in applying 
the previously optimized SUVmax threshold to new patients 
and reporting the accuracy with which the patients are 
classified as non-responders.

Recommendations

It is therefore recommended to always train and evalu-
ate (test) the developed models on different datasets or 
subsets of the available data. There are different rule 
of thumbs to split an available dataset into training and 
testing, such as 50% for training, 20% for validation, 

and the remaining 30% for actual testing, but these 
values can be changed. It could for instance be relevant 
to train a model on retrospectively recruited patients 
and then evaluate it on prospectively recruited patients. 
In case of multicentric cohorts, data from one or more 
centers can be used for training and validation, with 
data from remaining centers set aside for testing. It 
is important to ensure that instances (patients) from 
the training set are not leaked to the evaluation stage. 
It is better to have a validation set to optimize model 
parameters, although cross-validation in the training 
dataset can be a surrogate solution if there are not 
enough patients to split into training and validation 
sets.
For splitting the data, it is recommended to rely on 
stratified sampling when using a single split (note that 
a single split is inherently a limitation as performance 
may strongly depend on the split), whereas random 
splitting can be relied upon if numerous splits are per-
formed and measurements are then averaged over the 
splits.

Data imbalance

Data imbalance occurs when one or more classes is substan-
tially underrepresented or overrepresented in the training 
data set. Severe imbalance can hinder a model from learning 
meaningful relationships for minority or majority classes, 
whether or not the class distributions are representative of 
the overall population. It is often the case with radiomics 
studies as the clinically relevant task is usually to identify a 
small subgroup of patients (e.g., the 20% of non-responding 
patients, or the 10% of patients with very aggressive tumor 
subtypes). A common technique to address data imbalance 
is a 2-stage approach in which sampling is used to create 
equally distributed data sets for the first stage of model 
training, followed by fine tuning of the model using the 
full data set. Alternative solutions include selecting objec-
tive functions more robust to class imbalance, such as class 
weighting. A popular technique to balance datasets for train-
ing models is SMOTE (Synthetic Minority Oversampling 
Technique (SMOTE) [133] or its variant SMOTE-EEN 
(SMOTE followed by Edited Nearest Neighbour) [134], 
which create synthetic additional samples by linear combi-
nations of existing ones in order for the minority class to be 
balanced. Recent radiomic studies including comparisons 
with and without the use of such techniques suggest they can 
improve the predictive modeling [135, 136]. Alternative new 
methods have been utilizing generative adversarial neural 
networks (GAN) methods for synthetic data generation and 
imbalance correction [137].
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Recommendations

Although it is currently difficult to recommend one 
specific approach, it can be recommended to imple-
ment at least one of the existing techniques to facili-
tate the training of the models, especially in cases 
of extremely unbalanced data. Balancing of the data 
should be applied only to training data, not validation 
or test sets.

Feature selection and classifiers

One of the first studies to systematically compare tech-
niques for feature selection combined with classifiers for 
radiomics application was published in 2015 and included 
14 feature selection methods and 12 classifiers. The context 
was outcome classification of lung cancer patients using 
radiomic features from CT images [38]. The study showed 
that even proper ML methodology may not be sufficient to 
get robust results and solve issues associated with improper 
statistical analysis, as indeed the choice of the feature selec-
tion and classifier combination led to significantly differ-
ent performance, with area under the curve (AUC) values 
ranging from 0.50 to 0.69. Although this particular study 
lacked proper hyperparameter selection (e.g., the size of the 
radiomics signature was set to 30 features, a relatively large 
number), later studies reported similar variations of results 
depending on the choice of the methods for modeling [138, 
139].

Recommendations

Based on the current literature, it is difficult to recom-
mend one ML pipeline over another, as the depend-
ence on the application and the data of interest remains 
high [138, 140]. One clear recommendation that can 
be made is to not rely on a single method for feature 
selection and model building, but rather to implement 
and test several ones.

These observations also prompted the suggestion that 
implementing several different techniques and then gener-
ating a consensus could improve the prediction performance 
[141] (see below).

Ensemble/fusion

It is well known in ML that the combined use of several, 
different models (called ensembling), can lead to better 
performance [142]. Some popular learners use ensembling 
internally. For example, in random forests numerous trees 
are trained and then combined for the final prediction. 

Given that several different ML pipelines (using different 
methods for selecting features and combining them into 
multiparametric models) were shown to provide different 
levels of performance in several comparison studies [38, 
138, 139], it is not unreasonable to hypothesize that these 
different models reach different predictions for the same 
patients. Thus, as human experts, reaching a consensus 
among them could lead to an overall better prediction. An 
example of this was shown in the context of breast lesion 
classification (as malignant or benign) in three different 
image modalities (full field digital mammography, DCE 
MRI, and ultrasound), where a standard radiomic approach 
and a DL-based analysis of the images were compared and 
fused; the fusion always produced the best classification 
results [143]. More recently, it was shown in the context of 
prognosis modeling for non-small cell lung cancer patients 
using radiomic features from FDG PET/CT images that 
averaging the output probabilities of three different mod-
eling strategies (random forest, support vector machine, and 
logistic regression) could improve the resulting predictive 
performance [141].

Recommendations

Although the literature is relatively scarce at the 
moment, especially for NM applications, we can rec-
ommend to at least try implementing a simple consen-
sus of different models through, e.g., majority voting 
or averaging of output probabilities when several pipe-
lines have been implemented (which we recommend 
to do, see Sect. 2.6.5) and report if it improves the 
performance of the models.

Evaluating and interpreting models

The result of a radiomics analysis is a statistical model or an 
ensemble thereof. Such models need to be explainable and 
interpretable [58, 144, 145]:

•	 Transparency: why does the model yield a particular pre-
diction?

•	 Justification: why is the yielded prediction acceptable?
•	 Informativeness: what new information does the model 

provide to clinicians?
•	 Uncertainty estimation: how reliable are the predictions?

Answering these questions requires characterizing the 
model itself and the influence of features in the model. 
Below are several characteristics of the model that should 
be assessed as thoroughly as possible when developing and 
evaluating a model:
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Recommendations

•	 Model performance: Model performance is measured 
to assess how good a model is able to predict the end-
point of interest by comparing the predicted values with 
expected values. The following should be taken into 
account:

–	 As explained in Sect. 2.6.2, performance of a model 
should be assessed using data that were not used to 
train the model [146].

–	 One or several complementary metrics can be used 
to evaluate the performance of the models. For clas-
sification problems (e.g., benign vs. malignant or 
responders vs. non-responders), we recommend the 
use of area under the ROC curve (AUC), sensitivity, 
specificity, and accuracy (balanced accuracy in case of 
imbalance in the data to avoid a bias in the evaluation). 
The Matthews correlation coefficient (MCC) [147] is 
also a useful and recommended metric that takes into 
account all 4 types of classification results (false and 
true positives as well as false and true negatives) into 
one single score ranging from − 1 to + 1 which is quite 
easy to interpret [148]. For time-to-event analysis (e.g., 
prognostic models), the C-index [149] is a recognized 
metric assessing the fitness of the model score out-
put with respect to true outcome. For relatively rarely 
encountered regression problems, where a numeric 
value is to be predicted, the mean squared error (MSE), 
root-mean-square error (RMSE), or Brier score met-
rics are typically computed.

–	 Performance of a radiomics model should be com-
pared to the following other models or assessments, 
when appropriate:

A naive model that always predicts the majority 
class, the mean or median outcome value, or the 
average risk or survival probability, depending 
on the type of endpoint. This provides a baseline 
value to compare model performance against.
A model based on (relevant) clinical parameters, 
including common image features such as tumor 
volume (or similar measurements related to the 
size of the uptake of interest), mean, or max SUV. 
This estimates the model performance that could 
be achieved by using only simple variables that 
can currently be obtained as part of standard anal-
ysis without the need for more complex radiomic 
analysis.
The assessment of clinical experts, such as that 
of one or more experienced radiologists, radia-
tion oncologists, or nuclear medicine physicians, 
depending on the clinical context and application.

–	 Performance of a radiomics model should be 
expressed using confidence intervals. In case a met-
ric does not have an analytic expression for its con-
fidence intervals, bootstrap confidence intervals may 
be used [150].

•	 Model calibration: Models that perform well are not 
necessarily well-calibrated. Well-calibrated models for 
categorical and survival endpoints respectively estimate 
class or survival probabilities that are similar to those 
observed in the data [151]. Thus, well-calibrated models 
can be used to estimate personalized probabilities for an 
endpoint. In addition to visual assessment of a calibration 
plot, we recommend to quantify calibration as follows:

–	 Compute a linear fit on the calibration data. The 
intercept of the fit represents calibration-in-the-large 
and has an ideal value of 0. The slope of the fit is 
called the calibration slope and has an ideal value of 
1.

–	 Given sufficient samples (n ≥ 200 non-events and 
n ≥ 200 events), the calibration data may be fit using 
a non-linear fit (e.g., spline) to assess local devia-
tions from ideal calibration.

–	 A statistical test is sometimes used to assess calibra-
tion, i.e., the Hosmer–Lemeshow test for categorical 
endpoints [152] and the Nam-D’Agostino or Green-
wood-Nam-D’Agostino test for survival endpoints 
[153, 154]. These statistical tests depend on the 
number of groups used to compute the test statistic 
and should therefore be used with caution [155].

•	 Decision curve analysis: For models that are aimed at 
offering decision support for clinical interventions, deci-
sion curves allow visualizing the benefit of using the 
model to guide the decision instead of offering the inter-
vention to everyone or no one [156]. We recommend the 
use of a decision curve analysis for both categorical and 
survival endpoints [157, 158]. Clinical or other baseline 
models may likewise yield a decision curve with which 
the proposed model can be compared.

Characterizing the response of the model to the 
underlying features is important for understanding 
why the model yields its predictions. It may also help 
identify whether a model incorporates relevant infor-
mation, or has learned a spurious correlation [159, 
160]. Below are several feature-based characteris-
tics that should be assessed. Note that when features 
are implicit, e.g., when the model is a CNN, many 
of these characteristics cannot be directly assessed 
and other techniques developed specifically for these 
methods should be relied upon (see supplemental 
material) [58].
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•	 Variable importance: Variable importance should be 
used to identify which features affect the predictions 
most. This can be done using model-specific or model-
agnostic methods. For instance, variable importance can 
be determined from the variance–covariance matrix asso-
ciated with linear models, or the depth at which a feature 
appears in a decision tree. Generic and model-agnostic 
approaches for assessing variable importance also exist:

Permutation variable importance: Permutation vari-
able importance quantifies the reduction in model per-
formance caused by permuting a feature [161]. More 
important features yield a greater reduction in model 
performance when permuted. Careful interpretation is 
required in case one or more features are not independ-
ent, e.g., because of correlation with another feature, 
and other, more direct approaches are recommended, 
such as explicitly removing features or conditional per-
mutations [162].
Shapley values Shapley values [163] are the weighted 
averages of marginal contributions for each feature to 
the value predicted by the model for a single instance, 
e.g., patient. In other words, for each instance the 
Shapley value of a feature is the value this feature 
contributed to the predicted outcome value. Since the 
computational complexity grows exponentially with 
the number of features in a model, Shapley values are 
usually approximated [164]. Shapley values can be 
used to determine variable importance by computing 
the average absolute Shapley value for each feature 
over all instances in a dataset [165].

•	 Feature attribution: How features affect the predicted 
outcome should be evaluated as well. Again, this can be 
done using model-specific and model-agnostic methods. 
For example, in linear models, the model coefficient of 
each feature directly determines how a feature affects the 
outcome. Several generic, model-agnostic, methods exist 
as well [165]:

–	 Partial dependence plot: A partial dependence plot 
(PDP) shows the estimated marginal effect of a feature 
on the predicted outcome [166]. Thus, a PDP can be 
created to show how the outcome depends on a feature 
value. A PDP is commonly computed by taking exist-
ing instances in the dataset, and averaging over predic-
tions with an altered value of the feature of interest. 
As with permutation variable importance, care should 
be taken if the feature of interest is not independent, 
and when the model starts extrapolating [162].

–	 Individual conditional expectation plot: Whereas 
a PDP only shows the average over instances, the 

individual conditional expectation (ICE) plot shows 
the underlying instances. ICE plots may help identify 
heterogeneous behavior [167]. The same caveats as 
with PDP apply.

–	 Accumulated local effects plot: An accumulated 
local effects plot mitigates the extrapolation issue of 
partial dependence plots by computing and accumu-
lating effects locally, i.e., using subsets of samples 
that share a similar value for the feature(s) of interest 
[168].

–	 Shapley values: As explained above, Shapley values 
can be used to show how a feature contributes to the 
predicted outcome.

•	 Instance-based explanation: Instance-based explana-
tion methods are used to explain how a model makes a 
decision for a single sample, i.e., instance.

–	 Local proxy models: Local interpretable model-
agnostic explanations (LIME) [169] and newer 
approaches such as Local rule-based explanations 
(LORE) [170] attempt to explain the predicted 
value of an instance by synthesizing data similar to 
the instance. Then, an interpretable model, such as 
a decision tree, is fit to the synthetic data. Such a 
model may then also explain if and why a feature is 
important locally [171].

–	 Shapley values: As explained above, Shapley values 
can be used to show how a feature value contributes 
to the predicted outcome.

It is also recommended for researchers to collabo-
rate with clinicials and end-users in the development of 
appropriate explainability methods before the model 
development.

Clinical relevance: impact on patients management

PET/CT radiomics may improve the patient management by 
enabling the non-invasive prediction of outcome or deter-
mination of cancer phenotypes. For example, FDG PET 
derived radiomic features could predict recurrence of cervi-
cal cancer [172]. Another example is the prediction of cancer 
recurrence in early-stage non-small cell lung cancer by FDG 
PET-CT radiomic features [173]. Prediction of cancer recur-
rence offers the potential to intensify treatment regimes, 
which might improve patient outcome. Despite the fact that 
these radiomics models were sometimes externally validated 
and therefore should be generalizable, such approaches are 
still not implemented in the clinical routine. It should be 
noted that such external validation is rarely done in an inde-
pendent way by different teams. In addition, they are rarely 
validated in large cohorts.
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PSMA PET-CT is gaining increasing importance for ini-
tial prostate cancer staging and has also been employed in 
radiomics analyses. For example, it was shown that PSMA 
PET-CT radiomics can distinguish between intermediate 
and high-risk prostate cancer [174]. Although this may have 
the potential to better select patients for tumor biopsies and 
treatment approach, such a methodology is not yet used in 
routine clinical practice for patient management.

Recommendations

This is why we recommend conducting radiomics 
studies with the highest possible rigor in all impor-
tant steps described above, from study design and data 
collection and curation to the modeling steps includ-
ing evaluation and explanation of the models. Indeed, 
quality insurance of each individual component of the 
radiomics pipeline is a good first step, but it will be 
beneficial to implement a general quality assurance 
system. Only by following as much as possible these 
guidelines will the community be able to establish and 
cross-validate performant, robust, generalizable, and 
interpretable radiomic models that may in the end find 
their way in clinical practice. Radiomic studies focus-
ing on developing models with direct potential impact 
on patient management should include as much as pos-
sible an evaluation of this impact as part of the model 
performance evaluation.

Ideally, models developed with the highest rigor 
and then validated by independent teams in large 
multi-centric cohorts may have the potential to then 
drive clinical trials and studies where the result of 
these models could change/impact a patient’s treat-
ment, finally demonstrating their clinical relevance 
and value. Additional value for the community and 
improved likelihood for clinical transfer could come 
from testing the algorithm in an actual department of 
nuclear medicine, providing a cost effectiveness analy-
sis, a high level of automation, a publicly available 
algorithm, and availability of associated open data.
The Table 1 above summarizes the most important fac-
tors to properly conduct a radiomic study in nuclear 
medicine imaging.

Future perspectives

Over the last few years, the radiomics community has 
witnessed two important evolutions. The first one is the 
advent of a much more standardized context compared to 
the earlier years, mostly thanks to the efforts of the IBSI. It 
has thus become easier to understand and compare studies, 
or even to reproduce them.

The second one is the quick evolution of DL in all 
fields of imaging sciences, including of course NM and 
radiomics. As already discussed earlier, methods based 

Table 1   Summary of the steps for performing a radiomics analysis in nuclear medicine with their most important recommendations

Step Most important recommendations

Study design Properly define: i) the clinical context, ii) the endpoint of interest, iii) a reasonable dataset size required to carry 
out the study, given the potential data imbalance with respect to the endpoint, iv) the selection criteria and the 
process to collect and curate images and associated clinical information

Data collection and curation Double check the quality and integrity of imaging data and their association with clinical information of patients. 
Record all imaging acquisition and reconstruction parameters for all patients in order to evaluate heterogeneity of 
these factors. Plan for appropriate management of this heterogeneity if it exists (e.g., implementing harmoniza-
tion of images or of features)

Image pre-processing If images are pre-processed beyond the standard reconstruction (e.g., filtering for denoising or applying partial 
volume effects correction), report results with and without these additional steps to evaluate the actual benefit on 
the resulting models

Detection and segmentation Whatever the chosen volume of interest, ensure its determination is as accurate, robust, and reproducible as pos-
sible. Avoid fixed thresholding methods

Feature calculation Follow IBSI recommendations especially for SUV conversion, voxel size interpolation, and intensity discretiza-
tion prior to feature calculation. Use an existing software package and check it follows IBSI standards. Adhere 
to IBSI recommendations for features implementation, parametrization, and reporting. Justify properly which 
features are chosen and implemented

Modeling Avoid information leakage and properly divide the available data in training/validation (with or without cross-val-
idation) and testing sets. Justify properly the chosen modeling schemes (algorithms for feature selection, model 
building) and if possible implement several different ones. Investigate and report in depth the model performance 
(also in comparison to some baseline), calibration, and explainability, as well as evaluate the potential impact on 
patient management

Evaluation End-to-end evaluation is required using internal hold-out test data or independent datasets (external testing), multi-
centric validation being beneficial for evaluating the robustness and generalizability of the model
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on DL are more and more being considered to accelerate 
or facilitate some steps of the radiomic workflow or to 
solve specific issues such as for example harmonization of 
images as a pre-processing step. In addition, DL is being 
more and more considered as an altogether alternative 
solution to standard radiomics, by directly training DNN 
to predict specific endpoints from input images without 
going through all the usual steps involved in the classical 
radiomics approach (i.e., tumor detection and segmenta-
tion, extraction and selection of specific handcrafted fea-
tures, then modeling). Although this raises other issues 
such as the requirement for large databases for efficiently 
training models or technical solutions to help networks 
learn with limited amounts of data, and the explainability 
and interpretability of the resulting models, this evolu-
tion is likely to continue in the near future. In spite of the 
theoretical considerations on the greater expressive power 
of “deep features” compared to “handcrafted features,” it 
has been shown that some handcrafted features are dif-
ficult to capture by CNNs of limited depth given limited 
training data [175]. Furthermore, CNNs can be negatively 
biased in capturing shape information [176] which can be 
important for a range of clinical tasks [17]. Consequently, 
handcrafted radiomic features may be complementary to 
deep features. The present guidelines will therefore need to 
be updated once “deep radiomics” become mature enough.

As we discussed above, a major concern in radiomics is 
the large number of candidate protocols, including different 
reconstruction, segmentation, and discretization procedures. 
Techniques based on objective task-based assessment of 
image quality have provided a mechanism to address these 
questions in medical imaging [106]. Thus, exploring the use 
of task-based assessment to quantify radiomic features is 
another exciting area of future research. One major challenge 
with such evaluation is the lack of ground-truth radiomic 
feature values. To address similar challenges in quantita-
tive imaging, no-gold-standard evaluation techniques are 
being developed [107]. Extending these techniques to opti-
mize radiomic feature quantification protocols may provide 
a mechanism to optimize these features. Another research 
frontier is delta radiomics, which involves computing longi-
tudinal changes in radiomic features in response to therapy 
[177, 178]. These changes can then be used in making clini-
cal decisions such as early prediction of therapy response.

In order to validate models in large, multi-centric cohorts, 
some harmonization can be beneficial [179], although this 
is still an open area of research, with several candidate 
approaches being investigated, including deep learning-
based image synthesis [180].

Another important future development is expected to 
lie with the combination of radiomics with other -omics 
fields and types of data, including but not limited to 

histopathology, genomics or dosimetry, and toxicity data, 
which clearly raises other modeling and validation issues.

As radiomics evolves further understanding of these fea-
tures and their relationship to underlying biology will be 
demanded, relying and expanding on existing studies [4, 
181–184].
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