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Abstract
Artificial intelligence (AI) is coming into the field of nuclear medicine, and it is likely here to stay. As a society, EANM can 
and must play a central role in the use of AI in nuclear medicine. In this position paper, the EANM explains the preconditions 
for the implementation of AI in NM and takes position.
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This paper describes the EANM position regarding the 
introduction of AI in the clinical field of nuclear medicine. 
This document complements the review article published by 
the EANM AI workgroup, which defines AI and describes 
the many applications of AI in image reconstruction, data 
correction, processing, and analysis as well as the potential 
contributions in all clinical aspects of nuclear medicine 
by Visvikis et al. [1]. Whereas AI is coming into the field 
of nuclear medicine just now, it has already become a 
full reality in our neighbouring speciality radiology. The 
US Centres for Medicare and Medicaid Services (CMS) 
officially granted their first ever reimbursement of a 
radiology AI algorithm in September 2020, which opened 
the door for broader coverage of AI imaging software in 

the clinic. Generally speaking, there used to be two views 
in the radiology world with regard to the impact of AI. 
The first one is rather optimistic and considers that AI 
will help strengthen the role of radiologists in the grand 
scheme of medical care [2]. In the other view, AI will take 
over tasks from radiologists, making it a foe rather than a 
complementary tool [3]. A recent survey indicates that there 
is a mild level of optimism among the radiological medical 
community as 62% do not believe the diagnostic radiologist’s 
job to be in danger due to AI [4], and greater acceptance is 
gaining ground in the community as it is increasingly viewed 
as a potential solution to the current shortage of radiologists, 
to improve the quality of the medical practice, as well as a 
means to reducing overall healthcare costs [5].

In nuclear medicine, we have barely started scratching 
the surface of these questions [6], perhaps considering 
that they will be resolved in due course without our direct 
intervention. AI applications in NM and radiology (but also 
other disciplines) share similarities, in particular the cross-
sectional techniques used in hybrid imaging. Even though 
the introduction of AI in NM has been lagging behind, 
there is no reason to assume that the advantages, progress, 
solutions, and challenges encountered in other disciplines 
will not apply in NM. Furthermore, these developments are 
not limited to NM physicians alone. They will also extend 
to physicists, radiochemists, and radiopharmacists alike. 
Some aspects specific to nuclear medicine, i.e. the impact of 
short-lived isotopes on radiopharmaceutical preparation and 
patient scheduling, or the increased application of individual 
dosimetry in treatments, are likely to further enhance the 
potential impact of AI on our everyday practice.
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For AI in NM to deliver on its promise, we need to iden-
tify those applications that we believe will benefit the most 
from the development of AI techniques. At the same time, 
we need to define how we want these developments to be 
evaluated and subsequently validated. Both these aspects 
need to be addressed before a technology can be adopted in 
routine clinical care. In addition, we jointly need to decide 
on the respective roles of humans and machines for each of 
the individual applications considered. Responsibilities in 
the face of rules and regulations, data privacy and security, 
and more generally, the ethics of AI in nuclear medicine, 
are also key issues that need to be defined and addressed. 
As a medical and scientific community, we need to ready 
ourselves for the arrival of AI, so that we remain agents of 
the changes rather than mere spectators on the sideline.

Physics, clinic, and the need for thorough 
evaluation and extensive validation

It appears likely that the first routine applications of AI 
will be found in image reconstruction and processing (e.g. 
denoising, segmentation). While at first sight, such applica-
tions may seem fully under the control of physicists, they are 
not totally free of risk for patients and thus should also be 
watched with scrutiny by physicians. Image reconstruction 
with deep learning (DL) can generate errors and lead to arte-
facts and alterations that potentially have a clinical impact. 
True, the current state-of-the-art iterative reconstruction and 
associated data correction algorithms are also prone to cer-
tain artefacts. However, these are well known and easily rec-
ognisable. In contrast, machine learning algorithms—even 
the smartest—can be fooled by small alterations to the input 
data and completely mishandle the data leading to unpre-
dictable artefacts [7, 8]. There is a continuum between the 
physics and the clinical applications of AI. Because of this 
interlinkage and the potential for error propagation, the need 
for strict validation at every stage should be emphasised. The 
general principle has been recognised by the EU with the 
risk-based approach of the European Artificial Intelligence 
Regulation, which aims at making healthcare solutions that 
present higher risks more safe, reliable, and trustworthy for 
healthcare professionals and patients [9].

Let us give an example: In [18F]FDG PET/CT imaging, 
the processes of identification, location, and segmentation 
of the lesions are often lumped into one, meaning that 
starting with the full volume of distribution of the tracer, 
i.e. the 3D PET image, the algorithm ends up with volumes 
of interest that each is recognised and qualified as a dis-
ease. For instance, Sibille et al. developed a DL algorithm 
using both the PET and the CT data that showed an 87.1% 
sensitivity and 99% specificity in classifying lung cancer 

patients and 88.6% localisation accuracy in the same popu-
lation [10]. In patients with diffuse large B-cell lymphoma, 
the methodology proved to be predictive for both overall 
survival (OS) and progression-free survival (PFS) [11]. 
However, in this series and considering the segmentation 
task, the Sørensen–Dice coefficient, which is a measure 
of the similarity between the volumes determined by the 
physicians and by the DL algorithm, was only 0.65 in a 
research cohort and a mere 0.48 in a routine cohort. These 
results indicate that in its current form, in this population 
and contrary to the first impression, the DL solution is not 
very good at reproducing the physician’s performance in 
identifying and delineating disease, although it remains 
predictive of OS and PFS. This is most certainly related to 
the fact that the DL algorithm was not specifically trained 
for the purpose of accurately segmenting the 3D functional 
volumes but for characterising the volumes of interest. In 
addition, there are multiple DL algorithms using different 
architectures. Therefore, it should be borne in mind that 
it is highly unlikely that the same algorithm will be capa-
ble of performing multiple tasks with high precision. In 
the case of image segmentation, for example, U-NET has 
been shown to provide high accuracy results with different 
image scales, types, and resolutions [12]. This also holds 
true for functional PET images [13], where it shows simi-
lar or better performance than the best available semiau-
tomatic segmentation algorithms developed over the past 
decade [14]. It has to be remembered that for a segmenta-
tion task, the ground truth is not known, and the results 
of any DL algorithm, therefore, are highly dependent on 
the annotations of human experts. The ‘gold standard’ is 
represented by the manually determined metabolic tumour 
volume, without any measure of interobserver or intra-
observer reproducibility, or any further validation by other 
imaging methods or pathological confirmation. Hence, we 
do not know who is right or wrong in the discrepant cases. 
Is it the human “gold standard”, or is it the DL algorithm? 
Ultimately, the physician decides what to keep, what to 
correct, and what to discard, which means that we con-
tinue to accept inherent human flaws. On the other hand, 
if the product is designed to define the target volumes in 
radiation therapy planning, the question of who is right 
and who is wrong becomes more acutely relevant, as it 
will directly alter the planning target volume. And if the 
aim is to prognosticate or to evaluate the response to treat-
ment, then clinical endpoints such as objective response 
or survival will take preeminence. It must therefore be 
emphasised that any single solution based on a given DL 
algorithm architecture should be considered within the 
context of the initial objective and the associated training 
that was performed. Results cannot be generalised to other 
situations without thorough validation.
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Explainability, causability, and the need 
for robustness

The concepts of explainability and causability have been devel-
oped by Visvikis et al., and it is clear that they are the foun-
dations for trusting any AI application in clinical practice [1]. 
However, we are also convinced that more is needed. Current 
AI models are mostly static, in that they have been trained at a 
certain point in time using samples corresponding to a particular 
population and in a setup that was appropriately validated when 
the model was built. This validation should have involved the 
use of multiple datasets originating from centres external to the 
one in which the model was developed, in order to test its robust-
ness on datasets that are as heterogeneous as possible (for exam-
ple in terms of acquisition and reconstruction protocols). Fur-
thermore, image standardisation and harmonisation techniques 
should be considered before widely applying such validated AI 
models. These static algorithms may also be subject to concept 
drifts. This means that even though a task is performed effi-
ciently and reliably at first, it may no longer be the case when the 
patient population and associated treatment evolve or the imag-
ing technique changes. Therefore, the algorithms should not stop 
learning, i.e. they should adapt in line with any modifications 
introduced in the data to be analysed. This is known as the con-
tinuous learning or continual AI concept [15]. The algorithm 
learns to learn and incrementally adapts to new characteristics 
found in the input data, constantly updating its feature selection 
to better fit its changing environment. Intuitively, we may real-
ise the advantages of such a process. However, we should also 
realise that it should be associated with a constant “revalidation 
process”, as described above. Indeed, a catastrophic inference 
or forgetting may occur when extreme outliers wreak havoc in 
an autonomously relearning algorithm. To put it simply, even 
AI algorithms that are fully validated and trustworthy at the 
time of marketing and clinical implementation need to continu-
ously undergo extremely stringent quality controls, comparable 
to phase IV post-marketing surveillance in the development 
of drugs. In this respect, the European Artificial Intelligence 
Act includes a solid post-marketing compliance and enforce-
ment system, including market surveillance, post-marketing 
monitoring by the providers, a reporting system and reassess-
ment in case of substantial changes to the AI system [16]. This 
further consolidates the premarket conformity assessment. The 
proposed European system will be designed to ensure the trust-
worthiness of AI systems over time.

Role of the EANM

AI shows great promise in improving image quality, per-
sonalising dosages (both in diagnosis and theranostics) and 
helping in image interpretation and subsequent analysis. It 

opens up ways of fully exploiting the potential of NM, which 
has recently witnessed technological developments such as 
total-body PET, where the large amount of data acquired 
will also benefit from AI. NM has also strived to quantify 
molecular processes using PET and SPECT, and here again, 
AI may help with the process. As such, AI has the poten-
tial to improve clinical workflows that will increase overall 
efficiency but also facilitate personalised medicine for the 
benefit of individual patients. There remains, however, a 
long road ahead before the potential of AI in NM is realised 
in a manner acceptable to both healthcare professionals and 
patients. EANM can, and will, play a key role in this process.

Defining unmet needs

EANM should help to define unmet needs in the opera-
tional, physics, and clinical fields. By working together as a 
community, we can identify the issues that are most press-
ing along with those that are most likely to benefit from 
AI. Thereafter, we will need to prioritise and define clear 
objectives. Oncology is currently top of the list of the most 
widely published applications of AI in NM, as shown by 
a systematic review in 2019 [17]. More specifically, 86% 
of all publications in the AI and radiomics field dealt with 
oncology [17]. Nonetheless, cardiology, as illustrated by a 
recent position paper [18], neurology, inflammation, and 
infection, as well as therapy, should all benefit from those 
developments. It is here that the different committees of the 
EANM, together with their counterparts in other societies, 
will have to take the lead.

Setting standards

Second, we need to define the methods and set the stand-
ards against which the AI solutions will be evaluated and 
“calibrated”. This implies defining methodological details 
(DL algorithm architectures), statistics, and sample sizes 
used in the different stages of algorithm development, 
evaluation and validation, endpoints including ground 
truth, etc. The current literature is very heterogeneous in 
most of these aspects. More importantly, basic concepts 
such as the metrics used for measuring the performance 
of the models in the different targeted applications need 
to be clearly outlined [19]. For every solution, the differ-
ent validation processes need to be clearly determined in 
advance. Harmonisation, transparency, and generalisabil-
ity are key for a trustworthy clinical implementation. The 
development of similar initiatives to the “Image Biomarker 
Standardization Initiative” in the radiomics field will be 
a major step forward [20]. The EANM’s EARL Initiative 
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could in time also become an important player, as it is 
familiar with standardisation aspects.

One of the difficulties with DL algorithms is not only 
the multiple parameters that need to be optimised but also 
the different types of networks and their implementation 
details in terms of, e.g. the number of layers and associ-
ated connections, optimisers, loss functions, etc. Each of 
these parameters can be varied. Consequently, it is crucial 
to compare the performance of all these various implemen-
tations under controlled conditions. Given all the poten-
tial variations, it is impossible to reproduce results from 
the literature by reimplementing the proposed develop-
ments. Instead, alternative approaches such as software 
challenges need to be implemented. In these challenges, a 
given dataset is made available for developers to evaluate 
the performance of their algorithms within a controlled 
environment. Numerous software challenges have been 
organised throughout the years, mainly within the field of 
image segmentation but also in other fields of interest and 
increasingly targeting clinical endpoints (https://​grand-​
chall​enge.​org/​chall​enges/).

Software challenges should be based on a predeter-
mined categorisation of potential applications, using 
different factors such as impact and potential utility and 
uptake in clinical practice. Challenges should address one 
or more of the following points:

1.	 Specify the need for data and associated requirements 
(volume, annotation, QC), defining training and valida-
tion datasets.

2.	 Clarify the dependency of data volumes necessary for 
a given task, which should also include standardisation 
and/or harmonisation for the exploitation of multicentre 
datasets.

3.	 Define algorithm-related aspects such as the number 
of parameters, their optimisation, robustness, levels of 
uncertainty, and transferability to datasets from different 
instruments or body locations.

4.	 Deal with model interpretability (white/grey box con-
cept as opposed to black box), and thus with acceptabil-
ity to professionals (medical physicists, physicians) and 
the public (patients and families).

5.	 Integrate established domain knowledge (e.g. PBPK 
modelling) in AI algorithms or training procedures 
to reduce data volume requirements and improve the 
robustness of the algorithms.

6.	 Consider training issues for implementation in clinical 
practice.

In order to accelerate clinical adoption, validation of the 
outcomes/results of individual trials/studies is required, and 
this is where multicentre and multigroup cooperation is of 
the utmost importance. Such cooperations within the field 

of NM can and should be triggered by challenges that link 
methodological and clinical objectives. A European platform 
such as the EANM with the expertise within its committees 
is ideally suited for overseeing such challenges, and it also 
represents a unique opportunity for the EANM to participate 
in the worldwide efforts of open science by facilitating pan-
European collaborations.

Increasing awareness and knowledge

We need to increase the overall level of knowledge and com-
petence in all fields related to AI. This implies revamping the 
nuclear medicine curricula for both medical physicists and 
physicians to take account of this evolution. Computational 
sciences, in particular, must be further integrated into educa-
tion and training [21]. Although training is the responsibility of 
each individual European state through their national require-
ments, societies like the EANM can help increase awareness 
of the ongoing (r)evolution and promote standardisation within 
Europe. For example, the next update of the “European Train-
ing Requirements” published by the Nuclear Medicine Section 
of the UEMS should reflect this new dimension and provide 
guidance as to the minimum content of AI-related matters in 
the training curriculum, including quality criteria for trainers 
and training sites. The EANM will play a leading role within 
the continuing education field, making sure that both its flag-
ship Annual Conference and the education programmes run 
by ESMIT facilitate the transmission of knowledge for the 
appropriate and reasoned implementation of AI in NM. These 
educational programmes can target different AI-related aspects, 
be they scientific, clinical, or ethical. Such programmes should 
meet the requirements for high-risk systems set out in the Euro-
pean Artificial Intelligence Act, which state that no AI systems 
are to be approved without providing users with information on 
the capabilities and limitations of AI and how to use it.

The time has come to incorporate AI as another partner 
discipline. Revamping the training of NM physicians implies 
enhancing existing collaborations between medical physicists, 
engineers, and specialists in different clinical applications but 
also the development of closer cooperation with other scientific 
societies dedicated to medical image computing and analysis. 
The EANM may also play a key role in helping industrial part-
ners target appropriate developments and associated clinical 
applications in our field. At the same time, it can contribute to 
initiatives coordinated by the EU in the context of the deploy-
ment of trustworthy AI. Such initiatives include the Artificial 
Intelligence Regulation, the Data Act, the Digital Governance 
Act, and the European Health Data Space.

Ethical standards

Last but not least, ethical standards for the implementation of AI 
in our field and associated clinical applications need to be set out 
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by the EANM. Currie et al. have recently proposed a set of ethi-
cal standards to be followed when evaluating and developing AI 
in NM as listed in Table 1 [22]. The EANM fully embraces these 
principles, which are applicable to any medical speciality that 
will employ AI as part of its clinical practice in the future. We 
believe they constitute a solid and necessary framework within 
which AI can be incorporated into nuclear medicine.

Many of those principles appear self-evident, albeit not 
equally so in all parts of the world. Yet, some are easier said 
than done. For instance, the “human-in-the-loop” process 
when making decisions regarding a diagnosis, and the shared 
accountability of all stakeholders in the implementation of AI 
solutions, raise questions when projected into the routine set-
ting. Having a human in the loop is indeed all well and good, 
but what will happen if the AI system proves to be more trust-
worthy? Past experience with computer-aided diagnosis, which 
is a separate process from machine learning, showed troubling 
instances where radiologists largely ignored the correct com-
puter prompts [23]. Again, at this stage, these are theoretical 
questions, but they ought to be considered part of any clinical 
implementation of such technology in our practice.

In conclusion, AI is here to stay, and with-it, NM will 
likely thrive in the foreseeable future. However, AI does not 
come without a cost. Several preconditions need to be met 
before AI is able to show its full potential. By its very nature, 
nuclear medicine is ready to adapt to the necessary changes, 
and the EANM will fully support the education on AI and 
the efficient implementation of AI at all levels in NM.
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