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Abstract
Purpose This study aimed to develop and assess an automated segmentation framework based on deep learning for meta-
static prostate cancer (mPCa) lesions in whole-body  [68Ga]Ga-PSMA-11 PET/CT images for the purpose of extracting 
patient-level prognostic biomarkers.
Methods Three hundred thirty-seven  [68Ga]Ga-PSMA-11 PET/CT images were retrieved from a cohort of biochemically 
recurrent PCa patients. A fully 3D convolutional neural network (CNN) is proposed which is based on the self-configuring 
nnU-Net framework, and was trained on a subset of these scans, with an independent test set reserved for model evaluation. 
Voxel-level segmentation results were assessed using the dice similarity coefficient (DSC), positive predictive value (PPV), 
and sensitivity. Sensitivity and PPV were calculated to assess lesion level detection; patient-level classification results were 
assessed by the accuracy, PPV, and sensitivity. Whole-body biomarkers total lesional volume  (TLVauto) and total lesional 
uptake  (TLUauto) were calculated from the automated segmentations, and Kaplan–Meier analysis was used to assess biomarker 
relationship with patient overall survival.
Results At the patient level, the accuracy, sensitivity, and PPV were all > 90%, with the best metric being the PPV (97.2%). 
PPV and sensitivity at the lesion level were 88.2% and 73.0%, respectively. DSC and PPV measured at the voxel level 
performed within measured inter-observer variability (DSC, median = 50.7% vs. second observer = 32%, p = 0.012; PPV, 
median = 64.9% vs. second observer = 25.7%, p < 0.005). Kaplan–Meier analysis of  TLVauto and  TLUauto showed they were 
significantly associated with patient overall survival (both p < 0.005).
Conclusion The fully automated assessment of whole-body  [68Ga]Ga-PSMA-11 PET/CT images using deep learning shows 
significant promise, yielding accurate scan classification, voxel-level segmentations within inter-observer variability, and 
potentially clinically useful prognostic biomarkers associated with patient overall survival.
Trial registration This study was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615000608561) 
on 11 June 2015.
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Introduction

Prostate cancer (PCa) is one of the most commonly diag-
nosed malignancies and a leading cause of cancer mor-
tality in men throughout the world [1]. Detection of the 
disease in the early stages when it is confined to the pros-
tate enables treatment with curative intent, typically in 
the form of radiotherapy or radical prostatectomy (RP), 
and is associated with high 5-year patient survival rates. 
Biochemical recurrence (BCR) following localised disease 
treatment is not uncommon, however, occurring in around 
30% of patients and potentially leading to subsequent met-
astatic disease [2]. Patients with metastatic PCa (mPCa) 
have a considerably worse prognosis, with 5-year survival 
rates dropping substantially to 35% or less depending on 
the sites of involvement (e.g., lymph nodes and bone) [3, 
4]. The extent and location of metastatic disease has impli-
cations for patient treatment considerations; therefore, the 
detection and localisation of mPCa lesions is clinically 
important [5].

Prostate-specific membrane antigen (PSMA) is a trans-
membrane protein that is significantly over-expressed in 
malignant prostate tissues [6]. This over-expression com-
bined with the internalisation of the PSMA protein yields 
enhanced radioligand retention within tumour cells, thus 
making PSMA a promising molecular target for both 
diagnostic and therapeutic purposes [7]. These desirable 
properties of the PSMA receptor have driven the devel-
opment of numerous small molecule ligands that bind 
with high affinity to the extracellular domain of PSMA 
[8]. These ligands can be labelled with positron-emitting 
isotopes such as 68Ga or 18F for diagnostic assessment of 
patients and are FDA-approved for prostate cancer imag-
ing. Positron emission tomography (PET) imaging radio-
ligands targeting PSMA have quickly become the standard 
of care diagnostic tool in managing biochemically recur-
rent PCa, demonstrating superiority to traditional imag-
ing techniques such as bone scintigraphy with a computed 
tomography (CT) scan [9–11]. Theranostic pairing with 
therapeutic radioisotopes such as 177Lu is also possible, 
with high level evidence of clinical benefit in advanced 
metastatic disease [12, 13].

Detection and localisation of mPCa lesions is a prereq-
uisite for targeted treatment procedures such as radiother-
apy. PET imaging also facilitates the extraction of quan-
titative imaging biomarkers related to PSMA expression 
including standardised uptake value (SUV)max of tumours 
and total scan SUV  (SUVtotal) which may have prognostic 
potential. Precise disease localisation also plays an inte-
gral role in the burgeoning field of radiomics, whereby 
high volumes of imaging features are extracted from 
medical images to quantify tumour characteristics and 

inform a precision-medicine approach to patient manage-
ment [14–16]. The radiomics approach has already dem-
onstrated significant potential in the detection of mPCa 
lesions, prediction of future metastases development, and 
has yielded novel biomarkers that have been shown to cor-
relate with overall survival (OS) in advanced PCa patients 
[17–19]. Segmentation of lesions, when done manually, 
has well documented limitations such as having a high 
labour burden (especially true for patients with a high vol-
ume of disease) as well as being subject to inter- and intra-
observer variability [20, 21]. Fully automated detection 
and segmentation of disease, therefore, is highly desir-
able both in reducing manual user input and as a method 
to expedite quantitative feature extraction geared towards 
advancing more personalised patient interventions.

The use of artificial intelligence techniques to solve 
clinical problems has catapulted to the forefront of medical 
research in recent times [22]. Deep learning, in particular, 
has garnered significant attention as a method of abstract-
ing high-level feature representations of input data, such as 
medical images, and learning the most salient features in a 
hierarchical manner. Fully convolutional networks (FCNs) 
such as the U-Net and its associated alternatives are capable 
of performing fully automatic segmentations of input images 
through the use of an encoder-decoder network architec-
ture, where the encoder progressively down-samples input 
images into increasingly higher-level salient feature abstrac-
tions, and the symmetric decoder up-samples the generated 
feature maps to output the final semantic segmentation in 
the same resolution as the input image [23–25]. FCNs have 
been applied with great success in a number of biomedi-
cal contexts, demonstrating the ability to segment a wide 
variety of clinically relevant anatomical and physiologi-
cal structures such as the prostatic gross tumour volume in 
PSMA PET images, whole-body multiple myeloma lesions 
on 68Ga-Pentifaxor PET/CT scans, and glioma brain tumours 
on 18F-fluoro-ethyl-tyrosine (FET) PET imaging [26–28]. 
A persistent challenge in the implementation of these net-
works, however, are the architectural, training, and image 
processing pipeline design choices that typically require 
both significant domain expertise and lengthy trial and error 
processes to configure optimally [29]. To mitigate this exten-
sive trial and error process, Isensee et al. [30] developed 
nnU-Net, a self-configuring biomedical image segmentation 
framework that automates key aspects of the segmentation 
pipeline according to a set of formulated heuristics that are 
task-agnostic. The nnU-Net has demonstrated considerable 
generalisable potential by achieving state-of-the-art results 
across a wide variety of different biomedical image segmen-
tation tasks [30].

Automated whole-body segmentation of mPCa lesions, 
which can be numerous and highly heterogeneous in size, 
shape, and anatomical location, is a challenging task. 
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Proof-of-concept studies restricting their analysis to the seg-
mentation of mPCa lesions in the pelvic area exist for  [68Ga]
Ga-PSMA PET/CT,  [18F]F-PSMA PET/CT and multipara-
metric magnetic resonance imaging (mpMRI) modalities, 
and semi-automated approaches have been demonstrated for 
whole-body scan analysis [31–35]. In the present work, a 
fully automated mPCa lesion detection and segmentation 
tool is developed and evaluated for whole-body  [68Ga]Ga-
PSMA-11 PET/CT scans utilising the nnU-Net framework 
[30]. Model performance is assessed at the patient, lesion 
and voxel levels, and global biomarkers calculated from the 
automated segmentations are assessed for their potential to 
stratify mPCa patients based on overall survival (OS).

Methods

Patient cohort

A cohort of 193 patients with biochemically recurrent PCa 
following definitive treatment for localised prostate car-
cinoma who underwent imaging at Sir Charles Gairdner 
Hospital (SCGH) as part of a prospective trial registered 
with the Australian New Zealand Clinical Trials Registry 
(ACTRN12615000608561) were used in this study [10]. 
Biochemical recurrence was defined as either: (i) PSA lev-
els greater than 0.2 ng/mL measured at least 6 weeks post 
radical prostatectomy, or (ii) PSA level 2 ng/mL above the 
previous PSA nadir measured at least 3 months post external 
beam radiotherapy. Patients were included if they showed 
either negative or oligometastatic disease (maximum of 
three lesions) on bone scintigraphy and abdominal CT stag-
ing scans. All patients received an initial baseline  [68Ga]
Ga-PSMA-11 PET/CT scan and then, if clinically indicated, 
a second follow-up scan approximately 6 months later, yield-
ing a total of 337 scans available for use in the study. The 
decision to undertake follow-up imaging was made at the 
discretion of the treating physician to assess for sites of dis-
ease following treatment. Patients underwent therapy fol-
lowing their baseline scan according to standard clinical 
care, which could include radiotherapy to the prostatic bed, 
regional nodes or bone metastases, further surgery, systemic 
treatment in the form of chemotherapy or androgen depriva-
tion therapy (ADT), or active surveillance. Appropriate eth-
ics approval was obtained from the SCGH Human Research 
Ethics Committee (RGS1736).

Imaging acquisition

The  [68Ga]Ga-PSMA-11 PET/CT scans were obtained for 
all patients concurrently on a Siemens Biograph mCT 64 
PET/CT scanner (CTI Inc, Knoxville, TN). Prior to acquisi-
tion, patients were asked to void their bladders. 2 MBq/kg of 

 [68Ga]Ga-PSMA-11 was administered intravenously through 
a peripheral intravenous cannula as a slow push. PET/CT 
image acquisition began approximately 60 min after radi-
otracer administration. A low-dose CT (50 mAs, 120 kVp) 
from the middle of the thigh to the vertex of the skull was 
acquired first for attenuation correction, with PET emission 
data being acquired immediately after to ensure identical 
field of view. PET images were reconstructed with a voxel 
resolution of 4.07 × 4.07 × 2  mm3, while CT reconstructed 
voxel resolutions varied between 0.98 × 0.98 × 2  mm3 and 
1.52 × 1.52 × 5  mm3.

Ground truth definition

Lesions for each patient scan were manually delineated by 
an expert Nuclear Medicine Physician (J.O.) using the MIM 
Encore radiation oncology software (MIM Software Inc., 
Cleveland, OH, USA) which were outputted as DICOM 
structure sets for subsequent use in the deep learning 
method. Areas of elevated tracer uptake were interpreted 
as lesions if they were deemed to be probably or definitely 
positive based on the 5-point scoring system detailed in 
published E-PSMA guidelines [36]. The segmentation 
process began with the application of a global  SUVbw > 3 
threshold to the PET scan. Following this, included areas of 
physiologic uptake were manually discarded and any missed 
lesions were manually contoured, creating the final ground 
truth contour. Missed lesions needed to be added in about 
half of patient scans. Figure 1 shows a representative exam-
ple of a  [68Ga]Ga-PSMA-11 PET/CT scan with ground truth 
contours. Additionally, a random subset of scans underwent 
segmentation by a second independent observer (R.F., n = 28 
scans) using the same segmentation methodology described 
above, allowing a quantification of inter-observer variability.

Model training

Before training the model, PSMA-negative patient scans 
(n = 53) were separated from the total dataset and reserved 
solely as negative controls for model testing to mitigate the 
already large class imbalance in the dataset. Of the remain-
ing PSMA-positive scans (n = 284), approximately 25% 
(n = 75) were randomly assigned to the test set while the rest 
were used for model training (n = 209). This random split 
was done at the patient level, meaning there was no patient 
cross-over between the training and testing set which could 
represent a form of data leakage that could bias the results.

A 3D U-Net cascade, consisting of two 3D U-Nets, 
was trained using the nnU-Net self-configuring pipeline. 
Prior to input into the cascade network, patient CT scans 
were resampled into the same coordinate space as the PET 
images using B-spline interpolation and PET scans were 
converted into  SUVbw. The first 3D U-Net in the cascade 
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was trained on down-sampled PET and CT images (patch 
size = 80 × 80 × 224, voxel resolution = 5.22 × 5.22 × 2 
 mm3), so as to incorporate more contextual information 
from the images, and generated a coarse segmentation 
map. This segmentation map then served as a third channel 
input into the second 3D U-Net which was trained on full 
resolution images (patch size = 96 × 96 × 256, voxel resolu-
tion = 4.07 × 4.07 × 2  mm3) and yielded the final volumetric 
segmentation. Details of the cascade network and training 
procedure are shown in Fig. 2.

The U-Nets configured by the nnU-Net framework share 
much of the same characteristics as the original U-Net 
design [23], with minor modifications such as the use of 
instance normalisation, and leaky ReLU as the activation 
function. Both components of the cascade network were 
trained using five-fold cross-validation, where each fold was 
trained for a total of 1000 epochs using stochastic gradient 
descent with an initial learning rate of 0.01 that decayed to 
zero at the last training epoch. The dice and binary cross 
entropy loss functions were summed together with an equal 
weighting to create the final loss function used throughout 

training [37]. Further details about the nnU-Net design 
choices and empirical pipeline configurations based on data-
set properties can be found in [30] and the associated GitHub 
repository.1 Models were trained on an NVIDIA Titan RTX 
GPU on PyTorch version 1.10.

Model evaluation

The performance of the developed segmentation pipeline 
was assessed by way of voxel-level comparisons between 
the generated fully automatic segmentation mask output 
with the corresponding ground truth manual segmentation 
for each testing set scan. For a robust assessment of the net-
work performance, evaluation metrics were calculated at 
three different levels, encapsulating the ability of the model 
to perform three different computer vision tasks, namely (i) 
patient-level scan classification, (ii) lesion-level detection, 
and (iii) voxel-level segmentation.

Fig. 1  Exemplar whole-body 
 [68Ga]Ga-PSMA PET/CT 
fusion scan acquired from the 
middle of the thigh to the skull 
vertex for a single patient. 
Screenshots were extracted from 
the MIM Encore software used 
for delineation and visualisa-
tion. On the left, a coronal slice 
from the PET/CT fusion is 
shown without any contour-
ing, and on the right the same 
coronal slice is displayed with 
metastatic PCa lesions deline-
ated clearly in red

15
SUV

0

1 https:// github. com/ MIC- DKFZ/ nnUNet
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Patient-level scan classification refers to the ability of 
the model to correctly predict the PSMA-positivity status 
of the scan. A PSMA-positive scan was defined in this 
study as a PET/CT image in which at least one PSMA-
avid lesion was detected in the ground truth manual seg-
mentations. The criteria for a true positive scan prediction 
from the network was that at least one of the lesions in the 

PSMA-positive scan was detected, where detection in this 
instance was defined as having a volumetric overlap of at 
least 10% between the model output and the ground truth 
lesion delineation. The criterion for a true negative (TN) 
scan prediction from the model was that the network must 
not predict even a single positive voxel in that PSMA-
negative scan. Utilising these criteria, classification 
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Fig. 2  Schematic representation of the training procedure and over-
view of both U-Nets in the developed cascade architecture. Trans-
posed convolution kernel and stride sizes in the decoder are equal to 
the stride size in the identical encoder resolution depth, highlighted 
in red in the architecture diagram. Feature map depths at each resolu-

tion are displayed above the convolution blocks and are capped at 320 
regardless of the number of encoder-decoder stages. The output of the 
first 3D U-Net is upsampled and combined with the full resolution 
PET and CT images as an input to the second 3D U-Net
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performance was assessed by calculating the accuracy, 
sensitivity, PPV, specificity, and negative predictive value 
(NPV).

Lesion-level detection defines the ability of the model 
to detect the metastatic lesions identified in the ground 
truth delineations. As in the task of scan classification 
described above, a lesion was considered detected if at 
least 10% of the ground truth lesion volume was cor-
rectly predicted by the network. Contiguous and positive 
voxel clusters predicted by the network falling outside the 
ground truth lesion boundaries were counted and consid-
ered false positives. Detection performance was quantified 
by the calculation of the PPV, sensitivity, and F1 score, 
where the F1 score is defined as the harmonic mean of the 
PPV and sensitivity.

Network segmentation accuracy was assessed by voxel-
level comparison of the automated model output with the 
ground truth contour, quantified through the Dice similarity 
coefficient (DSC), sensitivity, and PPV. For the 28 scans that 
received a second observer delineation (20 PSMA-positive, 
8 PSMA-negative controls), patient-level, lesion-level, and 
voxel-level metrics were also calculated using the same cri-
teria as described above, allowing the results of the model to 
be placed in the context of inter-observer variability.

Fully automated biomarkers

Quantitative imaging biomarkers were extracted from the 
automatically generated segmentations and assessed for their 
potential to stratify patients based on overall survival (OS). 
Total lesional volume  (TLVauto) was quantified by adding 
the volume of all positive voxels identified in the automated 
segmentations, and total lesional uptake  (TLUauto) calculated 
by summing the SUVs of the identified positive voxels.

Statistical analysis

Patient characteristics between the training and testing 
sets (age, PSA at referral for PSMA scan) were compared 
using a one-way analysis of variance (ANOVA). Stratifi-
cation of patient survival based on calculated biomark-
ers from the automated model predictions was assessed 
using Kaplan–Meier analysis with the log rank test. Wil-
coxon signed-rank tests were used to compare distribution 
of manual vs. automated biomarker calculations, and to 
compare the performance metrics between the automated 
model and second observer in the inter-observer analysis. 
Spearman correlation coefficient was used to assess the 
correlation between manual and automated biomarkers. 
In all cases, p < 0.05 was considered to be a statistically 
significant difference. Statistical analysis was performed 
in Python 3.7, using SciPy version 1.7.3 and Lifelines ver-
sion 0.26.4.

Results

Characteristics of patients

The characteristics of the patients in the training and test-
ing sets are summarised in Table 1. For both age and PSA 
values, no statistically significant difference was observed 
between the training and the testing set (both p > 0.05). 
Patient Gleason scores in both the training set and test-
ing set had medians of 7 (training set range: 6–10; testing 
set range: 5–10). To facilitate survival analysis, testing set 
patients were followed up from the time of baseline scan 
until censoring date or death, with a median follow-up time 
of 71.5 months (range: 21.3–79.7 months).

Table 1  Characteristics of the 
patients in the training and 
testing set

Characteristic Dataset p-value

Training set Testing set

No. of patients 121 72
No. of scans 209 128
No. of PSMA-positive scans (%) 209 (100%) 75 (58.6%)
No. of PSMA-negative scans (%) - 53 (41.4%)
Age (mean ± SD, years) 70.4 ± 8.4 68.9 ± 7.1 0.218
PSA at scan referral (median, range, ng/mL) 3.50 [0.20, 79.46] 1.85 [0.20, 36.00] 0.255
Gleason score (median, range) 7  [6, 10] 7  [5, 10]
No. of lesions 880 307
Local prostate (n, % total) 141 (16.02%) 40 (13.03%)
Regional nodal (n, % total) 191 (21.70%) 60 (19.54%)
Distant nodal (n, % total) 356 (40.45%) 151 (49.19%)
Osseous (n, % total) 167 (18.98%) 55 (17.92%)
Visceral (n, % total) 25 (2.84%) 1 (0.33%)
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Classification and detection performance

The patient-level classification and lesion-level detection per-
formance of the developed model are shown in Table 2. Whole 
scan classification performance as quantified by the accuracy, 
sensitivity, PPV, specificity, and NPV was > 90% in each case, 
with the model performing the best with respect to PPV (70/72, 
97.2%), demonstrating a low false positive prediction rate in 
the PSMA-negative scans. Figure 3a shows the change in the 
classification performance metrics as the 10% volume overlap 
threshold criteria for a true positive prediction is modified.

In the 128  [68Ga]Ga-PSMA-11 PET/CT scans in the 
testing dataset, a total of 307 lesions were identified in the 
ground truth manual delineations. Of these 307 lesions, 224 
were correctly identified by the automated network, yielding 

a sensitivity of 73%. The calculated PPV of the model pre-
dictions was 88.2% (224/254). The automated model there-
fore yielded a total of 30 false positive lesion predictions 
across the 128 testing set scans, amounting to 1 false positive 
prediction every 4.3 patient scans. The 75 PSMA-positive 
scans contained 28 of these false positives (1 every 2.68 
scans), while the 53 PSMA-negative scans contained only 
2 of the false positive predictions (1 every 26.5 scans). Fig-
ure 3b shows the change in lesion detection metrics as the 
volume overlap threshold criteria of 10% is modified.

Segmentation performance

Voxel-level segmentation performance metrics are sum-
marised in Table 2. The automated approach yielded mean 
DSC, sensitivity, PPV, and specificity values of 43.5%, 45%, 
58.5%, and 99.9%, respectively. Boxplot distributions of the 
metrics for each testing set scan are presented in Fig. 4.

Voxel-level comparisons of the automated segmenta-
tions with the second observer delineations are presented 
in Fig. 5. The DSC of the automated model was found to be 
significantly greater than the second observer DSC (median 

of 50.7% vs. 32%, p = 0.012). The PPV of the automated 
model was also found to be significantly greater than that of 
the second observer (median of 64.9% vs. 25.7%, p < 0.005). 
The sensitivity of the second observer was found to be 
greater than the developed model, but this difference did not 
reach statistical significance (median of 73.4% vs. 39.2%, 
p = 0.068). A complete comparison of the automated model 
and observer 2 with respect to observer 1 at all assessment 
levels (patient, lesion, and voxel) is presented in Table 3.

Automated vs. manual biomarkers

Manual total uptake measurements,  TLUmanual, dif-
fered significantly from the fully automated total uptake 

Table 2  Fully automated model performance at all levels (patient 
level classification through to voxel-level segmentation) calculated on 
the dedicated test set

Task Metric Value

Patient-level classification Accuracy (%) 94.5 (121/128)
Sensitivity (%) 93.3 (70/75)
PPV (%) 97.2 (70/72)
Specificity (%) 96.2 (51/53)
NPV (%) 91.1 (51/56)

Lesion-level detection PPV (%) 88.2 (224/254)
Sensitivity (%) 73.0 (224/307)
F1 score (%) 79.9

Lesion sub-groups detec-
tion

   Local prostate Sensitivity (%) 90.0 (36/40)
   Regional nodal Sensitivity (%) 68.3 (41/60)
   Distant nodal Sensitivity (%) 76.2 (115/151)
   Osseous Sensitivity (%) 58.2 (32/55)
   Visceral Sensitivity (%) 0 (0/1)

Voxel-level segmentation DSC (mean ± SD) 43.5 ± 21.5
Sensitivity (mean ± SD) 45.0 ± 29.2
PPV (mean ± SD) 58.5 ± 28.2

Fig. 3  Plots showing the change 
in the calculated metrics as the 
threshold for a true positive is 
modified, for the tasks of (a) 
whole-scan malignancy classifi-
cation and (b) individual lesion 
detection
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measurements,  TLUauto, with a tendency for the automated 
model to underestimate the uptake (median of 40.93 vs. 
32.83, respectively, p = 0.049), and a strong positive 
correlation between the two was found (rspearman = 0.95, 
p < 0.005). Similarly, the  TLVauto was found to be signifi-
cantly different from  TLVmanual, with the automated model 
underestimating the volume (median of 0.398  cm3 vs. 0.43 
 cm3, respectively, p < 0.005). A strong positive correlation 
between the two measurements was found (rspearman = 0.94, 
p < 0.005). Correlation results are presented in Fig. 6.

Automated biomarkers and overall survival

Upon stratification of the testing set patients based on the 
median  TLUauto value, a statistically significant difference 
in OS was detected between the two groups (p < 0.005). 
Due to the potential for the PSMA-negative scans in the 
testing set to influence the results, stratification was also 
performed on just the PSMA-positive scans between quar-
tile 1 and quartile 4 of  TLUauto, and a significant differ-
ence in OS was found between the two groups (p = 0.02). 
Similarly, patient stratification according to median  TLVauto 
yielded a statistically significant difference between the two 
groups in OS (p < 0.005). Considering only PSMA-positive 
test scans, quartile 1 and quartile 4 stratification resulted 
in a statistically significant difference in OS (p = 0.02). 
Graphical results are presented in Fig. 7. Kaplan–Meier 

analyses conducted on the ground truth manual contours in 
the whole testing set are also provided in Fig. 8.

Discussion

PSMA-targeted imaging is emerging as the standard of 
care in the diagnostic workup of PCa patients. The fully 
automatic assessment of whole-body PSMA PET scans 

Fig. 4  Distribution of the DSC, sensitivity, and PPV metrics calcu-
lated on all patient scans in the dedicated test set. Each dot represents 
the metric calculated at the voxel level for a whole patient scan

Fig. 5  Distribution of the DSC, 
PPV, and sensitivity metrics 
calculated at the voxel level 
for both the automated model 
and observer 2 with respect to 
observer 1, showing how the 
model performs relative to inter-
observer variability
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has the potential to streamline clinical workflows, alleviate 
the inter-observer variability inherent in manual and semi-
automatic mPCa lesion detection and segmentation, and lay 
the groundwork for the generation of unique quantitative 
biomarkers with prognostic potential, perhaps ultimately 
paving the way towards a truly precision medicine–based 
approach to the management of patients. In this study, a fully 
automated mPCa lesion segmentation model was developed 
for whole-body  [68Ga]Ga-PSMA-11 PET/CT images using 
the self-configuring nnU-net framework. The predictions of 
the dual-channel network, incorporating hybrid information 
from both PET and CT images, were assessed on a dedicated 
test set with respect to numerous tasks, including whole-
scan malignancy classification, lesion detection, voxel-level 
segmentation, and ability to generate useful biomarkers sig-
nificantly associated with patient OS. The results achieved 
demonstrate the feasibility of automated whole-body PSMA 
scan assessment using deep learning.

Staging of prostate cancer in the form of the TNM cri-
teria remains an important prognostic tool in the clinical 
management of the disease [38]. The classification of the 
malignancy of patient scans is therefore of clinical impor-
tance. The developed model in this work was able to clas-
sify the malignancy status of patient scans with a very high 
degree of accuracy (> 90% with respect to all calculated 
metrics) in a testing set containing both PSMA-negative 
controls and PSMA-positive images, indicating a potential 
clinical use for the automated model. These results were 
comparable to a similar study conducted by Liu et al. [32], 
who built a 3D cascade U-Net for both bone segmentation 
and bone metastasis segmentation. Their two-step model 
achieved sensitivity of 93.6% and specificity of 93.8% in 
predicting the M-staging from mpMRI scans in the pelvic 
area (the present work yielded sensitivity of 93.3%, and 
specificity of 96.2%). The authors had noted that exten-
sion of their analyses to whole-body scans was a necessary 

Table 3  Patient-level, lesion-
level, and voxel-level results 
comparison between the 
automated model and observer 
2 measured with respect to the 
observer 1 segmentations

Task Metric Automated model Observer 2

Patient-level classification Accuracy (%) 100 (28/28) 93.9 (26/28)
Sensitivity (%) 100 (20/20) 100 (20/20)
PPV (%) 100 (20/20) 90.9 (20/22)
Specificity (%) 100 (8/8) 75 (6/8)
NPV (%) 100 (8/8) 100 (6/6)

Lesion-level detection PPV (%) 95.5 (63/66) 91.7 (66/72)
Sensitivity (%) 68.5 (63/92) 71.7 (66/92)
F1 score (%) 79.7 80.5

Lesion sub-groups detection
   Local prostate Sensitivity (%) 100 (15/15) 93.3 (14/15)
   Regional nodal Sensitivity (%) 42.1 (8/19) 73.7 (14/19)
   Distant nodal Sensitivity (%) 62.8 (27/43) 62.8 (27/43)
   Osseous Sensitivity (%) 92.9 (13/14) 78.6 (11/14)
   Visceral Sensitivity (%) 0 (0/1) 0 (0/1)

Voxel-level segmentation DSC (mean ± SD) 49.3 ± 18.9 33.1 ± 18.2
Sensitivity (mean ± SD) 47.7 ± 28.4 62.6 ± 37.7
PPV (mean ± SD) 67.9 ± 21.6 31.7 ± 24.3

Fig. 6  Scatter correlation plots 
between the manual and auto-
matically calculated biomarkers 
on the test set scans. Strong 
positive correlations exist for 
both  TLUauto (rspearman = 0.95, 
p < 0.005) and  TLVauto 
(rspearman = 0.94, p < 0.005) 
and their manually derived 
counterparts. Blacked dashed 
lines in the plots represent the 
identity line. Axes have been 
log-transformed for better visual 
interpretation
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condition for clinical implementation. The present study 
demonstrates that this can be done on PSMA PET/CT 
scans with comparable accuracy, and without restricting 
the analysis to just bone lesions.

Distinguishing physiologic PSMA-ligand uptake from 
pathologic uptake poses a challenge in the implementa-
tion of segmentation techniques for PSMA scans. Semi-
automated approaches require manual user input to remove 

Fig. 7  Kaplan–Meier analyses 
on the calculated biomarkers 
from the test set segmentations. 
Patient baseline scans only are 
included. Plots are shown for 
 TLUauto calculated for: (a) the 
entire test set and (b) just the 
PSMA-positive scans in the test 
set, and for  TLVauto calculated 
on (c) the whole test set, and (d) 
just the PSMA-positive scans. 
Number of patients still at risk 
for both groups, defined as 
patients that have not experi-
enced the outcome of interest 
and have not been censored, are 
included below each plot

(a)

Q1&2 36 36 36 35 0
Q3&4 36 36 33 29 0

(b)

Q1 11 11 11 10 0
Q4 11 11 10 6 0

(c)

Q1&2 36 36 36 35 0
Q3&4 36 36 33 29 0

(d)

Q1 11 11 11 10 0
Q4 11 11 10 6 0

Fig. 8  Kaplan–Meier plots on 
the (a) total lesional uptake 
and (b) total lesional volume 
calculated from the ground truth 
manual contours in the whole 
testing set PSMA scans. Patient 
baseline scans only are included 
in the analysis. Number of 
patients still at risk, defined as 
patients that have not experi-
enced the outcome of interest 
and have not been censored, are 
included below each plot

(a)

Q1&2 36 36 36 36 0
Q3&4 36 36 33 28 0

(b)

Q1&2 36 36 36 35 0
Q3&4 36 36 33 29 0
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physiologic uptake areas, through either manual adjustment 
of the segmentation mask or the deletion of the mask entirely 
[33, 34]. If global thresholding techniques are used in the 
semi-automated process, false positives may be numerous 
and require significant manual intervention to remove. The 
developed model in this work yielded only 30 false posi-
tive lesion predictions across the entire testing cohort of 
128 scans, amounting to 1 false positive prediction every 
4.3 patient scans. This is less than that of a recent study by 
Trägårdh et al. [35], whose AI model for detection of pelvic 
lymph node metastases in  [18F]PSMA PET/CT scans yielded 
1.8 false positive predictions per patient.

The great performance of our model in terms of low false 
positive predictions comes at the expense of model sensitiv-
ity. The overall lesion-level sensitivity of 73% is lower than 
the Trägårdh et al. study [35] average sensitivity of 82% and 
another work by Zhao et al. [31] who achieved sensitivity of 
more than 90% overall for pelvic area mPCa lesion detec-
tion in  [68Ga]Ga-PSMA-11 scans. However, both of these 
works developed AI models for lesion detection exclusively 
in the pelvic area — our model extends this to whole-body 
mPCa lesion detection, a more difficult task. Furthermore, 
in the interobserver analysis, our AI model lesion sensitiv-
ity is comparable to that of the second observer (68.5% vs. 
71.7%). We are currently investigating techniques to improve 
the model sensitivity, such as re-training with the Tversky 
loss function which can be used to prioritise model sensitiv-
ity [39], and potentially training multiple models for differ-
ent lesion types (e.g., one model for bone lesions, another 
for nodal metastases). This could particularly help with 
improving the detection of bone lesions (58.2% sensitivity), 
where specific image pre-processing techniques such as CT 
Hounsfield unit bone thresholding can be implemented to 
aid the model in localising this lesion type.

Relative to classification and detection, performance 
metrics for voxel-level segmentation (the most difficult of 
the three tasks) were low. The myriad of different lesion 
sizes, uptake values, and anatomical locations that the model 
needs to segment throughout the whole-body scan is a likely 
contributing factor. The number of metastases available for 
model training could also have contributed — we had less 
lesions available for training than the Zhao et al. study [31]. 
The performance of our model can doubtless be improved 
through the addition of more high-quality training data from 
which the model can learn. Importantly, however, it was 
shown that for the subset of scans that received a second 
observer delineation, the DSC and the PPV were found to 
be significantly greater for the automated model compared 
with observer 2 (p = 0.012 and p < 0.005, respectively). 
Sensitivity of the model was inferior to observer 2, but this 
did not reach the level of statistical significance (p = 0.068). 
Therefore, as measured by the DSC and the PPV, the auto-
mated model performs within the measured interobserver 

variability. Furthermore, the voxel-level lesion predictions 
enable the extraction of features from images with prog-
nostic information that can inform clinical decision-making. 
Numerous studies have demonstrated that quantitative bio-
markers derived from PSMA-PET images, typically quanti-
fied through semi-automated segmentation approaches, have 
significant prognostic potential in the management of mPCa 
patients [33, 40–42]. In this study, we conducted an addi-
tional validation of our automated model by demonstrating 
that several global biomarkers derived from the fully auto-
matic lesion segmentations,  TLUauto and  TLVauto, were able 
to stratify patients based on OS with a Kaplan–Meier analy-
sis to statistical significance. Fully automatic calculation of 
tumour burden metrics can be used for fast identification of 
high-risk patients and has advantages over manual and semi-
automatic techniques which still require some measure of 
manual user input and are therefore susceptible to inter- and 
intra-observer variability.

Fully automated voxel-level segmentations also lay the 
groundwork for the high-throughput extraction of quantita-
tive features at both the lesion level and the patient level. 
This radiomics approach to mPCa characterisation has 
demonstrated significant diagnostic and prognostic poten-
tial in the management of the disease [16, 19, 43, 44]. A 
crucial part of the radiomics workflow is the segmentation 
of regions of interest from which the quantitative features are 
extracted, however, the inter-observer variability of manual 
delineations is known to introduce a bias into this aspect of 
the workflow that can affect the resulting feature calculation 
[45]. The deterministic nature of the automated model devel-
oped in this work can mitigate this bias — the same scan 
inputted into the network multiple times will yield the same 
segmentation result each time, potentially increasing feature 
reproducibility. A detailed study of individual lesion-level 
radiomics features extracted from fully automated segmenta-
tions was out of the scope of the present study, however, and 
is recommended for future investigations.

It must be noted that the acquisition of patient data from 
a single institution in the present work can lead to a risk 
of selection bias — multicentre studies with larger patient 
cohorts are required to fully elucidate the potential clinical 
benefit of this model. Furthermore, the manual delinea-
tions that were utilised as the ground truth to train the 
model cannot be considered as a perfect ground truth. In 
addition to having documented inter-observer variability, 
as demonstrated in this study, partial volume effects in the 
PSMA-PET image can introduce inaccuracies that cause 
the observed lesion outline in the image to differ from the 
real pathologic lesion boundary [46]. Obtaining precise 
histopathologic boundaries for mPCa patients, who may 
have high numbers of metastatic lesions in diverse ana-
tomical locations, is of course impractical, and thus man-
ual annotation is used in this study as an approximation 
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to the ground truth. It is also important to note that this 
particular cohort of PCa patients were either negative or 
oligometastatic on conventional staging imaging (bone 
scintigraphy scan with CT), and as a result there is a pos-
sibility that the dataset was biased towards patients with 
low disease burdens. Further validation of the model in 
higher disease burden populations is warranted.

Conclusion

In this study, the feasibility of using deep learning tech-
niques for the automated segmentation of mPCa lesions in 
whole-body  [68Ga]Ga-PSMA-11 PET/CT scans to auto-
matically extract patient-level prognostic biomarkers was 
investigated. The malignancy of patient scans was classi-
fied to a high degree of accuracy, and voxel-level segmen-
tations as measured by the DSC and PPV performed within 
measured inter-observer variability. Biomarkers extracted 
from the automated segmentations  (TLUauto and  TLVauto) 
also showed significant univariate association with patient 
overall survival. Multicentre studies with larger patient 
cohorts are required to confirm these promising findings.
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