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EDITORIAL

The cultivation of supply side data science in medical imaging: 
an opportunity to define the future of global health

Adam Kesner1 

 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

The field of nuclear medicine has long been defined  
with  innovative technology seated at the cross roads of 
scientific and medical specialties. We have deliveredinspir-
ingly on the promise of harnessing nuclear phenomena for 
the betterment of human health and established relevance 
broadly throughout modern medicine. Our joint missions of 
establishing best practices and supporting creative innova-
tion remain as relevant as ever.

Many forefronts of the nuclear medicine field are advanc-
ing simultaneously—we are seeing exciting innovations in 
areas of pharmaceutical development [1], expansion into 
oncology [2] and nuclear medicine aided personalized 
medicine [3], dose enhancement strategies [4], and phar-
macogenomics [5] and pretargeting techniques [6], to name 
a few. However, the innovations we produce in computing 
and instrumentation, a cornerstone of our field, are seem-
ingly not living up to their potential—the technologies we 
build are stalling in their translation into clinical settings. 
EJNMMI recently published a two-article controversy series 
around the topic of embracing new positron emission tomog-
raphy (PET) technologies. The series considers opportuni-
ties for affecting positive change in PET conjugated with the 
obstacles for translating innovation; provocative sentiments 
are presented at both ends of the discussion [7, 8]. The topic 
is timely as instrumentation has long been a pillar of our 
field and could continue to be, but this controversy high-
lights a quintessential antagonism and challenges us with a 
principal question pertaining to innovation: what is relevant? 
To many entering the field in my generation and later, the 
compass we have inherited appears antiquated and aligned 
with a synergy built to accommodate successes of the past. 

We are witnessing many of the technologies, and domains 
we endeavor to master remain persistently academic at a 
time when remarkable technological innovations are trans-
forming the world around us.

The two aforementioned papers are presented as oppos-
ing, but they congruently articulate a reality of our field: 
incremental technological innovations are having a limited 
impact. Perhaps through informed discussion and review of 
these technologies and their potential, we may be able to bet-
ter appreciate them and thereby push them past obstacles and 
into clinical use. But the question of why we are not witness-
ing academic efforts fomenting change is bigger and more 
complex. As recognized in the articles, it is not the case that 
these technologies are not useful or capable of improving 
patient care. Rather, they are encumbered by hurdles, and 
ultimately are not having the transformational influence we 
have witnessed from innovations in years past. Nor are they 
producing peer leaders to demonstrate pathways demarcat-
ing success for the next generation. By metaphor, if we are 
having trouble finding the goal posts, as the title of one of 
the controversy articles suggests, it is worth the considera-
tion that we may be playing on a wrong portion of the pitch.

From one perspective, the field of medical diagnostic 
imaging is maturing, supported with increasingly well-estab-
lished models of technology, care delivery, and professional 
roles. By extension, we may be trying to innovate within a 
legacy infrastructure best suited for twentieth-century inno-
vation, which has not evolved to match the rapidly shifting 
resources and changing environments in which the clinical 
applications of our field are practiced. Our efforts to seek 
transformation, while protecting our legacy models from 
disruption, may be antithetical. More specifically, access to 
resources, pathways for translation, and feedback systems 
for cultivating concepts of relevance are unduly constrained. 
This may hinder our ability to affect change and to provide 
meaningful leadership in the coming generations.

Traditional success with innovation entails matching 
innovation with innovation ecosystems [9], but the ecosys-
tem itself is not immutable; it is an evolving configuration 
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of existing resources that include not just technologies but 
also advances in knowledge, skills, concepts, organizations, 
and other social and institutional contexts [10]. We need to 
recognize the emergence of a significant new dimension of 
our field—a maturing landscape of data science. Reflection 
on its de facto versus ideal integration in the field, along 
with newly emerging ideas of open data, is now within the 
purview of academia and the greater community. That is the 
topic of this letter. Specifically, there exists today an unprec-
edented opportunity for establishing a concept/role for data 
that is unique from the hardware that creates it. The pivot 
could bolster all elements of research, discovery, translation, 
and inclusion and ultimately lay a foundation for meaningful 
growth in the coming decades [11].

An anecdotal experience 
with imaging innovation

My own experience in imaging innovation stems from my 
graduate work with data-driven PET motion correction in 
the late 2000s. The technology, in brief, addressed the issue 
of PET image blur caused by patient motion during acqui-
sition using fully software-based processing techniques, 
in contrast to hardware-based solutions; the technology is 
practical, standardizable, and scalable. The imaging field 
has more advanced data processing forefronts now, but this 
experience offers insight from one of our fields’ first forays 
into data science translation, and it exemplifies the promise 
of data science: the concept of doing more with the data 
you have.

In my efforts to promote translation of this originally aca-
demic solution to clinical PET, I found that the obstacles I 
encountered had less to do with the substance of the new 
technology and more to do with a limited infrastructure for 
data science within our field. This is exemplified with some 
observations: first, for almost two decades, the subfield of 
PET motion correction has been supported by a synergy of 
vendors selling hardware gating systems, academics inves-
tigating and publishing with them, and hospitals purchasing 
them. Yet the principal feature of actual value has always 
been missing. The hardware gating technology is rarely used 
in diagnostic PET outside of research, and the limitation of 
patient motion persists. It thus appears that our field can sus-
tain a technology that does not actually provide benefit. Sec-
ond, clinical and translational research benefits from larger 
sample sizes/data sets. Despite our hospital environment 
filled with ample image data, and use of fully automated 
processing techniques capable of incorporating large num-
bers (thousands) of scans, we routinely performed research 
with very small populations, due to technical and legal con-
straints. Third, as my colleagues and I competed with ideas, I 
found that academic success—journal publications, awards, 

grants—did not seem to correlate with relevance. In fact, my 
understanding of relevance differed significantly from many 
colleagues and vendors. I welcomed this diversity of thought 
as an opportunity to gauge my aptitude for the science, but I 
found academia to be bound by inertia and slow to process 
creative ideas on their merit. Fourth, when I could not find 
support in academia for what I saw as a solution ready to be 
ubiquitously deployed to solve a present problem, nor sup-
port working with the vendors towards building a clinical 
product (circa 2012), I set out to bring the product to mar-
ket myself. I found that there is no pathway for third-party 
innovation around listmode data (raw data)-driven solutions 
because the necessary raw data formats were proprietary.

It is quite common that ideas and software from graduate 
students follow the path of publication then obscurity, an 
accepted inefficiency that squanders our greatest creative 
resource and/or filters progression of creative potential alto-
gether. In the case of data-driven motion correction, recently 
PET vendors have brought their versions of software solu-
tions to the market [7]. And indeed, it is worth noting that 
the industry is shifting significantly towards embracing data 
science and providing greater data access tools to customers.

The status quo for instrumentation 
innovation

The pathway of new ideas to clinical impact spans the com-
munity, across academia, industry, and clinical partners. Of 
significant consequence is the fact that the current landscape 
of imaging instrumentation is dominated by an ever decreas-
ing number of large companies. The ecosystem has merit; 
these companies play a leading role in the field’s cohesion 
and serve as gate keepers in promoting commercially viable 
technologies. Such an arrangement helps ensure competi-
tive economic stability in our field. However, this paradigm 
also has significant inefficiencies in promoting alternative, 
creative, inventive, reinventive, often data-driven innova-
tions that hinder the solutions from translating to the clinic. 
Solutions, based on reimagined data use, require raw data, 
but raw data remains under the auspices of equipment ven-
dors who do not often have incentives to choose disruption 
over established technologies.

The dominating role of large companies in the transla-
tional pathways of innovation has many implications that 
shape our field, beginning with the very concept of rel-
evance, which becomes defined/confined by the construct 
of what is possible with respect to the current industrial 
translation pathway paradigm. In innovation theory, there 
are several models in which technology is invented and 
disseminated [12]. Innovation through models of exclusiv-
ity, increased costs, and increased profitability—and pre-
sumably trickle-down diffusion—are currently dominant 
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in our system over alternative models, for example, those 
that expand access through reduced cost via unconventional 
technologies or creative redistribution of resources in our 
field. This predisposition should be examined because such 
opportunities are the promise of the emerging data science 
arena. Another implication of the status quo is that it leaves 
academia and clinicians to groom our peer expectations and 
standards with a vendor conforming view of what is rel-
evant/possible. This disassociates us from opportunities born 
in the changing environment and hinders our ability to lead 
across generations. It also raises confusion of roles—cohe-
sion and success become intertwined with supporting vendor 
products, possibly in lieu of due criticism or recognition of 
external feedback.

The current standard of framing raw data as an extension 
of hardware, under the auspices of equipment vendors, pro-
vides the elements of compartmentalization and efficiency 
to our field. However, let us consider that this understanding 
of data is a legacy from when data processing capacities 
were more limited and simplistic, and accordingly is due to 
be revisited. Importantly, leaving the entirety of hardware 
and software development priorities to the hardware vendors 
incentivizes the development of hardware solutions within 
established business models, further solidifying a hardware-
centric identity of the field, with data science applications 
in medical imaging relegated to secondary, supportive, and 
vendor-specific peripheral products.

Presently, diagnostic scanners output images in DICOM 
format, with largely open accessibility. These images form 
the basis of clinical management and are used widely for 
research and third-party commercial products. The raw data 
that is used to create the images, which fully articulate the 
information captured in a patient scan, is restricted/propri-
etary. The academic community can be granted access to raw 
data with the help of vendors in select situations through a 
legal framework of research agreements. This system has 
benefits in that it provides support for academic research and 
development while also providing protection for vendors to 
invest in production and commercialization. It also ensures 
that non-regulatory approved products are not prematurely 
diffused into clinical use. However, the system precludes 
alternative innovation pathways. Researchers are somewhat 
obliged to stay in a vendor’s good graces, arguably forfeit-
ing intellectual independence, and intellectual property is 
forgone and/or made obsolete because third-party spinoff 
companies are not possible. Consequently, raw data-driven 
innovations only happen when they are selected by a vendor, 
developed to the vendor’s specifications, and made avail-
able only in a vendor-specific format. In the example of  
data-driven motion correction for PET technology, patient 
benefiting solutions could have been brought to market a 
decade earlier, and in a vendor agnostic format, but were not 
because hardware systems were already selling. The problem 

is reiterated when we examine a variety of software innova-
tion, e.g., the active field of image reconstruction research—
vendors have costs and minimal incentives to translate alter-
native reconstruction methods into their systems. Another 
implication of this industry led landscape is that vendors are 
increasingly moving towards offering vendor-specific suites 
of tools, compounding layers of vendor specificity into their 
products, and academic scientists are increasingly engaged 
in accepting a role of evaluating vendor products, rather than 
understanding/mastering/innovating new solutions. Looking 
forward, it is unclear what the future of this arrangement 
holds: either we need to accept that patients receive different 
care from different vendor supported systems or one vendor 
succeeds in dominating the imaging market, and we lose the 
engine of competitive development.

There is an important issue of image harmonization at 
many forefronts of translational technologies in PET, includ-
ing radiomics, artificial intelligence (AI) segmentation, big 
data analysis, computer aided diagnosis, and dosimetry, 
which all stand to benefit from a reduction of variable biases 
[13, 14]. A commonality across all these subfields, as articu-
lated in review articles, is the need to standardize and/or 
harmonize image data, thereby amplifying their capacity to 
inform. This is particularly true in large population research 
studies. The results of a recent study, working with a simi-
lar modality, single-photon emission computed tomography 
(SPECT), has shown that the largest source of variability 
across image collections from multiple vendors was attrib-
uted to differences in vendor image reconstruction [15]; it 
is reasonable to presume that the same is true for PET, a 
more inherently quantitative modality. Dedicated careers 
and the future of the field’s subfields are dependent on the 
ability to achieve optimal harmonization. The biggest oppor-
tunity to normalize data across centers and sizably improve 
image harmonization is to establish reliable cross-vendor 
reconstruction platforms that support optional standardized 
advanced reconstruction. Notably, this observation is omit-
ted from harmonization related literature. We might pre-
sume this is because this solution is commonly accepted as 
impossible and that the siloed formatting of vendor specific 
data is an insurmountable reality. However, it is technically 
possible.

The changing environment

We are in unprecedented times. Technology, technological 
capacities, and individual expertise are moving faster than 
the speed of careers. Data and communication traverse the 
globe at the speed of light, and market forces are global, as 
are communities.

The concept of “adapting to change” is well recog-
nized in biological sciences, social sciences, and business. 
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Although the association was never made by Darwin him-
self, his seminal model of natural selection is often applied 
to social/industrial paradigms, because the principal concept 
is observed across fields: those with favorable adaptations in 
changing environments gain advantages and are best suited 
to survive and thrive. Opportunities to adapt and define our 
field with relevant innovations at our forefront include ensur-
ing access to changing resources and, in contrast to the twen-
tieth century, making space/mechanisms for the integration 
of change.

A notable shift in the environment of nuclear medi-
cine has occurred, albeit slowly, with respect to the role of 
computing. The computational landscape has transformed 
from a supporting role to something much more significant. 
Nuclear medicine imaging is defined by all-digital modali-
ties whose invention and capacity has always straddled the 
forefront of computing and data storage capacities. Decades 
of computational innovation described by Moore’s Law of 
exponential processor growth (higher circuit densities at 
reduced cost) have created consequential implication [16]. 
Where the twentieth century witnessed a transition from the 
industrial age to the information age, we are now seeing a 
transition from the information age to a new era of expo-
nential digital innovation, perhaps best epitomized by the 
maturing landscape of AI architecture that is driven with 
data [17]. The traditional role/value of data has been in stor-
ing information for reference. Now, in neural network para-
digms, information within data is supplanting the task of 
analytical programming and supporting software generation, 
essentially integrated into the design of modern computing 
solutions. These same neural networks allow us to process 
massive amounts of data at micro detail levels. The limi-
tations of our ability to create useful solutions in modern 
innovation frameworks quickly centers on data, and specifi-
cally its access, quality and abundance. Data has become 
a resource of interest, a new currency, and the most likely 
bottleneck of future evolution [18].

In the field of nuclear medicine, we collect a lot of data, 
more so than other medical specialties. Our data is distinc-
tive with unique signal (from injected radioisotopes), logis-
tically complex acquisitions (patients routed through hos-
pitals), and collected with hyper-sensitive machines (PET/
SPECT/probes). We know that it contains still untapped 
information (representations, correlations, interpretations, 
and insights), which can be extracted with new tools that 
expand our capacity to see it and mine it. The data is eco-
nomically and socially relevant (patient health). A reorienta-
tion of understanding data as a new axis of our field should 
readily extend from these observations. Further, we do not 
need to know exactly how we will use it in the future to rec-
ognize and cultivate its value in preparation for the coming 
generations. 

Over the last decade, we are seeing a growing concept 
of open science and open data and its relevance in the sci-
ences [17, 19, 20]. While acknowledging the value of data, 
it should be recognized that the field would benefit from 
discussions around its stewardship. How do we retain its 
fidelity? How do we handle its vendor specificity? Impor-
tantly, who “owns” medical data? Patients, hospitals, ven-
dors, health systems, or grant agencies? Where does privacy 
begin and end with respect to population data? What data 
access do we ideally want in the twenty-first century? [21] 
What are the obstacles in achieving it? What regulatory 
oversight is needed and/or appropriate? All these questions 
require forethought, and leadership.

Aside from changes in computing and data, an additional 
monumental shift has occurred with respect to globaliza-
tion and global industrialization. The boundaries that once 
stratified our field across geography and populations have 
been undergoing monumental changes in the last few dec-
ades shifting the healthcare landscape and integrating bil-
lions of people through connectivity and technology. This 
expansion opens new markets and enhances our pool of 
professional talent, creative researchers, and entrepreneurs. 
Accordingly, it presents an opportunity to evolve our iden-
tity and care delivery models towards global, rather than 
local relevance, and to benefit from these new human and 
cross-cultural resources. Like the aforementioned opportu-
nities of defining standards in data, normalizing a global, 
inclusive community for twenty-first century innovation 
could be an invaluable pathway for innovating within our 
field and improving care.

Also worth noting are the different skillsets we should 
anticipate that future generations will bring to our field. 
They will be, and are already, digital natives, computer lit-
erate virtually their whole lives. They are used to navigating, 
innovating, expressing themselves, failing, and succeeding 
via modern computing infrastructures. Students are trained 
today in AI with open architecture systems—open access 
training modules, programming environments, and neural 
networks. Their experience in, and expectations of, global 
communities, idea transmission, and reputation building 
have matured in systems built within industries that have 
already undergone tremendous disruption and transforma-
tion. Beyond traditional knowledge, they will need an era-
accorded future-leaning infrastructure to be relevant.

Opportunities for evolution

Much of our collective success across academia, industry, 
and care providers has come from a positive collaboration, 
and it is this established productive synergy that continues 
to fuel a cohesive global field. We are partners; with his-
tory, with many shared values and with shared stakes in a 
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relevant future. We have the opportunity to build a vision 
for the future of our field.

Synergy around a product or technology is good, but 
synergy around an infrastructure for meaningful innova-
tion is better. Every transformative innovation starts off 
as an idea with questionable relevance and requires an 
ecosystem that propels promising opportunities [10]. A 
healthy eco-system for data-driven innovation should 
have: encouragement for new ideas, access to resources (in 
our case raw data), access to translational pathways, and 
critical debate [14]. Accordingly, we should now consider 
that raw data is a resource for innovation in the twenty-
first century. We should proactively endeavor to guide the 
field such that data is accessible for creative innovators of 
the coming generations. Congruently, and within the same 
effort, we can make space for alternative commercial path-
ways for third-party startup companies so that data-driven 
disruption can occur if/when/where appropriate.

The importance of enabling free market competition 
in the innovation space is fundamental to our ability to 
foster, and ultimately integrate, competitive transforma-
tional innovation. Venture startups can be creative, bold, 
driven with vision, and can accept risks in ways well 
established entities cannot. Their risks can be positively 
disruptive—to all our benefit—or fail without bringing 
the wider field with them. Free market competition is a 
feature of a healthy field that can help us ensure that large 
vendors enjoy large market shares because they have the 
most competitive products, not because we have sup-
pressed competition.

Whether looking at academic pursuits or commer-
cial creativity, a common denominator for opportunity 
is access to data. There is great precedent for this in the 
medical imaging field, e.g., the DICOM image standard 
revolution that took place in the medical imaging field in 
the 1990s [22]. Although establishing imaging data to a 
standard format faced skepticism at the time, it opened a 
new age of innovation and research capacity in our field. 
We have ubiquitous use of DICOM data in research and 
numerous companies excel in providing products wholly 
based in the DICOM image space. Looking further across 
our field, we see pharmaceutical development driven by 
startups—exemplifying the free market model of risks for 
few, rewards for many. Adjacent image analysis fields, 
like pathology, are already being disrupted by innovative 
startups dependent on access to high fidelity data [23]. As 
we move forward into an AI-supported nuclear medicine 
field, it would be a mistake to limit progress to 1990s data 
standards (i.e., DICOM). Whatever fortitude or foresight 
it required to establish the DICOM standards in the 1990s, 
it was clearly the right idea for the time. It is time now to 
examine the current obstacles and potential opportunities 
to muster that foresight again.

The final and possibly most important opportunity worthy 
of mention is the prospect of using scalable data science 
solutions to expand the medical imaging field. There are cur-
rently large disparities in access to medical imaging across 
the globe [24]. Increasing access to quality healthcare is a 
principal value to prioritize in the evolution of our field. 
A recent review presented opportunities to improve cancer 
survival in lower income countries more than a factor of 10, 
in part through expansion of imaging access [25]. Accord-
ingly, enabling lower cost hardware and investing in scalable 
data science solutions while improving the infrastructure to 
bolster them can expand our influence more efficiently and 
may be a key element to a more inclusive era of medicine 
[24, 26].

Ultimately, through all the complexities of translating 
innovation, synergies, biases, healthcare inequalities, def-
initions of success and leadership, and imaginative ideas 
we have not thought of yet, the solution to bolster the next 
generation may be quite simple in concept: democratiza-
tion of medical imaging data across the imaging commu-
nity - making data accessible at its highest fidelity [11, 27].  
A large step in that direction could be as simple as evolv-
ing expectations for hardware vendors to publicly describe 
their raw data, or as complex as creating standard data for-
mats across modalities or innovating new data sharing net-
works and spaces. As a medical imaging community, we 
should discuss the who, what, where, why, when, and how 
so that everyone who wants to be a part of the change can 
contribute.

A data oriented moonshot

Currently, scientific momentum and motivation in nuclear 
medicine and PET instrumentation largely coalesces around 
(often expensive) hardware-centric innovations and associ-
ated data processing. The twenty-first century data science 
landscape may propel new alternative models for the evo-
lution of our field. The imaging data-centric moonshot for 
global health may look like this:

In 20 years, we will (a) expand access to imaging by a 
factor of 10, (b) witness > 100 startup companies uti-
lizing raw medical image data come to fruition, and (c) 
deliver care to > 1 million nuclear medicine patients 
using AI networks trained with > 1 million data sets 
(d) throughout > 100 countries.

This moonshot aims to foster a stewardship of data that 
incorporates a modern vision of its use. Importantly, this 
proposal allows cost reductions, viable through expanded 
access, through cultivation of an innovation landscape 
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that encourages  scalable technology development and 
application.

Closing remarks

The biggest hurdle to evolution towards medical imaging 
data democratization across the field may be intellectual 
inertia. There is a famous quotation attributed the Willie 
Sutton, an American bank robber in the early twentieth cen-
tury. When asked why he robbed banks, he replied concisely 
“I rob banks because that’s where the money is.”

New roles around data leadership are emerging because 
that is where the opportunity is. Our diligence now can  
impact the shape and reach of medicine for coming gen-
erations. Literature discussing the unique opportunities 
in embracing open science and democratization of data is 
already plentiful. Many industries are moving towards open 
access, valuation of data, expanding opportunities for inclu-
sion, and transcending bottlenecks across uses of data. The 
field of nuclear medicine is well suited to provide leadership 
for change: our images are rich with meaningful data, and we 
already have extensive experience in cohesively integrating 
a variety of specialists. As new landscapes of opportunity 
for data-driven innovation open, we can lead by becoming 
stewards of imaging data, opening access to its highest fidel-
ity embodiment, and promoting principles of accessibility 
and free market competition in the data use space.

To close with a metaphor, the wind of change is blowing, 
it would be a shame not to take the opportunity to reposition 
our sails.
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