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Abstract

With this document, we provide a standard for PET/(diagnostic) CT imaging procedures in cardiovascular diseases that are inflam-
matory, infective, infiltrative, or associated with dysfunctional innervation (41s). This standard should be applied in clinical practice and
integrated in clinical (multicenter) trials for optimal procedural standardization. A major focus is put on procedures using ['*F]FDG, but
4s PET radiopharmaceuticals beyond ['*F]FDG are also described in this document. Whilst these novel tracers are currently mainly
applied in early clinical trials, some multicenter trials are underway and we foresee in the near future their use in clinical care and
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inclusion in the clinical guidelines. Finally, PET/MR applications in 4Is cardiovascular diseases are also briefly described.
Diagnosis and management of 4Is-related cardiovascular diseases are generally complex and often require a multi-
disciplinary approach by a team of experts. The new standards described herein should be applied when using PET/
CT and PET/MR, within a multimodality imaging framework both in clinical practice and in clinical trials for 4ls

cardiovascular indications.

Keywords PET/CT - 4ls - Cardiovascular diseases - Procedural recommendations

Preamble

The European Association of Nuclear Medicine (EANM) is a
professional nonprofit medical association that facilitates com-
munication worldwide among individuals pursuing clinical and
research excellence in nuclear medicine. The EANM was
founded in 1985. The European Association of Cardiovascular
Imaging (EACVI) promotes excellence in clinical diagnosis, re-
search, technical development, and education in cardiovascular
imaging to improve the standardization of CVI practice in
Europe. The recently established joint cardiovascular imaging
group (4Is joint collaboration group) between the EANM and
the EACVI focuses on infiltrative, inflammatory, infectious, and
innervation dysfunctional (4Is) cardiovascular diseases. This 4Is
joint collaboration group is working on recommendations for
imaging procedures in the field of 4Is cardiovascular diseases.
These recommendations are intended to assist practitioners in
providing appropriate (hybrid) nuclear medicine imaging.
However, these are not inflexible rules or requirements of prac-
tice and are not intended, nor should these be used, to establish a
legal standard of care. The ultimate judgment regarding the pro-
priety of any specific procedure or course of action must be made
by medical professionals taking into account the unique circum-
stances of each case. Thus, there is no implication that an ap-
proach differing from the recommendation, standing alone, is
below the standard of care. To the contrary, a conscientious prac-
titioner may responsibly adopt a course of action different from
that set out in the recommendations when, in the reasonable judg-
ment of the practitioner, such course of action is indicated by the
condition of the patient, limitations of available resources or ad-
vances in knowledge or technology subsequent to publication of
the recommendations. The practice of medicine involves not only
the science but also the art of dealing with prevention, diagnosis,
alleviation, and treatment of disease. The variety and complexity
of human conditions make it impossible to always reach the most
appropriate diagnosis or to predict with certainty a particular re-
sponse to treatment. Therefore, it should be recognized that adher-
ence to these recommendations will not ensure an accurate diag-
nosis or a successful outcome. All that should be expected
is that the practitioner will follow a reasonable course of
action based on current knowledge, available resources,
and the needs of the patient to deliver effective and safe
medical care. The sole purpose of these recommendations
is to assist practitioners in achieving this objective.

Introduction

Nuclear imaging plays a pivotal role in cardiac infectious,
inflammatory, infiltrative, and innervation disorders. Cardiac
amyloidosis, sarcoidosis, large vessel vasculitis (LVV), infec-
tive endocarditis (IE), infected cardiac implantable electronic
devices (CIED), vascular graft infection (VGI), and myocar-
dial innervation dysfunction are the main indications for the
use of nuclear medicine procedures in both diagnosis and
response assessment.

PET/CT and PET/MR imaging are noninvasive diagnostic
tools that allow detection of radiopharmaceutical accumula-
tion in tissues with high sensitivity and provide precise quan-
tification of their local concentration. The most commonly
used tracer at present is the fluorine-18—labeled glucose ana-
logue ['®F]-2-fluoro-2-deoxyglucose (['*F]FDG). ['*F]JFDG
accumulation in tissues is proportional to their glucose utili-
zation and reflects the glucose metabolism of cells. This glu-
cose metabolism is increased in cancer but also in infectious
and inflammatory processes (1). Anatomical and morpholog-
ical information derived from the combination with CT (PET/
CT) can be used to improve the localization, extent, and char-
acterization of lesions detected by ['*F]JFDG PET. Beyond
['"®F]JFDG, several other PET radiopharmaceuticals are avail-
able for imaging cardiovascular diseases. A major potential
player in this field is ['*F]-sodium fluoride (['*F]NaF) and
[*®Ga]DOTA conjugated peptides to somatostatin receptors
(SSRs), showing promises for the evaluation of patients with
atherosclerosis and heart valve disease (2, 3). The major
advantage of ['*F]NaF PET over ['*F]FDG is the ab-
sence of any physiological myocardial uptake, thus
making assessment of coronary arteries and valves in
addition to the peripheral vasculature feasible.

Specific PET amyloid-binding radiotracers, structural-
ly similar to thioflavin-T and likely binding to the am-
yloid fibril structure, are already approved for imaging
beta amyloid in Alzheimer’s disease (4), such as [''C]-
Pittsburgh compound B ([''C]PiB), ['*F]florbetapir and
['®F]florbetaben. They have been recently successfully
used to image cardiac amyloidosis (5, 6).

[''C]-Hydroxyephedrine ([''C]JmHED) is the most
widely used PET tracer for cardiac presynaptic sympa-
thetic imaging. In a healthy heart, there is a homoge-
neous distribution of [''CJmHED over the left ventricle,
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making it a valuable tracer for detecting specific region-
al defects of the presynaptic sympathetic system in dis-
case (7) such as heart failure and arrhythmias.

Currently, the use of PET/CT in cardiovascular diseases is
mainly derived and adapted from published oncological im-
aging procedures and guidelines for which the European
Association Research Ltd. (EARL) has established a standard
(8, 9) for intercenter harmonization for [ *F]JFDG imaging. A
standard for PET/CT imaging in inflammatory, infective, in-
filtrative, and innervation dysfunctional (4Is) cardiovascular
diseases is currently lacking. Therefore, standards for PET
imaging not limited to FDG are needed specifically designed
for cardiovascular disorders.

Goals

The purpose of this document is to assist in performing
PET/CT and PET/MR for cardiovascular imaging in the
field of 4Is, starting from the selection of the proper ra-
diopharmaceutical based on the specific patients’ clinical
condition and extending to the correct use of imaging
acquisition protocols, postprocessing, interpretation, and
reporting. As PET is a quantitative imaging technique,
specific quality control (QC)/quality assurance (QA) pro-
cedures are required to maintain the accuracy and preci-
sion of quantitation (10), and these aspects are also in-
cluded. Indeed, repeatability and reproducibility are es-
sential requirements for any quantitative measurement
and in establishing the clinical value of imaging bio-
markers. For quantification of ['*F]JFDG PET/CT and
PET/MR standardized uptake values (SUVs) are the most
commonly used semiquantitative parameters for tracer up-
take analysis. Proposing a standardized imaging proce-
dure will promote the appropriate use of PET/CT and
PET/MR imaging in clinical practice, increase the quality
of investigator driven clinical trials and allow comparison
between studies thereby contributing to evidence-based
medicine. This document is built upon earlier published
European procedural guidelines for quantitative ['*F]FDG
PET and PET/CT in oncology (8) and infectious and in-
flammatory diseases (1, 11, 12).

Clinical indications in cardiovascular diseases

["®FJFDG PET/CT and PET/MR have an increasingly rele-
vant role in inflammation and infection imaging; they are rap-
idly evolving imaging modalities (1). However, no appropri-
ateness criteria have been developed to date for these indica-
tions in cardiovascular diseases. It must be emphasized that
the level of evidence available at this time for using PET/CT
and PET/MR imaging with either ['*F]JFDG or novel
PET radiopharmaceuticals varies for many of the indi-
cations described in this document, but randomized

@ Springer

controlled trial data (as with most forms of cardiovas-
cular imaging) are consistently lacking.
General indications for 4Is cardiovascular PET/CT include:

* Noninvasive diagnosis

* Imaging-guided biopsy diagnosis
*  Therapy response

*  Monitoring

*  Prognosis

Specific routine clinical practice and clinical research
applications:

e Prosthetic and native valve infective endocarditis (IE)
(clinical) (11, 13)

» Cardiac implantable electronic (CIED) and left ventricular
assist devices (LVAD) (clinical) (11, 13)

e Vascular graft infection (VGI) (clinical) (14)

» Cardiac sarcoidosis (clinical) (15)

» Large vessel vasculitis (LVV) (clinical) (16, 17)

* Cardiac amyloidosis (clinical research) (5, 6)

e Atherosclerosis and valvular disease (clinical research)
(18)

*  Myocardial innervation (clinical research) (19)

Note: Clinical means PET imaging is used in routine clin-
ical practice based upon clinical evidence and guideline rec-
ommendations; the clinical research phase refers to PET im-
aging techniques that do not currently meet the above criteria
but are undergoing clinical research evaluation in pa-
tients. However, even the above techniques used in the
routine clinical practice require further research for op-
timization and ideally randomized controlled trials to
establish their clinical utility.

Radiopharmaceuticals (Table 1)

Most PET radiopharmaceuticals are labeled with 8F but
some are labeled with the shorter living ''C (T, 20 min),
or are generator produced %8Ga (T, 68 min). The most prom-
ising radiopharmaceutical developments include the applica-
tion of existing tracers such as ['*F]NaF in atherosclerosis,
and the use of radiolabeled compounds for detection of cardi-
ac amyloidosis (['®F]florbetaben, ['*F]florbetapir,
["®F]flutemetamol, and [''C]PiB). [**Ga]DOTA conjugated
peptide ([**Ga]DOTATOC, DOTATATE, DOTANOC)
compounds with affinity to SSRs, and ['*F]FLT, hold promise
in detecting cardiac sarcoidosis with the advantage of having
no physiological myocardial uptake which is the main disad-
vantage of ['*FJFDG. The ['®F]-labeled sympathetic nerve
PET radiopharmaceuticals ['*F]LMI1195 (generic name
[lgF]ﬂubrobenguane) are promising with potential to aid clin-
ical decision making, e.g., for optimal selection of patients
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requiring an ICD or CRT. An overview of PET radiopharma-
ceuticals for 4Is beyond ['*F]JFDG is given in Table 1.

Administered activity (Table 1)
["®FIFDG PET

The administered activity is not crucial for the results of the
exam but should be within a certain range depending also on
the type of PET scanner. The EANM guidelines on ['*F]FDG
PET imaging in inflammation/infection suggest an adminis-
tered activity of 2.5-5.0 MBg/kg, which is concordant with
175-350 MBq or 4.7-9.5 mCi for a 70-kg standard adult. In
the USA, the recommended ['*F]JFDG administered activity is
370-740 MBq (10-20 mCi) for adults and 3.7-5.2 MBg/kg
(0.10-0.14 mCi/kg) for children (1).

['8FINaF

In adults, the recommended ['*F]NaF injected activity for
bone imaging is 1.5-3.7 MBq /kg with a maximum recom-
mended activity of 370 MBq for obese patients. Most cardio-
vascular imaging studies have been conducted with either 125
or 250 MBgq.

["®FIflorbetaben, ['®Fiflorbetapir, ['2FIflutemetamol, [''CIPiB

['®F]florbetaben (300 MBq), ['*F]florbetapir (370 MBq),
["®F]flutemetamol (180-360 MBq), and [''C]PiB (5 MBq/
kg) might be injected as a single intravenous slow bolus in a
total volume of 10 mL (20, 21).

[°®Ga]DOTA-conjugated peptides to SSRs (DOTATOC,
DOTATATE, DOTANOC)

The administered activity ranges from 150 to 250 MBgq, also
depending on the characteristics of the PET camera system.
The recommended activity to obtain good quality images is at
least 150 MBq (3).

[""CJmHED

A recommended activity of 370 MBq is injected as a slow
bolus.

PET/CT procedure
Qualifications and responsibilities of personnel
In Europe, the certified nuclear medicine physician who per-

forms the study and authorizes the report is responsible for the
whole procedure, according to national laws and rules. Patient

preparation and imaging procedures should be executed by
qualified nuclear medicine technologists (http:/www.eanm.
org/content-eanm/uploads/2016/11/EANM 2017 TC
Benchmark.pdf).

General patient preparation

Whole body PET, see also Boellaard et al. (8), EANM
Nuclear Medicine Guide (www.EANM.org/Publications).

['®FIFDG
["®FIFDG suppression in normal myocardium

To suppress physiological ['*F]JFDG uptake in the normal
myocardium, it is recommended to use patient preparation
protocols including high-fat—enriched diet lacking carbohy-
drates for 12-24 h prior to the scan combined with a
prolonged fasting period of 12—-18 h, with or without the use
of intravenous heparin of 50 IU/kg approximately 15 min pri-
or to ['"®*F]JFDG injection (11, 22, 23). In addition, strenuous
exercise should be avoided for at least 12 h prior to the exam.
Following ['®F]FDG injection, and before the images are ob-
tained, the patient should continue to fast and should restrain
from any physical activity, as both will enhance myocardial
glucose uptake.

Blood glucose level

It has been advocated that high serum glucose levels may
interfere with the detection of inflammatory and infectious
sites due to competitive inhibition between ['*F]FDG uptake
and circulating D-glucose. However, a study by Rabkin et al.
(24) demonstrated that neither diabetes nor hyperglycemia at
the time of the study had a significant effect on the false-
negative rate in infection and inflammation imaging.
Therefore, although all efforts should be made to decrease
blood glucose to a normal level, hyperglycemia (<
11 mmol/L, or < 180 mg/dl) in patients with unstable or poor-
ly controlled diabetes, this should not represent an absolute
contraindication for performing the study if clinically indicat-
ed (11). ["®F]FDG should be injected no sooner than 4 h after
subcutaneous injection of rapid-acting insulin or 6 h after sub-
cutaneous injection of short-acting insulin. ['*F]JFDG admin-
istration is not recommended on the same day after injection
of intermediate-acting and/or long-acting insulin (8).

Concomitant treatments
Although antimicrobial treatment for cardiac infection is ex-
pected to decrease the intensity of inflammation and therefore

["®FJFDG accumulation (25), there is currently no evidence to
routinely recommend treatment discontinuation before
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performing PET/CT. The risk of false negative ['*FJFDG PET
scans is probably lowest, if the patient is imaged when their
CRP is >40 mg/L (26).

In contrast, inflammatory disorders treated with ste-
roids can lead to false-negative results (27). Delaying
the commencement of steroid treatment till after the
scan is therefore strongly recommended, whenever clin-
ically safe, with exception for giant cell arteritis due to
risk of vision loss. If this is not feasible or if the patient
is already on steroids, then one should aim at
performing the exam as soon as possible after steroid
initiation (preferentially within 3 days) or at the lowest
possible dose that is safe. Similar principles apply to
other immunosuppressive treatments. Monitoring therapy
effect under steroids and/or immunosuppressive drugs
may reduce the FDG signal on PET.

Other special considerations

['"®FJFDG imaging can be performed in patients with kidney
failure, although image quality may be suboptimal and prone
to interpretation pitfalls (28). Creatinine and/or glomerular
filtration should be evaluated, according to national guide-
lines, if intravenous contrast agent will be administered. If
renal function is impaired and ["®F]FDG PET/CT examination
with intravenous CT contrast agent is deemed necessary, then
adequate prevention of nephrotoxicity should be performed
according to local or society guidelines (see paragraph,
Contrast-enhanced CT procedurals in 41s).

Specific patient preparation non['®FIFDG
radiopharmaceuticals

In general, there are no dietary restrictions, and fasting is not
needed. Patients should be well hydrated to promote rapid
excretion of the radiopharmaceutical in order to reduce radia-
tion dose and to improve image quality.

["®FIflorbetaben, ['®Flflorbetapir, [*®Fiflutemetamol, [''CIPiB

There is no known evidence suggesting any drug interactions
between amyloid radiotracers and common drugs used in pa-
tients with amyloidosis. Therefore, no specific dietary prepa-
ration (no restriction on oral intake) or withholding of medi-
cation is recommended at this time.

[%®Ga]DOTA-conjugated peptides to SSRs

Some authors suggested withdrawal of cold SST analogues
(whenever possible and not contra-indicated) to avoid poten-
tial SST receptor blockade which will improve uptake. In this
case, the time interval between interruption of therapy and
[*®Ga]DOTA-conjugated peptide PET/ CT depends on the

@ Springer

type of drugs used: 1 day is suggested for short-lived mole-
cules and at least 3—4 weeks for long-acting analogues (29).

["'ClmHED

The following medication should be discontinued in any case:
reserpine, cocaine, tricyclic antidepressants, calcium channel
blockers, labetalol, and tranquilizers (especially phenothia-
zines). In the literature, interferences with other drugs have
been reported and should be taken into account, comparable
to ['*IImIBG (30).

["8F]-NaF

No specific preparation needed.

PET acquisition (Table 1)
["®FIFDG

In general, the same acquisition, reconstruction and
postprocessing steps as those described in the EANM
procedure guideline for tumor imaging with ['*F]JFDG
PET/CT (8) are recommended for 4Is cardiovascular
["®F]FDG PET/CT imaging.

Shortly, these are, as stated earlier, the recommended
['"®F]FDG administered activity is between 175 and
350 MBgq. In general, 2-min/bed position for an injected ac-
tivity of 3 MBq.kg ' are used. For modern, high sensitivity
scanners with axial field-of-view (FOV) of 20 cm or more,
time-of-flight (TOF), and improved image reconstruction
methods, the administered activity (or scan time per bed posi-
tion) can be reduced by a factor 2 compared to the aforemen-
tioned numbers. For patients weighing more than 90 kg, it is
recommended to increase the scan time per bed position, in-
stead of further increasing the administered activity.

The time interval between ['*F]JFDG injection and scan-
ning is critical if semiquantification using SUV is intended,
but less important for visual reading only. Although the rec-
ommended interval is 60—90 min for cardiovascular imaging
(similar to tumor imaging), 120—180 min is sometimes applied
to help assess inflammatory activity in the vascular wall and
left ventricle due to lower background activity in the blood
pool (18, 31, 32), but these extended time-intervals
seem less effective in infection detection (33). The re-
gional acquisition time can be doubled for optimal vi-
sualization of small vascular structures, as with cranial
and neck arteries in vasculitis (34).

Especially for attenuation correction of the thorax, a respi-
ration-averaged low-dose CT can be considered, as this
will likely give better alignment between PET and CT
over the heart. Other than that, the recommendations for
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low-dose CT attenuation correction for tumor imaging
with ['"®F]JFDG can be followed.

Adding gated cardiac PET for 4ls indications is optional. It
may improve image quality, particular in coronary atheroscle-
rosis assessment and (prosthetic) valve infective IE, but
supporting literature for ['*F]JFDG is scarce (35).

Whole-body ['*F]FDG PET imaging is particularly useful
in patients with a suspicion of whole body involvement of the
primary disease and to identify septic embolism, mycotic an-
eurysms, and the portal of entry.

Specific PET acquisition (Table 1)

For cardiac sarcoidosis, it is highly recommended to comple-
ment inflammation imaging with perfusion imaging (general-
ly nuclear imaging looking for perfusion defects) or scar im-
aging (cardiac magnetic resonance) in order to assess the pres-
ence of both active inflammation and scar (15).

For amyloidosis and innervation imaging with specific
tracers such as ['8F]florbetaben, ['®F]florbetapir,
["®F]flutemetamol, [''C]PiB, and [''CJmHED respectively,
a dynamic scan starting simultaneously with tracer injection
covering the heart has to be performed covering the heart
starting simultaneously with radiopharmaceutical injection,
followed by a static image reconstruction (Table 1):
["'CIPIB: 10-20 min p.i. (36, 37); ['®F]florbetapir: 10—
30 min p.i. (20); ['*F]flutemetamol: 0—-30 min p.i. (38);
["®F]florbetaben: 0-20 min p.i. (5); [''CJmHED: 0—60 min
p-i. (39, 40). Acquisition should be in list mode, or, if list
mode is not available, should be done as a dynamic scan with
framing that allows for calculation of the retention index (see
later) at the desired interval. [''CJmHED can be combined
with rest perfusion imaging for evaluating match/mismatch
patterns. For amyloidosis, the dynamic scan can be followed
by a whole body scan in order to assess extracardiac uptake.

['®F]NaF imaging in atherosclerosis is recommended
60 min after ['*F]NaF administration (41, 42). Delayed imag-
ing, 3 h after tracer administration, may improve signal to
noise but involves more complex imaging logistics (43).
When imaging the coronary arteries, ECG gating should be
performed with motion correction of the ['*F]NaF PET data to
reduce image noise, and increase the PET signal (43) This
should be coupled with contrast-enhanced CT coronary angi-
ography to facilitate accurate coregistration of the PET and CT
data sets in three dimensions. For superior coronary motion
control and radiation exposure reduction, a prospective dia-
stolic acquisition should be used together with the administra-
tion of beta blockers for heart rate control. This approach
allows assessment of adverse plaques and disease activity in
the coronary arteries with [ *F]NaF PET (43). Similar proto-
cols are recommended for [ *F]NaF imaging of carotid ather-
oma, abdominal aortic aneurysms, and both native and
bioprosthetic valve diseases (44—46).

For [**Ga]DOTA-conjugated peptides in the setting of ath-
erosclerosis, acquisition 60 min after administration results in
optimal vascular wall activity against blood pool background
(3). Similar protocols to those suggested for ['*F]NaF, includ-
ing motion correction and contrast CT coronary angiography
(CTA), should be applied for coronary imaging.

PET image reconstruction (Table 1)
["*FIFDG

In general, images should be reconstructed according to the
guidelines for tumor imaging with ['"*F]JFDG PET/CT (8),
using iterative reconstruction with a product of subsets and
iterations between 40 and 60. Use of TOF and resolution
recovery is recommended as it has been shown to improve
disease detectability in cardiac PET (47).

All corrections necessary to obtain quantitative images
should be applied during the reconstruction. More advanced
image reconstruction methods, such as penalized reconstruc-
tion, are possible; however, the use of these methods is rather
limited to visual assessment and should not be used inter-
changeably with regular iterative reconstruction methods (48).

Specific PET image reconstruction (Table 1)

["®F]NaF reconstruction, included gating, is comparable to
['"*F]FDG PET/CT imaging, although motion correction and
careful coregistration with CTA is recommended, particularly
for coronary and valve imaging. For [**Ga]DOTA-conjugated
peptides, standard reconstructions are adequate, although cor-
onary imaging requires motion correction and coregistration
with CT coronary angiography as described for ['*F]NaF.
Amyloid ligands static images: same reconstruction settings
as for ['*FJFDG. For amyloid ligands, the dynamic scans need
to be reconstructed into frames of increasing duration to allow
for calculation of the retention index. For [''CJPIB, the scan
can be rebinned into two static frames (0—15 and 10-20 min).

PET data analysis
["*FIFDG

Image quality for myocardial evaluation: overall quality
(good, average, low), motion artifacts, abnormal
biodistribution, quality of ['*FJFDG suppression in the myo-
cardium (full suppression, partial suppression, unsuppressed).
Standard commercial software programs can be applied for
reading and quantifying ['*F]JFDG data. Cardiovascular im-
ages can be displayed in the standard three views (short, 2x
long views/axes), or polar maps can be generated for example
for amyloid and innervation imaging. Quantification of PET
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data on different software programs should be done with cau-
tion, due to variability in results.

For assessment of uptake in the large vessels, e.g., in vas-
culitis and atherosclerosis, the ['*F]JFDG uptake pattern (dif-
fuse or focal uptake), the exact location of the uptake, the
extent of the uptake/vascular segments, and the intensity (vas-
cular scoring 0-3 against the liver) should be scored.

We also recommend quantification of ['*FJFDG activity,
using SUVmax, SUVpeak, SUVmean, and application of
target-to-background (TBR) analysis (with vascular blood
pool as reference) (18).

Specific PET data analysis

For cardiac amyloidosis, regions of interest (ROI) need to be
drawn over the left ventricular wall and in the center of the left
atrium (circular ROI with a diameter of four pixels defined in
the left atrium near the valve plane on at least three neighbor-
ing slices) to derive myocardial uptake and the arterial input
curve, respectively (36). Further segmentation into myocardi-
al regions (anterior, inferior, septal and lateral) can be done as
preferred. For analysis of amyloidosis and innervation imag-
ing, specific software programs are needed, such as PMOD,
Matlab, Carimas, and aQuant. For calculation of the retention
index (RI), the myocardial tracer uptake at a certain time after
injection has to be divided by the area under the curve of the
blood pool activity up to that point in time. This provides a
quantitative measure of amyloid binding or innervation de-
pending on the tracer injected. For example, the RI for
[''C]PIB is defined as the ratio between the tissue activity
concentration at ~10-20 min and the integral of the blood
pool curve between 0 and 15 min; whilst the RI for
['®F]florbetapir is the ratio of activity concentration between
10 and 30 min and the integral of the blood pool curve be-
tween approximately 0 and 20 min. Alternatively, calculation
of SUV ratio between myocardial wall and blood pool can be
done for the 10-20 min interval for [''C]PIB or 10-30 min
interval for ['®F]florbetapir. A SUV cutoff of 1.09 or RI cutoff
of 0.037 min™" is used to discriminate patients with cardiac
amyloidosis from healthy subjects when using [''C]PIB (37),
compared to 1.45 and 0.025 min~" for ['*F]florbetapir (20).
These cutoff values are valid only for the given time intervals
and tracers. It should be noted that amyloidosis patients and
healthy controls could also be discriminated completely by
visual assessment using the 10-20 min [''C]PIB images (37,
49). From the arterial and myocardial time-activity curves,
retention indices and washout (WO) rates for [''CJmHED
can be calculated. The cardiac RI reflects norepinephrine
recycling from the synaptic cleft. RI values were determined
for the global left ventricle (LV) and for the anterior, lateral,
inferior, and septal wall segments. [ *F]NaF analysis for ath-
erosclerosis in the large vessels is comparable to ["*FIFDG
PET quantification. Quantification of ['*F]NaF across the
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coronary vasculature currently relies on SUVmax and
TBRmax measurements in individual plaques (with blood
pool measured in the atria), although novel assessments quan-
tifying tracer activity across the entire coronary vasculature
are in development (50).

For [**Ga]DOTA-conjugated peptides, the analysis is com-
parable to ['"*F]FDG PET quantification in atherosclerosis. In
short, within each 2D ROI, maximum voxel value
[®Ga]DOTA activity will be derived to estimate maximum
tissue-to-blood ratio (TBRmax), normalized by mean blood
pool activity measured within five consecutive circular ROIs
drawn within the lumen of the superior vena cava (3).

Contrast-enhanced CT procedurals in 4ls
(Table 2)

For a diagnostic CTA standard CT settings as suggested by
related guidelines and the supervising radiologist or responsi-
ble physician should be employed (8). Medication potentially
interacting with intravenous contrast agents (e.g., metformin)
and relevant medical history (e.g., compromised renal func-
tion) should be taken into consideration. Since patients of the
4I’s can be considered at risk, renal function should generally
be assessed in this group of patients before administration of
contrast agents because of possible nephrotoxicity. Patients
with a higher risk of contrast agent induced nephrotoxicity
are patients with an eGFR < 30 ml/min/1.73 m? (51). In these
patients, the use of less nephrotoxic contrast agents or a
renalguard system might be considered. In general, the labo-
ratory values obtained should not be older than 6 months at the
time of scan. Other risk factors for kidney damage caused by
contrast agents include dehydration or volume depletion, the
intake of nephrotoxic substances, an age above 70 years, and
existing cardiovascular diseases. The discontinuation of
NSAIDs and aminoglycosides also reduces the risk of im-
paired renal function by contrast administration.
Furthermore, attention must be paid to patients with a history
or possible history of previous contrast agent hypersensitivity
reactions. Premedication with glucocorticoids and H1- and
H2-blockers reduce the risk of an anaphylactic reaction, but
unenhanced CT should generally be preferred in patients with
a known severe contrast reaction. In general, PET/CT may be
performed without the administration of contrast agent in pa-
tients with suspected cardiac amyloidosis or altered myocar-
dial innervation as the accumulation of these tracers is highly
specific to the respective imaging target. In cardiac sarcoido-
sis, different imaging protocols exist: if a perfusion examina-
tion is performed in addition to ['"*F]JFDG PET, a contrast-
enhanced CT is usually not necessary. However, CTA may
be helpful to better assign ["®FJFDG uptake to the myocardi-
um or surrounding structures (lungs, lymph nodes, etc.).
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Table 2 Interpretation of contrast-enhanced CT scans acquired alongside PET/CT imaging in 41s
Disease Contrast  Advantages and scoring methods Comments
application

Infective endocarditis ++ -Visualization of abscesses
and cardiac device

infection probes

-Visualization of thrombi/vegetation on valves/-

Some imaging centers do not deem the administration of
contrast medium to be mandatory.

-Visualization of septic embolism as infarcts in
terminal vessels (e.g., spleen, kidney, brain)
-Detailed examination of valves (potentially

important in surgical procedures)
Superior morphological allocation of the PET signal
(e.g. myocardial vs. lung uptake; organ

Cardiac sarcoidosis +

involvement)
Large vessel vasculitis ~ ++

0 =no mural thickening
1 = slight mural thickening
2 = mural thickening

Visualization of the vessels to exclude relevant
stenosis and score wall thickness:

Contrast agent generally not required if perfusion study
(PET and SPECT) is available

In the presence of a recent angiographic scan (CT/MRT),
a low-dose CT is sufficient.

3 = long and strong circumferential mural thickening

OR as measurement: >2—-3 mm
Atherosclerosis +++

stenosis and plaque composition

-Agatston score in mainly applied for calcium

Visualization and quantification of calcium, vascular

CTA is clinically recommended and aids in the
interpretation of the PET scans particularly in the
coronary arteries

burden and risk assessment in coronary artery

disease

-Vascular stenosis is evaluated on CTA and
categorized as non-obstructive or obstructive

Vascular graft infection  +++

-Visualization of peri-graft gas and fluid.
-Aneurysm expansion/pseudo-aneurysm formation

The sensitivity and specificity of CT is moderate and
variable

-Detailed examination of vascular graft

Cardiac amyloidosis -
myocardium

Assessment of thickness of the left ventricular

Only patients with a clinical suspicion receive this specific
examination (septum thickness usually already
available).

“no contribution, * some contribution, ** good contribution, *** excellent contribution

In case of infective endocarditis (IE) and cardiac implant-
able electronic devices (CIED) infection, combining
['®F]FDG PET with/CT angiography (CTA) is helpful in the
identification of a larger number of anatomic lesions and in
reducing the number of equivocal scans (52, 53). Optional is
the use of diluted contrast. The diluted contrast may help
defining the 4 heart chambers better, and make anatomic lo-
calization of endocarditis easier (triphasic contrast administra-
tion for better delineation of the right and left cardiac cham-
bers). In particular, CTA can help in the diagnosis of
pseudoaneurysm, fistulas, and abscesses associated with in-
fected valves and for the accurate assessment of valve pros-
theses. CTA is especially useful in patients with aortic grafts,
or congenital heart diseases and complex anatomy. Another
advantage is that in case of IE of the aortic valve, CTA can
provide useful information about the anatomy of the valve,
such as the size or extent of any calcification of the valve
and ascending aorta, as it can also differentiate between
pannus vs thrombus/vegetation in case of elevated
transvalvular pressure gradients. This information is important
for a proper surgical management. In addition, ceCT imaging

might facilitate the diagnosis of septic embolisms in both left-
sided infective endocarditis (abdomen and brain) and right-
sided infective endocarditis (pulmonary). The technical re-
quirements for performing PET/CTA with a hybrid PET/CT
scanner are cardiac gating for both techniques and at least a
64-detector row CT. For the evaluation of left-sided prosthetic
IE, an arterial phase ECG-gated CTA must be per-
formed. When PET/CTA is performed to diagnose de-
vice infection, a prospective, ECG-gated, venous phase
CTA sequence is recommended to evaluate local soft
tissue changes, lead vegetation, and venous thrombosis
of the vascular accesses. In case of vasculitis, CTA is
helpful to evaluate the arterial wall thickness for
primary diagnosis, and to monitor vascular stenosis
during disease progression (16, 54) (Table 2). CTA is
clinically applied for the evaluation of plaque composi-
tion and characterization of high risk plaques, the de-
gree of luminal stenosis and vascular calcifications
using nonenhanced CT in atherosclerotic disease, with
coronary CTA widely used in the assessment of patients
presenting with chest pain (55-57) (Table 2).
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['®FIFDG PET/CT data assessment,
interpretation, and reporting 4ls: adapted
from Jamar et al. (1)

General assessment of ['®F]FDG PET

At the end of the PET acquisition and before image interpre-
tation, image quality should be verified.

The level of noise should be low. If the level of noise is too
high, the physician should check if the total ['**F]FDG activity
injected to the patient was adapted to the body weight, verify
that the residual activity at the level of the venous catheter is
low, and confirm the absence of patient motion during the
acquisition. If image quality is poor, PET acquisitions should
be repeated, using a longer frame duration in cases of low
['"*F]FDG activity.

In the presence of high ['®F]JFDG uptake in peripheral
muscles, patients should be asked about carbohydrate
consumption and/or insulin injection in the 6-h preceding
['®F]JFDG injection. In the presence of high residual blood
signal, blood glucose at the time of ['*F]FDG injection
should be checked. It is recommended to inject
["®F]FDG when the blood glucose is <11 mmol/L, or<
180 mg/dl, see section PET/CT procedure.

Suppression of ['*F]JFDG signal in the myocardium should
be evaluated. Physiological myocardial ['*F]JFDG uptake usu-
ally occurs in a diffuse intense pattern across the myocardium
but can also demonstrate regional variation. In absence of
adequate myocardial suppression of the ['*F]FDG signal, the
compliance of the patient to the preparative procedures should
be checked, and this information included in the report.

For the interpretation of PET acquisitions, it is im-
portant to make sure that the registration between PET
and CT acquisitions is good, in particular, in the cardiac
region. In presence of misregistration, data should be
realigned, or ultimately, if realignment is not successful,
an additional acquisition should be made for both PET
and CT focused on the myocardium only. ['*F]JFDG
PET findings should ideally be discussed by a
multimodality team with expertise in both the diagnos-
tics and management of patients with a suspicion of 4ls
cardiovascular diseases.

General visual analysis

Data can be evaluated with commercially available software
systems. Both CT-attenuation corrected and non-corrected
PET images have to be evaluated in the coronal, transaxial,
and sagittal planes, as well as in tridimensional maximum
intensity projection (MIP) cine mode. FDG-PET images are
visually analyzed by assessing increased myocardial
["®F]FDG uptake, taking into consideration the pattern (focal,
focal on diffuse, linear, diffuse), intensity, and relationship to
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areas of physiologic distribution in the near surroundings.
PET information should always be compared with morpho-
logic information available on CT, including ceCT scans
where available. It must be kept in mind that the sensitivity
of ['"®F]JFDG for infection and inflammation is not absolute
and that even in the case of negative PET results, a thorough
interpretation of the ceCT scan is essential.

General quantitative analysis (SUV)

In contrast to its use in oncology, SUV has only been partly
validated in inflammation and infection. Therefore, SUV met-
rics should be used with caution in clinical practice, particu-
larly regarding the use of specific SUV cutoff values. In a
['®F]FDG PET study in IE, a SUV cutoff > 3.3 was suggested
to avoid false-positive findings (26). However, extrapolation
of this cut-off value to other cardiovascular disease states is
difficult, in part due to differences in the underlying patho-
physiology and the intensity of inflammation. Moreover, care
has to be taken when extrapolating absolute SUV cutoff
values acquired between different hospitals and scanners be-
cause of the variation in these values related to differences in
the scanner and reconstruction methods used.

General interpretation criteria

To evaluate clinical ['*FJFDG PET-CT imaging, the follow-
ing should be taken into consideration:

* Clinical question

* Clinical history: fever, infection, inflammatory/auto-
immune symptoms

*  Prior imaging findings

* Brief treatment history, with particular regards to the pres-
ence of cardiac/vascular devices, date of implantation/ex-
traction, surgical/postsurgical complications

* Concomitant treatment including date of initiation/
withdrawal of antimicrobial therapy, steroids, statins, be-
ta-blockers, etc.

» Biomarkers: CRP/ESR value at the time of imaging, re-
sults of blood cultures (mumber of positive blood culture,
germ type)

» Scanning protocol (+ cardiac gating, CTA)

*  Adequate patient preparation.

«  Physiologic distribution of ['*F]FDG, and evaluation of
its individual variations in the specific patient

» Localization of abnormal uptake according to anatomic
imaging data.

+  The presence and aspect of the ['*F]JFDG signal (focal /
diffuse and homogeneous / heterogeneous) and persis-
tence of PET signal on non-attenuation corrected (NAC)
images. The presence of a focal, heterogenous ['*FIFDG
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signal that persists on non-attenuation corrected PET im-
ages 1s an imaging aspect in favor of an infectious process-

« Intensity of ['"*F]JFDG uptake (e.g., SUVmax)

» Correlation with data from previous clinical, biochemical,
and morphologic examinations

» Presence of potential causes of false-negative results (le-
sion size, low metabolic rate, hyperglycemia, lesions
masked by adjacent high physiologic uptake, concomitant
drug use interfering with uptake, such as ongoing steroid
therapy in systemic disorders)

» Presence of potential causes of false-positive results (in-
jection artifacts and external contamination, reconstruc-
tion artifacts from attenuation correction, use of surgical
glue in previous operations, normal physiologic uptake,
pathologic uptake not related to infection or inflammation)

Specific scoring, interpretation, and reporting
criteria for 41S disorders

Prosthetic and native valve endocarditis and cardiac
devices

IE comprises native valve endocarditis and infection of intra-
cardiac prosthetic material. The latter includes prosthetic valve
endocarditis (PVE, covering all types of prosthetic valves,
clips, annuloplasty rings, intracardiac patches, and shunts),
and infective endocarditis related to CIED, which include
pacemakers, implantable cardioverter defibrillators (ICDs),
and LVADs.

Prosthetic valve endocarditis
Study indication

Suspected PVE, and/or septic embolisms, spread of infection,
and portal of entry (POE).

Image analysis and interpretation

The location, pattern, and intensity of the [18F]FDG
signal at the valve: intravalvular (in the leaflets), valvu-
lar (following the supporting structure of the valve) or
perivalvular (next to the valve) (58). A perivalvular sig-
nal is in favor of infection, but infection cannot be
excluded in the presence of intra-valvular or valvular
["®F]JFDG signal. Focal and heterogenous uptake is con-
sistent with an infected valve. A typical location for
abscesses in PVE is the aorto-mitral trigon, but abscess-
es can develop in any region in contact with prosthetic
material. The probability of infection increases with the
intensity of the ['*F]JFDG signal at the valves/prosthesis.

The previous use of surgical adhesives can result in
false positive scan findings soon after valve surgery.
Post-operative inflammation can also lead to a false
positive scan, but depending on the level of risk for
infection (26) and a noncomplicated valve surgery,
scans <3 weeks surgery can be considered.

Several metrics have been tested to quantify the
['®FIFDG signal in prosthetic valve endocarditis. The
easiest semiquantitative parameter to measure is the
highest SUV (SUVmax) in the valvular region.
Another semiquantitative parameter that has been pro-
posed is the prosthetic to background ratio (PBR) that
takes into account the variability of the signal related to
residual blood pool activity and image noise, by
correcting valve SUV values by background activity in
remote nonaffected myocardium.

Whole body ['*F]JFDG PET imaging is particularly useful
in patients with a suspicion or proven PVE to identify septic
embolism, mycotic aneurysms, and the POE.

["®F]FDG PET is less suited to detect cerebral septic em-
bolism and mycotic aneurysms of intracerebral arteries owing
to the high physiological uptake of ['*F]JFDG in the brain. In
these cases, CT or MRI is the exam of choice.

Septic emboli appear as focal areas of ['*F]FDG up-
take and are typically located in the spleen, the liver,
the lungs, and the kidneys. Uptake at the intervertebral
disks and/or the vertebral bone (spondylodiscitis) sug-
gests metastatic infection, which can also be observed
in muscles and joints (septic arthritis). Embolic events
can be clinically silent in 20% of cases, especially those
affecting the spleen or brain. Septic emboli appear typ-
ically on CTA as hypodense lesions. ['*FJFDG PET is
more sensitive and specific than CTA for the detection
of septic emboli (11, 59).

["®FJFDG PET imaging in IE is also useful to identify the
POE. Typical portals of entry that can be identified are dental
abscesses, sinusitis, infected central catheters, skin infection,
and colonic cancers/polyps (11, 59).

In order to facilitate the interpretation of ['*F]FDG PET
images, we suggest classification of the ['*F]JFDG findings
as follow (13, 60, 61):

Typical findings

* Presence of focal, heterogenous, valvular/peri-valvular
["®F]FDG uptake persisting on NAC images and corre-
sponding to an area of suspected infection on echocardi-
ography or CTA (mobile mass, perivascular thickening,
aneurysm, or new perivalvular regurgitation).

« High ["®F]FDG signal in the absence of prior use of sur-
gical adhesives.

«  Presence of focal ['®F]JFDG uptake in organs with low-
background uptake consistent with septic embolism, my-
cotic aneurysms or the portal of entry (POE)
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Atypical findings

« Diffuse, homogeneous, valvular ['*F]FDG signal that is
absent on NAC images
+  Low ['®F]FDG signal

In all cases, correlation with clinical features echocardiog-
raphy and CT findings is mandatory. In doubtful cases, white
blood cell single-positron emission tomography (WBC-
SPECT) can further help define the presence/absence of infec-
tion at PVE. In patients who present with suspected native
valve endocarditis (NVE), the use of ['*F]JFDG-PET/CT is
less well established. The relatively low sensitivities of FDG
PET/CT reported in the literature for evaluation of NVE can
be accounted for by both physiological and technical factors
(63). The more frequent presence of isolated valve vegetation,
rare para-valvular involvement, lower predominance of poly-
morphonuclear cells, and increased fibrosis in NVE compared
with PVE results in reduced inflammatory response and sub-
sequently lower FDG uptake (64). Notably, the lower sensi-
tivity of FDG PET/CT is offset by a near perfect specificity for
detection of NVE and its unrivaled ability to identify septic
emboli (63). Thus, FDG PET/CT might provide clinically
useful information and beneficially impact management in a
subset of patients with suspicion of NVE, and the application
of gated-PET may further improve it (35). The study indica-
tion, image analysis and interpretation are in general compa-
rable with PVE.

Infection of cardiac implantable electronic devices
(CIED)

Study indication

Suspected infection of CIED

Defining the extent of infection in a proven CIED
infection

Positive blood culture in a patient with CIED

Image analysis and interpretation

Presence and aspect of the ['*F]JFDG signal (focal/linear) and
persistency on NAC images. The presence of a focal or linear
["®F]FDG signal that is located on or alongside a lead on CT
and persists on NAC images are characteristics in favor of an
infectious process. Late PET acquisitions might prove partic-
ularly useful in case of persistent high blood signal on PET
images acquired at 1 h p.i. CIED infection might be confined
to the leads, the pocket, or involve both sites. From a clinical
perspective, it is important to differentiate superficial
incisional infection which does not require CIED system ex-
traction, from infection limited to the pocket, and those
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extending to the leads which are commonly associated with
systemic infection and/or IE (65, 66). Lead extraction is a high
risk procedure, associated with a risk of emboli, major bleed-
ing including cardiac tamponade that increases with the time
since device implantation, in addition damage to the tricuspid
valve and resultant significant tricuspid valve regurgitation
and deterioration of the right heart side function, these com-
plications and can be avoided if the infection is limited to the
pocket or incision. Therefore, in CIED infections the presence
of ['"®*F]FDG uptake should be described as pertinent to gen-
erator pocket (superficial or deep) and/or to the leads (intra-
vascular or intracardiac portion of the leads). In addition, signs
of cardiac (valvular or pericardial) involvement as well as
systemic signs of infections (septic embolism, in particular,
in the lung parenchyma and POE) should be carefully
assessed and reported.

The presence of ['*FJFDG uptake along pacing leads, in
particular in the same location as mobile elements on echocar-
diography and in association with septic pulmonary emboli
appearing as multiple focal ['*F]FDG spots, is highly sugges-
tive of pacing lead infection (67). The contrast between
['"®F]FDG signal along the pacing lead and residual blood
signal is usually improved with delayed PET acquisitions
(3 h p.i) (68). In addition, every positive blood culture should
be carefully evaluated and prompt active exclusion of CIED
infection with other diagnostic techniques (69).

The pattern and intensity of ['*F]JFDG uptake should be
described considering that:

«  Moderate ['®FJFDG uptake in relation to post-operative
residual inflammation can be found up to 2 months after
CIED implantation but is usually of lower intensity than in
case of infection.

« A focal ['"*FIFDG signal is often present at the point of
entry of the lead into the subclavian vein that resembles an
focal inflammation. The semiquantitative ratio of maxi-
mum activity concentration of the pocket device over
mean count rate of lung parenchyma (67) or normalization
of SUVmax around the CIEDs to the mean hepatic or
blood pool activity (70) might help in differentiating mild
postoperative residual inflammation up to 2 months after
device implantation versus infection.

» The presence and location of the signal and its persistency
on NAC PET images should be described according to the
signal intensity and its location.

For CTA analysis and interpretation, see Table 2.

The evaluation of remote septic emboli should be per-
formed similar to cases of prosthetic valve endocarditis, but
with close attention also paid to the lung parenchyma.

In doubtful cases, white blood cell single-positron emission
tomography (WBC-SPECT) can further help define the
presence/absence of infection at PVE (11, 13, 69).
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Left ventricular assist device infection
Study indication

—  Suspected infection of LVAD
—  Evaluation of the extent of infection of LVAD
—  Positive blood culture in a patient with LVAD

Image analysis and interpretation

LVADs are generally subdivided into 5 regions that have to be
assessed separately: driveline exit site, driveline within the
subcutaneous tissues, LVAD pump, LVAD inflow cannula,
and LVAD outflow cannula.

«  The presence, intensity and location of the ['*F]JFDG sig-
nal across the different components of the device and the
persistency of the signal on NAC images should be de-
scribed (71).

* The analysis of the FDG signal in the pump and cannula is
more complex because of the artifacts caused by the de-
vice. The persistence of ['*F]JFDG uptake on NAC and its
association with infiltration around the pump on the
nonenhanced CT is highly suggestive of infection.
In doubtful cases, WBC-SPECT can help define
the presence/absence of infection of the pump and
cannula (72).

Infection of the driveline can be treated by reimplantation
of a new driveline in another site, whereas infection of the
pump and cannula usually requires long-term antibiotic
therapy.

Vascular graft infection

VGI is a rare but severe complication after vascular surgery,
associated with high morbidity and mortality rates (73). Early
diagnosis of VGI is important for correct and early surgical
and/or antibiotic treatment, which improves the outcome.
Aortic grafts are frequently used at the time of valve
surgery, with infection of valves and grafts often coexisting.

Recently, the European Society for Vascular Surgery
(ESVY), in collaboration with the EANM, published clinical
practice guidelines for the care of patients with vascular graft/
endograft infection (14).

Study indication

Diagnosis of suspected VGI

Image analysis and interpretation

The following aspects need to be carefully considered.
Vascular graft uptake pattern, focal ['*F]JFDG uptake is more
consistent with infection than diffuse low-level activity. The
exact location of the focal uptake, its distribution and intensity
should be recorded as well as ['*FJFDG uptake in regional
lymph nodes. The intensity of ['*F]JFDG accumulation can
be assessed visually using a scoring system of 0—4: grade 0,
["®F]FDG uptake similar to the background; grade I, low
['"®F]FDG uptake, comparable with that by inactive muscles
and fat; grade I moderate ['*F]JFDG uptake, clearly visible
and higher than the uptake by inactive muscles and fat; grade
111, strong ['*F]FDG uptake, but distinctly less than the phys-
iologic urinary uptake by the bladder; and grade IV, very
strong ['*F]JFDG uptake, comparable with the physiologic
urinary uptake by the bladder. Focal uptake, with an intensity
grade > II is suspected of vascular graft infection (74).
However, in addition to visual assessment, ['*FJFDG uptake
should also be quantified with SUVmax for all arterial graft
territories and normalized for background activity in the liver
or blood pool usually in the caval vein. Diffuse, homoge-
neous, and low intensity ['*F]JFDG uptake can be observed
in the majority of noninfected vascular graft prostheses par-
ticularly shortly after surgery. This is related to the body’s
response to foreign material, and should be considered to
avoid misinterpretation of PET/CT studies in patients referred
for suspected prosthetic infection (75).

Whole body imaging describe remote locations in the body
with abnormal increases in [ *F]JFDG uptake. Mycotic aneu-
rysm appears typically as a focal ['*F]JFDG signal in a region
corresponding to the arterial wall of the aorta or a peripheral
artery and should be confirmed with CTA.

Comparison with prior ['*FJFDG PET scans, if the
scan is performed to determine response to therapy, then
the distribution and intensity of the signal should be
compared to prior scans: increase in uptake, no change
in uptake, decrease in uptake.

Abnormalities on low dose CT should also be described.
For CTA analysis and interpretation, see Tables 2 and 4. In
doubtful cases, WBC-SPECT can further help define the
presence/absence of infection at the vascular graft (76).

Cardiac sarcoidosis

The role of ['*FJFDG PET for the diagnosis of extracardiac
sarcoidosis is well established. The assessment of cardiac sar-
coidosis is more complex but is now recommended for clini-
cal use by international guidelines (15, 77). Serial assessment
of the inflammatory status using ['*F]JFDG PET might be
helpful for monitoring therapy efficacy and for deciding treat-
ment continuation, tapering, or change of treatment.
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Study indication

Suspicion of cardiac sarcoidosis according to the HRS
guidelines (77)
Monitoring of treatment in patients with established car-
diac sarcoidosis

Image analysis and interpretation

Left ventricle: uptake pattern (1—no ["*FIFDG uptake, 2—
diffuse ['®*F]FDG uptake, 3—focal ['*F]FDG uptake, 4—
focal on diffuse ['*F]JFDG uptake; exact location of the focal
uptake; extent of the uptake; intensity of the uptake).

Right ventricle: uptake pattern (grades 1-4), exact
location of the focal uptake, extent of the uptake, inten-
sity of the uptake.

Combination of ['*FJFDG and perfusion imaging (MPI):
Perfusion defects in patients with cardiac sarcoidosis can rep-
resent areas of scar or inflammation. However perfusion de-
fect in combination with abnormal ['*F]JFDG uptake repre-
sents focal inflammation (Table 3) and can help differentiate
pathological from physiological ['*F]FDG activity. ['*F]FDG
and MPI patterns have been described as ‘early’ (only
["*F]FDG-positive), ‘progressive inflammatory’ (['*F]FDG
positive without major perfusion defects); ‘peak active’ (high
['"*F]FDG uptake with small perfusion defects), ‘progressive
myocardial impairment (high ['*F]JFDG uptake with large per-
fusion defects) or ‘fibrosis-predominant’ (['*F]FDG negative,
but with perfusion defects) (15). In patients with areas of in-
creased ['*F]JFDG uptake but no clear perfusion defects, this
may represent either early cardiac sarcoid beyond the

Table 3

resolution of perfusion imaging, or false positive physiologi-
cal ['*F]FDG uptake.

As an alternative to MPI, ['®F]JFDG PET can be compared
with CMR late gadolinium enhancement images. Areas of
increased [18F]FDG that correspond to noninfarct areas of
subepicardial and midmyocardial late gadolinium enhance-
ment typically in the septum and lateral wall are highly sug-
gestive of active cardiac sarcoidosis. Areas of typical late gad-
olinium enhancement with no ['*FJFDG uptake are consistent
with scarred, nonactive sarcoid regions. Regions of ['*F][FDG
uptake without late enhancement either representing ear-
ly sarcoidosis beyond the sensitivity of CMR or false
positive physiological ['®*F]JFDG activity. Myocardium
with neither increased ['*F]FDG nor late enhancement
is considered as normal (78).

Whole-body imaging describe extracardiac locations with
increased [ *F]JFDG uptake. Comparison with prior ['*FJFDG
PET scan, if scan is performed in the context of assessing
therapy response, then both the distribution and intensity
should be compared to prior scans (increase, equal, or de-
creased uptake). SUV quantification can be applied in cardiac
sarcoidosis diagnosis, which may provide prognostic informa-
tion (79). Abnormalities on low dose or CTA scan should be
described (Table 2). Comparison with other imaging modali-
ties: cardiac MRI and echocardiography. CMR has lim-
ited value to assess treatment response because the ma-
jority of these patients receive intracardiac devices that
may preclude CMR or produce artifacts when a MR
compatible ICD is implanted.

[*®Ga]DOTA conjugated peptides maybe promising as al-
ternative cardiac sarcoidosis, with the benefit of no physiolog-
ical myocardial uptake. [**Ga]DOTA conjugated peptides can

Interpretation of combined rest perfusion and ['*FJFDG imaging in cardiac sarcoidosis (Adapted from Slart et al. (15))

Rest perfusion ["*FIFDG

Interpretation

Normal perfusion and metabolism

Normal No uptake
Normal Diffuse
Normal Isolated lateral wall uptake

Abnormal perfusion or metabolism

Normal Focal
Defect No uptake
Abnormal perfusion and metabolism
Defect Focal in area of perfusion defect
Defect Focal on diffuse with focal in area of perfusion defect
Defect Focal in area of normal perfusion

Negative for cardiac sarcoidosis

Diftuse (usually homogeneous) [ISF]FDG most likely
due to suboptimal patient preparation

May be a normal variant

Could represent early disease or false positive
Perfusion defect represents scar from sarcoidosis or other etiology

Active inflammation with scar in the same location

Active inflammation with scar in the same location with either
diffuse inflammation or suboptimal preparation

Presence of both inactive scar and inflammation
in different segments of the myocardium or inactive
scar and false positive physiological ['*FJFDG uptake
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either be scored visually for intensity and distribution, or semi-
quantitatively using SUVs (80).

Large vessel vasculitis

LVV is defined as a disease mainly affecting the large arteries,
with two major variants, Takayasu arteritis (TA) and giant cell
arteritis (GCA). Vasculitis can be distributed locally in the
branches of the external carotid artery or the aorta and its main
branches more centrally in the thorax. Recent recommenda-
tions and statements have been provided, based on the avail-
able evidence and consensus of experts in the field, describing
patient preparation, as well as [ *F]JFDG PET/CT(A) acquisi-
tion and interpretation for the diagnosis and follow-up of pa-
tients with suspected or diagnosed LVV (16, 17).

In circumstances where there may be cardiac involvement,
patients with LVV should be further investigated (additional
myocardial perfusion imaging, CMR, CT coronary angiogra-
phy). This includes the risk of cardiovascular toxicity related
to drug therapy used in LVV (81).

Study indication

Diagnosis of LVV
Monitoring of LVV activity

Image analysis and interpretation

Large vessels as well as the cranial and extracranial
arterial structures. Uptake pattern diffuse circumferential
['*F]FDG uptake around the vessel, that is different
from the more regional and focal uptake observed in
atheroma. The exact location of the uptake, its distribu-
tion across the vascular system, and its intensity (vas-
cular scoring 03 against the liver) should be document-
ed (Table 4). Whole-body imaging describe extravascu-
lar locations with increased ['®F]JFDG uptake.
Comparison with prior ['*FJFDG -PET scans, if the
scan is performed to assess response to therapy, then
extent and intensity should be compared to prior scans:
increase in uptake, equal uptake, decrease in uptake.
Abnormalities on low dose CT should be described.

Comparison with other imaging modalities: CTA or
MRA if available. For CTA analysis and interpretation,
see Table 2.

Cardiac amyloidosis (clinical research)

Most cases of cardiac amyloidosis result from two protein
precursors: amyloid immunoglobulin light chain (AL), in
which the misfolded protein is a monoclonal immunoglobulin
light chain typically produced by bone marrow plasma cells,
and amyloid transthyretin (ATTR) amyloidosis, in which the
misfolded protein is transthyretin (TTR), a serum transport
protein for thyroid hormone and retinol that is synthesized
primarily by the liver. ['*FIFDG PET is mainly applied in
AL cardiac amyloidosis, and may be supportive of the usual
diagnostic tests in differentiating between systemic amyloid-
osis (no increased FDG uptake at the amyloid site) and local-
ized amyloidosis (increased FDG uptake at the amyloid site)
(82). However, other more specific PET radiopharmaceuticals
such as [''CJPIB, ['®F]florbetapir, and ['®F]florbetaben, have
demonstrated promise in clinical research studies as recently
described in the Expert Consensus Recommendations for
Multimodality Imaging in Cardiac Amyloidosis (5). In gener-
al, AL demonstrates a higher retention of these specific PET
compounds as compared with ATTR cardiac amyloidosis (20,
83). SPECT imaging with bone tracers is generally preferred
for the assessment of ATTR amyloidosis, although some pre-
liminary research data have suggest ['*F]NaF PET might pro-
vide similar results to SPECT bone agents but with the oppor-
tunity for tracer quantification (5, 84).

Study indication

Mainly research

Image analysis and interpretation

Left ventricle: uptake pattern (1—no ['*F]JFDG uptake (none),
2—diffuse ['"*FJFDG uptake (diffuse), 3—focal ['*F]FDG up-
take (focal), 4—Focal on diffuse ['*F]FDG uptake (focal on
diffuse), exact location of the focal uptake, extent of the up-
take, intensity of the uptake.

Table 4 Recommended
["*F]FDG PET/CTA interpreta-

LVYV visual grading (GCA and TA)

tion criteria in LVV (Adapted

from Slart et al. (16)) ['"*FIFDG

Grade 0
Grade 1
Grade 2
Grade 3

No vascular uptake (< mediastinum)

Vascular uptake > mediastinum and < liver uptake
Vascular uptake = liver uptake, may be PET-positive
Vascular uptake > liver uptake, considered PET-positive

LVV large vessel vasculitis, GCA giant cell arteritis, 7A Takayasu arteritis
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Right ventricle: uptake pattern (grades 1-4), exact
location of the focal uptake, extent of the uptake, inten-
sity of the uptake. Whole-body imaging describe
extracardiac locations with increased ['*F]FDG uptake.
Abnormalities on low dose or CTA scan should be de-
scribed. Comparison with prior ['*F]FDG -PET scan, if
scan is performed in the context of assessment therapy
response, then extent and intensity should be compared
to prior scan: increase in uptake, equal uptake, decrease
in uptake. Comparison with other imaging modalities,
echocardiography, MRI, and with specific PET amyloid
compounds that have been evaluated in patients with
AL and ATTR cardiac amyloidosis. For [''C]-PIB,
['®F]-florbetapir, ['®*F]-florbetaben, and
['®F]flutemetamol, see paragraph Specific PET display
for analysis and Table 1.

Atherosclerosis (clinical research)

Cardiovascular PET imaging has the potential to provide com-
plementary information to the anatomical assessment of ath-
erosclerotic plaques offered by computed tomography, relat-
ing to disease activity. ['*F]FDG is still a focus of interest,
especially in larger vessels such as the aorta and carotids,
despite its well-known limitations in the imaging of athero-
sclerosis. In an effort to overcome some of those limitations
and in order to standardize arterial PET imaging and thereby
facilitate multicenter atherosclerosis PET studies, a position
paper was published by the Cardiovascular Committee of
the European Association of Nuclear Medicine (EANM) in
2016 (18). This position paper addresses critical issues regard-
ing patient preparation, the ['*F]JFDG PET imaging protocol,
and data analysis. This document served as the basis for the
information in this procedural recommendation. ['*F]JFDG
faces several limitations with regard to atherosclerosis imag-
ing particularly in the coronary arteries. Several new PET
tracers have been developed or are under development to
overcome those limitations. In addition, these tracers might
provide new pathological insights and allow evaluation of
new targets for future diagnostic and therapeutic approaches.

Study indication
Measuring disease activity in atherosclerosis

Patient risk stratification for recurrent ischemic events
Monitoring treatment response

Image analysis and interpretation of large vessel ['®F]-FDG
PET

Vascular, uptake pattern, diffuse or focal ['*F]JFDG, exact
location, distribution of the uptake/vascular segments,

@ Springer

intensity (vascular scoring 0-3 against the liver). Focal uptake
in the aorta is more consistent with atherosclerotic activity as
compared to the diffuse high intensity uptake observed in
large vessel vasculitis. For the quantification of ['*F]JFDG
uptake in atherosclerotic plaques, application of TBR analysis
instead of SUV is recommended, using the (venous) blood
pool activity as background. The latter should be measured
in a consistent fashion. TBR values provide a ratio between
two measurements thereby limiting the effects on signal quan-
tification of errors in patient weight, the applied activity of the
injected radiotracer and the acquisition time point. Whole-
body imaging describe extravascular locations with increased
['"®F]FDG uptake. Abnormalities on low dose or CTA scan
should be described such as the atherosclerotic plaque burden,
presence of obstructive stenoses and plaque composition and
shape for the identification of high risk plaques. As described,
CTA is recommended when assessing the coronary arteries.
Comparison with prior ['*FJFDG PET scan: if scan is per-
formed to assess response to therapy, then extent and intensity
should be compared to prior scans: increase in uptake, equal
uptake, decrease in uptake. An advantage of ['*FJFDG PET
imaging is that changes in uptake are detectable as early as 3—
4 months after initiation of drug treatment, whereas morpho-
logical changes, for instance in plaque volume, may only be
visual later on during the disease process (12-24 months).
['"®FJFDG has therefore been used as an endpoint in clinical
trials investigating novel atherosclerotic treatments.
Comparison with other imaging modalities: CTA, MRA,
and alternative PET radiopharmaceuticals, such as ['*F]NaF
and [**Ga]DOTA conjugated peptides to SSRs. The target-to-
background uptake ratio of ['®*F]NaF exceeds that of
['"®F]FDG and may be more promising for future clinical ap-
plications particularly in the coronary arteries (85). The max-
imum arterial radioactivity concentration of [**Ga]DOTA
conjugated can be normalized by mean blood pool activity
in the superior vena cava (maximum tissue-to-blood ratio
[TBRmax], and demonstrated a better power to discriminate
high-risk versus low-risk coronary lesions than ['*FJFDG (3).
Time-of-flight and point-spread-function may potentially im-
prove the detection of atherosclerosis activity on PET/CT
(86). For CTA analysis and interpretation, see Table 2.

Myocardial innervation (clinical research)

Novel methods and different PET ligands have been devel-
oped to measure presynaptic and postsynaptic function of the
cardiac neuronal system. There is also an increasing need for
identification of new and refinement of existing methods for
noninvasive risk stratification in patients with heart failure,
particularly to help identify patients at risk for ventricular
tachyarrhythmia’s and sudden cardiac death (87, 88). The
most commonly used PET tracer for imaging presynaptic
sympathetic function is [''C]mHED, which is also a
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norepinephrine analogue. Standardization is needed for PET
myocardial innervation imaging, including patient preparation
before the PET procedure such as medication withdrawal (89),
as described in the Guidelines on ['**ImIBG (30).

Study indication

Assessing severity and prognosis of heart failure
Assessing risk of ventricular arrhythmias or sudden car-
diac death

Clinical trial phase

Image analysis and interpretation

Originally, kinetic analysis of [''CJmHED data was per-
formed according to compartment models, which requires
good understanding of the different compartments to which
the tracer is distributed. Different compartments are connected
by rate constants, which describe the exchange of tracer be-
tween them, using blood sampling (arterial preferable) as in-
put and reference. As an alternative to these complex proce-
dures, [''CJmHED uptake is now commonly quantified
through a retention index, which is defined as the ratio of
the activity in the myocardium in the final image of a 40- or
60-min dynamic sequence to the integral of the image-derived
arterial blood time—activity curve. A volume of interest (VOI)
for the input function is placed in the basal plane; the VOI for
tissue curves is place within the left ventricular wall.
Acquisition of [''CJmHED data can also be performed using
ECG gating, for simultaneous analysis of LV volumes and
function. Distribution of [''CJmHED throughout the left ven-
tricular myocardium in healthy normal individuals is region-
ally homogeneous around the wall with high uptake in all

Table 5

myocardial segments. Visual interpretation of polar maps, an-
alogue to and alongside those of myocardial perfusion, pro-
vides information for global innervation status. Generally,
perfusion PET images are also acquired in conjunction with
the innervation study to evaluate perfusion-innervation mis-
match areas. With the 17-segment AHA model, detailed in-
formation about perfusion—innervation relationships can be
obtained (40, 88). Mean [''CJmHED retention can be deter-
mined for those areas with both normal perfusion (>80% of
the maximum myocardial blood flow) and innervation (> 75%
of the segment with maximum [''CJmHED retention), areas
with a mismatch pattern: normal perfusion and decreased car-
diac sympathetic innervation (<75% of the segment with
maximum [''C]JmHED retention), and both abnormal perfu-
sion (<80% of the maximum myocardial blood flow) and
innervation (<75% of the segment with maximum
[''CJmHED retention). Comparison with other imaging mo-
dalities: CTA, MRA.

PET/CT pitfalls

PET/CT imaging is associated with several potential pitfalls.
These commonly include inadequate patient preparation, mo-
tion scatter, and PET/CT mismatch artifacts (90). See Table 5
for more details among pitfalls in 4Is PET/CT imaging.

PET/MR procedurals in 4ls

So far, the evidence for using PET/MR imaging in 4Is is very
limited, but some overview papers have been published in the
field of cardiovascular diseases (12, 91-93). For the PET ac-
quisition and reconstruction in PET/MR, recommendations

Pitfalls in PET/CT imaging of inflammatory-, infective-, infiltrative-, and innervation (4Is)-related cardiovascular diseases

Patient preparation Acquisition

Reconstruction Reading

Elevated blood glucose resulting in Motion artifacts
low quality

['®F]FDG PET

Diet not followed and no
suppression of myocardial uptake
resulting in low quality ['*FJFDG
PET

Use of interfering drugs such as
antibiotics, steroids resulting in
reduced sensitivity of ['*F]JFDG
PET

Drug interfering with cardiac
presynaptic sympathetic tracers
resulting in reduced sensitivity of
[''ClmHED PET

calcification artifacts

Arrhythmias

No standardization

Metal/scatter/beam-hardening/highly

Mismatch fusion PET and CT ~ False positive uptake surrounding

Truncation Pathological conditions, such

as thrombi, tumor, (FP)

Short interval between
surgery and imaging

No standardization

No standardization
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are identical to PET/CT imaging. Currently commercially
available Dixon-based MR-based attenuation correction
methods using four tissue class segmentation are preferred
for ['"®F]JFDG quantification (94) and have been shown to
yield quantitatively comparable results as PET/CT for perfu-
sion imaging with ['>O]water (95). In general, the use of at-
tenuation correction methods incorporating bone should be
encouraged when they become available (96). When avail-
able, the use of free-breathing radial VIBE sequences for
AC is encouraged since these AC sequences appear to reduce
breathing and motion artifacts (97). Particular caution is war-
ranted in case of MR-compatible, implanted material such as
stents or sternal wires, as these can lead to incorrect attenua-
tion maps and thus to incorrect attenuation-corrected PET data
(98). In addition, endocarditis and device infection is not a
major application for PET/MR due to the interaction
between ferromagnetic material and the magnetic field.
Another potential source of error is the attenuation of
the PET signal by MR equipment such as radiofrequen-
cy coils (99). This can be overcome by using predefined
attenuation map templates for, e.g., the patient table and
nonflexible coils. This approach is not feasible for flex-
ible coils, however the flexible RF coils are designed
PET-transparent and have shown to cause an attenuation
bias of only 3-5% (99). It should be emphasized that
not all of the possible corrections of PET attenuation
are implemented in clinical routine. In summary, how-
ever, the correction of PET/MR attenuation can be con-
sidered accurate and robust. While correction of PET
data for motion based on MR data represents a promis-
ing approach, it is not yet routinely implemented.
Major fields of application of PET/MR:

— Cardiac sarcoidosis could be a major field of application
for PET/MR (100, 101). Myocardial perfusion, scars, de-
tailed morphological analysis, and functional parameters
can be assessed by MR while PET depicts actively dis-
eased myocardial areas with high sensitivity and is very
well suited for assessing the course of the disease (therapy
response/guidance/monitoring) (102, 103).

— LVV including giant cell arteritis and Takayasu arteritis.
The few existing studies indicate that PET/MR is suitable
to determine the extent of the disease and to determine
disease activity (104, 105).

— Atherosclerosis: MRI allows detailed morphological
characterization of aortic and carotid plaques, including
assessments of the fibrous cap or the lipid core, while
PET is capable of imaging the inflammatory activity or,
more generally, the vulnerability. The most commonly
used tracer is []8F]FDG (106, 107), but initial work on
other tracers such as [ *F]NaF (107) or other targets such
as the chemokine receptor 4 (108) or amyloid deposits
(109) are also underway.

@ Springer

— Cardiac amyloidosis: MRI can be used to confirm the
suspicion of cardiac involvement in amyloidosis; PET
allows specific imaging of amyloid deposits using
amyloid-specific tracers. A PET/MRI study on the use
of ["®F]NaF in cardiac amyloidosis has shown the feasi-
bility of this tracer providing similar information to Tec-
99-m labeled bisphosphonates (84, 110).

—  Myocardial innervation imaging, no relevant applications
are currently envisioned using PET/MRL

The 4ls-team

A multidisciplinary team approach has been proposed as the
model in oncology in many hospitals and medical centers.
More recently, this approach has been extended to cardiology
with the successful introduction of the heart valve team for the
assessment of patients being considered for transcutaneous aortic
valve implantation (111). In the field of infective endocarditis
(IE), a multidisciplinary approach for evaluating patients with
IE has also been introduced in order to improve management
and outcome. This example can be extended to all complex
disease states including the 4Is. We would therefore advocate
creation of a 4Is-team of experts to improve clinical assessment
of decision making for these complex patients. To be effective,
the structure of a 4Is team has to be modeled on the local health
systems, including cultural and socioeconomic aspects. Its suc-
cess is contingent upon knowledge of one’s own area of expertise
as well as that of the team members, flexibility of roles, and
comfort and skills in supplying and receiving interdisciplinary
education. To promote effective collaboration, the team must
address issues of group dynamics, including clarification of indi-
vidual roles, team unity, communication, and patterns of
decision-making and leadership. The clinical imager plays an
active role in the teamwork program and in the global education-
al planning, developing “capabilities” and “‘competencies”, core
skills, knowledge and attitudes to facilitate interspecialist com-
munications. The challenge of the clinical imager within the 4Is
team is to establish a new professional perspective: a new vision
of the imager, no longer thinking as an individual, but rather as an
integral player and contributor to the team, translating the image
content into clinical planning and a decision-making process that
enhance the quality of patient care.

Conclusions

With this document, we provided a standard for PET/CT im-
aging in inflammatory, infective, infiltrative, and innervation
dysfunctional (4Is) cardiovascular diseases. It can be applied
in clinical practice and integrated in (multicenter) clinical trials
for optimal procedural standardization. 4Is-related
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cardiovascular diseases are generally complex and often re-
quire wide ranging expertise and a multidisciplinary approach
for optimal diagnosis and management. New PET 4Is radio-
pharmaceuticals beyond ['*F]FDG are available, but are cur-
rently mainly in the clinical research phase. Further clinical
evaluation of the most promising PET tracers is warranted
before their implementation in routine clinical practice.
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