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Abstract

Purpose The RGD-integrin, ocv[36, plays a role in the pathogenesis of pulmonary fibrosis through activation of transforming
growth factor beta (TGFf3). This study sought to quantify expression of av[36 in the lungs of healthy humans and subjects with
pulmonary fibrosis using the avp6-selective [ *FJFB-A20FMDV2 PET ligand.

Methods ['*F]FB-A20FMDV2 PET/CT scans were performed in healthy subjects and those with fibrotic lung disease. Standard
uptake values (SUV) and volume of distribution (V1) were used to quantify av36 expression. In subjects with fibrotic lung
disease, qualitative assessment of the relationship between av36 expression and the distribution of fibrosis on high resolution
computed tomography was conducted.

Results A total of 15 participants (6 healthy, 7 with idiopathic pulmonary fibrosis (IPF) and 2 with connective tissue disease
(CTD) associated PF) were enrolled. Vrand SUV of ['*F]FB-A20FMDV2 were increased in the lungs of subjects with pulmo-
nary fibrosis (PF) compared with healthy subjects. Geometric mean V. (95% CI) was 0.88 (0.60, 1.29) mL/cm? for healthy
subjects, and 1.40 (1.22, 1.61) mL/cm’ for subjects with IPF; and SUV was 0.54 (0.36, 0.81) g/mL for healthy subjects and 1.03
(0.86, 1.22) g/mL for subjects with IPF. The IPF/healthy Vr ratio (geometric mean, (95% CI of ratio)) was 1.59 (1.09, 2.32)
(probability ratio > 1 = 0.988)) and the SUV ratio was 1.91 (1.27, 2.87) (probability ratio > 1 = 0.996). Increased uptake of
['®F]FB-A20FMDV?2 in PF was predominantly confined to fibrotic areas. [ *F]JFB-A20FMDV2 measurements were reproduc-
ible at an interval of 2 weeks. [ *F]JFB-A20FMDV2 was safe and well tolerated.

Conclusions Lung uptake of ['*F]FB-A20FMDV2, a measure of expression of the integrin orv36, was markedly increased in
subjects with PF compared with healthy subjects.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive
scarring of the lungs of unknown aetiology. It results in respi-
ratory failure and has a median untreated survival of 3 years
from diagnosis [1]. Diagnosis is made by a multidisciplinary
team, primarily after high-resolution computed tomography
(HRCT) of the lungs. The observation of subpleural, basal
honeycombing is pathognomonic for IPF and reflects the his-
tological feature of usual interstitial pneumonia (UIP) [2].
HRCT imaging has been considered to stage IPF (Walsh
2018). Visual quantification of disease on HRCT in IPF pro-
vides prognostic information. However, this approach is ham-
pered by its subjective nature, heterogeneity and variability.
Computer-based quantification of disease on HRCT may pro-
vide more objective and reproducible data. However, this field
suffers from the lack of large, well-annotated imaging datasets
which hinder the development and testing of new computer-
based tools, and lack of prospective trials for imaging bio-
marker validation. HRCT is not generally considered sensitive
enough to be used as an efficacy endpoint in clinical studies,
requiring years of treatment to observe a response.

There is no cure for IPF and pharmacological treatments
are limited to drugs (pirfenidone and nintedanib) that slow
disease progression but have significant side effects [3].
Unmet need remains high and new treatments are required.
In some individuals with connective tissue disease (CTD)
such as rheumatoid arthritis or systemic sclerosis, interstitial
lung disease (ILD) including pulmonary fibrosis may develop
with features and prognosis similar to those for IPF [4, 5].

The v 36 integrin is a cell surface adhesion receptor that is
induced on damaged epithelium [6]. In its activated form, the
av36 integrin interacts with extra-cellular matrix (ECM) via
ligands bearing the arginine-glycine-aspartic acid (RGD) tri-
peptide sequence [7]. Binding of ECM ligands to av[36 pro-
motes cell adhesion, activation of intra-cellular signalling
pathways and local release of activated TGF(3 from latent
complexes in the matrix [7-9]. Active TGF 3 mediates multi-
ple pro-fibrotic processes resulting in progressive lung scar-
ring, ultimately resulting in organ failure and death [10]. axv[36
integrins have been demonstrated to play a role in the
aetiology and progression of several fibrotic diseases includ-
ing IPF, renal and hepatic fibrosis, as well as some cancers [11,
12]. A number of drugs targeting ocv[36 integrin across fibrotic
diseases are currently in development including an inhaled
small molecule inhibitor of «xv[36 under clinical development
by GlaxoSmithKline R&D and an intravenous monoclonal
antibody under development by Biogen (see studies registered
on clinical trials.gov: NCT01371305, NCT02612051 and
NCT03069989) [13]. Semiquantitative analysis of av[36
integrin expression in lung biopsy specimens from
individuals with TPF has been shown to have potential
prognostic significance, with higher levels predicting more
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rapid progression, and mortality [14]. Non-invasive tracking
of av36 integrin expression could therefore provide a mech-
anism to assess drug action, disease activity and prognosis.

The envelope protein of foot and mouth disease virus
(FMDV) contains a 20 amino acid peptide sequence,
NAVPNLRGDLQVLAQKVART (A20FMDV2) that binds
the av36 integrin with high affinity and selectivity [15-18].
Automated GMP-compatible radiochemistry non-clinical
radiodosimetry of the A20FMDV2 peptide is described in
the accompanying article [19]. ['*F]FB-labelled
A20FMDV?2 has an acceptable toxicology profile, showed
no adverse effects in healthy subjects and has an effective dose
(0.0217 mSv/MBq) that permits multiple scans in a single
subject [20]. In the murine bleomycin model, the evolution
of pulmonary fibrosis is accompanied by an increased expres-
sion of ocv[36 integrins that is reproducibly quantifiable using
SPECT assessment of A20FMDV?2 binding [21].

In this study, we investigated the potential for ['*F]FB-
A20FMDV?2 to safely and reproducibly quantify avf36
integrins in the lungs of healthy subjects as well as those with
pulmonary fibrosis due to IPF or CTD-ILD.

Materials and methods
Study design

Study objectives and endpoints are presented in Table 1.
Healthy participants underwent one ['*F]JFB-A20FMDV2
PET/CT scan each. Subjects with pulmonary fibrosis
underwent an HRCT and two ['*F]FB-A20FMDV2 PET/CT
scans, up to 2 weeks apart, to assess test/retest variability.
Healthy participant data was used to optimise scanning proce-
dures prior to recruitment of participants with fibrotic lung
disease.

Subjects were screened and recruited at Hammersmith
Medicines Research (HMR), London, UK, and imaging as-
sessments were conducted at Invicro, London, UK. The study
was approved by the London—Brent Research Ethics
Committee, UK (reference 13/L0O/1792), and permission to
administer radioisotopes was obtained from the
Administration of Radioactive Substances Advisory
Committee (ARSAC) of the UK (Ref: 630/3925/30809).
The study is registered in clinical trials.gov (NCT02052297;
RES116235).

Participants

Main inclusion criteria were as follows: male subjects > 45
years and female subjects > 55 years at the time of signing the
informed consent; a positive Allen’s test in at least one arm for
arterial blood sampling; body weight > 50 kg and body mass
index (BMI) within the range 19.0-35.0 kg/m>. Additionally,
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Table 1 Objectives and endpoints

Objectives

Endpoints

Primary
To determine the utility of ['*F]FB-A20FMDV?2 to quantify avf36
availability in healthy, IPF and CTD-ILD participants

Secondary

To compare ['SF]JFB-A20FMDV?2 uptake in areas of the lungs with
varying degrees of fibrosis as determined by high resolution computed
tomography (HRCT).

To compare ['*F]JFB-A20FMDV?2 uptake in IPF and CTD-ILD lungs
versus healthy lungs.

To determine the reproducibility of ['*FJFB-A20FMDV?2 uptake in IPF
and CTD-ILD participant lungs.

Uptake and distribution of ['*F]JFB-A20FMDV?2 in organs of interest
(volume of distribution [V], and/or standardised uptake values
[SUVD.

Qualitative assessment of the relationship between the distribution of
fibrosis in the lungs from IPF and CTD-ILD participants and the uptake
of ["*F]FB-A20FMDV2.

Volume of distribution (Vr), and/or standardised uptake values (SUV)
in IPF and ILD vs healthy lungs.

Test/re-test variability of volume of distribution (V), and/or standardised
uptake values (SUV).

self-reported healthy subjects or individuals with IPF [1] sys-
temic sclerosis (SSc) [22] or rheumatoid arthritis (RA) [23]
who had confirmed severe or progressive interstitial lung dis-
ease (ILD) on HRCT [24] were enrolled. Exclusion criteria
included the following: a current history of liver disease,
claustrophobia, radiation exposure in research studies greater
than 10 mSv over the preceding 3 years or greater than
10 mSv in any single year, human immunodeficiency virus
(HIV) or Hepatitis B/C virus positive status, anaemia (< 11
g/dL), abnormal blood coagulation profile and previous or
current exposure to animals that may harbour FMDV?2.

Sample size

The sample size was estimated to provide a precision of <
50% for the parameters of interest (volume of distribution
(V1) and/or standardised uptake values (SUV)). Preclinical
data was available to conduct a preliminary estimate of the
number of subjects that may be required to achieve this pre-
cision. Coefficients of variation (CV) for standardised uptake
values (SUV) in rat tissues at various timepoints (n = 3 per
timepoint) following administration of ['*F]JFB-A20FMV2
ranged between 3 and 150% for different tissues and

Table 2 Estimated

.1
precision for mean SUV Precision’ of mean SUV

CV(@%) N=6 N=8 N=20
39 41% 33% 18%
58 61% 48% 27%
100 105%  84% 47%

"' Calculated as half the width of a 95%
confidence interval for the mean and
expressed as a percentage of the estimated
mean

incubation timepoints [19]. The mean CVs across all rodent
tissues were 39-58%; for the lung, the mean CV ranged from
3 to 26%. Using these estimates for SUV variability from the
rodent, the precision of the mean SUV calculated as half the
width of a 95% confidence interval for the mean and
expressed as a percentage of the estimated mean, for 6, 8
and 20 humans, was calculated for this study (Table 2).
Thus, a sample size of 6 was likely to achieve the required
precision, depending on the observed CV (%) in humans.
Thus, a sample size re-estimation was planned to confirm
the required sample size.

Immunogenicity assay

A direct immunoassay for A20FMV2 was developed and val-
idated [20]. Serum samples were stored at — 70 °C until
assayed.

Imaging

A20FMDV?2 was labelled with fluorine-18 by conjugation of
the resin bound precursor (A20FMDV?2) to the prosthetic
group [18F]-fluorobenzoic acid ([ 18F]FB), followed by acidic
cleavage from the resin, purification by semi-preparative
HPLC and reformulation in saline. The synthetic procedure
of [18F]-FB-A20FMDV?2 was adapted from a previously de-
scribed method [19, 25]. An automated procedure was devel-
oped in-house using an Eckert and Ziegler Modular Lab sys-
tem coupled with a semi-preparative HPLC system.

A venous cannula was inserted into a cubital or forearm
vein and an arterial cannula was inserted into the radial artery
under local anaesthesia. GMP grade ['*F]JFB-A20FMVD2
[19] was injected via the venous cannula and emission data
acquired for up to 240 min. The arterial cannula was used to
collect blood samples throughout the scan to enable the quan-
tification of the total and unmetabolised ['*F]FB-
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A20FMDV2-related radioactivity in whole blood and plasma
throughout the duration of the scan. The data provided by the
arterial blood samples collected was used to derive an input
function for the analysis of emission PET data.

Whole blood arterial activity data was obtained from a
continuous sampling system (ALLOG AB, Mariefred,
Sweden), measured at a frequency of 1 Hz for the first
15 min of each scan (900 data points per scan). Manual
(discrete) blood samples were withdrawn at the following
timepoints: 5, 10, 15, 20, 25, 30, 40 and 50 min after scan
start. Discrete samples were analysed for radioactivity in
whole blood and plasma components using a Perkin Elmer
(Cambridge, UK) Wizard 1470 gamma counter. A subset of
the discrete plasma samples (5, 10, 15, 20, 30 and 50 min)
were analysed to determine the fraction of radioactivity corre-
sponding to the intact radiotracer compound, as opposed to
radioactive metabolites.

The total effective radiation dose received was not expect-
ed to exceed 7.2 mSv for the healthy subjects who had a single
PET/CT scan and 23.0 mSv for the pulmonary fibrosis partic-
ipants who had two PET/CT scans as well as a high-resolution
CT scan. This initial dosimetry estimate was based on a con-
servative approach using a dose conversion factor of 33.5
uSv/MBq injected activity based on preclinical data for the
novel radioligand and a maximum administered activity of
180 MBgq.

Following assessment of human dosimetry [20], the dose
conversion factor was later revised downwards to 21.7 uSv/
MBq, with correspondingly lower dose estimates of 5.1 mSv
for the healthy and 18.8 mSv for the IPF patient group.
Furthermore, following review of the quality of the images
from healthy and IPF participants, the maximum administered
activity for the CTD-ILD participants, was reduced from 180
to 150 MBq, thus lowering the maximum estimated radiation
dose to 17.6 mSv.

Image acquisition

Dynamic [18F]-FB-A20FMDV2 PET scans were acquired in
list mode on a Siemens PET/CT system Biograph 6 TruePoint
with TrueV (Siemens Healthcare, Erlangen, Germany). For
the first scan, a high-resolution CT (HRCT) was achieved
prior to the PET/CT. A low-dose CT scan was performed
immediately before each PET study in order to estimate tissue
attenuation (CT-AC). Following intravenous bolus injection
of the radiotracer, dynamic PET emission data were acquired
for at least 90 min (frame durations 8 x 15,3 x60s, 5 x 120
s, 3 X300 s, 6 x 600 s). If scans were longer than 90 min,
additional 600-s frames were used. The dynamic images were
reconstructed using Fourier rebinning and a 2D filtered dis-
crete inverse Fourier transform algorithm with 5-mm isotropic
Gaussian filter on a 128 x 128 matrix with 2.6 zoom giving 2-
mm isotropic voxels. The dynamic images were also
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reconstructed using OSEM (2 iterations and 8 subsets) for
visualisation purposes. Corrections were applied for attenua-
tion, randoms and scatter.

Image analysis

Attenuation correction CT (AC-CT) was used to semi-
automatically delineate the left and right lungs. Then, a man-
ual QC of each lung mask was performed: starting from one
axial extremity, masks were displayed overlaid with the AC-
CT image and non-lung labelled regions were manually re-
moved (e.g. trachea). Morphological operations were applied
to both lungs to remove 5 mm of the border to minimise any
spillover of radioactivity from adjacent tissues. Finally, a cor-
rection was performed to remove potential breathing artefacts
at the base of the lung and to avoid any radioactivity spillover
from the liver.

Tissue fraction (TF) correction uses the low-dose attenua-
tion correction CT scan to calculate the fraction of the lung
volume that is air rather than tissue/blood [26]. As air cannot
contain any radioligand, correcting for the tissue fraction
yields outcome parameters that better reflect the tissue-
specific uptake. The TF represents the amount of tissue re-
maining after the volume of air has been removed.

Time activity curves (TACs) were extracted from the dy-
namic [18F]FB-A20FMDV2 PET images for the left lung,
right lung and total lungs (left + right lung). Static (SUV)
and dynamic (V1) outcome parameters (described below)
were derived from these TACs and the input function.
Subsequently, SUV and V1 were corrected for tissue fraction
by dividing the outcome parameter by the TF.

Volume of distribution and standard uptake values

PET emission data and blood radioactivity data were collected
for each scan and fitted to a variety of kinetic models to de-
termine the optimal model to quantify the data. A physiolog-
ical parameter of interest (V1: volume of distribution) was
calculated for the tissue of interest.

Vris a measure of the total (i.e. both non-displaceable and
specific binding) distribution of the radioligand into the tissue
[27] and is equivalent to an equilibrium partition coefficient.
The one-tissue compartment (TC) model was selected via
Akaike Information Criterion (AIC) as the most appropriate
model [28]. MIAKAT™ fits the one TC model to the data
using non-linear optimisation techniques to estimate the indi-
vidual rate constants (K, k»), then calculates V1 from these
rate constants as,

K

V=
T I
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In addition to Vp, the model also estimates the volume of
blood (V) in the region of interest.

Statistical analyses

This was an exploratory study and no formal statistical hy-
potheses were tested. Instead, estimation approaches were
used to obtain mean values (including 95% confidence inter-
vals) for the output parameters (i.e. Vr and SUV), following
administration of ['*F]FB-A20FMDV?2 to healthy, IPF or
CTD-ILD participants, and test-retest variability was assessed.
SUV values reported are averaged over 10 to 30 min post
injection of the tracer.

Statistical analysis of Vrand SUV using data from healthy
participants and those with IPF was performed to estimate the
difference in ocv 36 binding in both the combined lungs of IPF
participants compared with healthy participants.

A linear mixed model with a subject random effect was
fitted to the data with V or SUV as the response and visit
(scan 1 and scan 2) and group (IPF and healthy) as the inde-
pendent variables with and without tissue fraction correction.
The probability ratio > 1 and probability ratio > 2 were also
computed using the calculated ¢ statistic and Kenward-Roger
degrees of freedom [29] from the model.

When test-retest was performed, individual test-retest var-
iability of the binding output parameters (difference scan 2—
scan 1 divided by the mean of scan 1 and scan 2, expressed as
a percentage) in IPF patients was calculated for each tissue of
interest. Using these data, a Bland-Altman plot of difference
scan 2—scan 1) against (mean of scan 1 and scan 2) was pro-
duced for each tissue of interest, and limits of agreement were
computed. Estimates (95% CI) for within and between-subject
variability in IPF patients were obtained from a mixed model
fitted separately for each tissue of interest, including scan oc-
casion as a fixed effect and subject as a random effect.

No statistical analysis was performed to compare data from
healthy participants to subjects with CTD-ILD due to the
small number of participants with this diagnosis recruited in
the study.

Safety data was listed and summarised descriptively. No
formal statistical analysis of safety data was conducted.

Results
Participants

A total of 15 participants (6 healthy, 7 with a diagnosis of IPF
and 2 with a diagnosis of CTD-ILD) were enrolled and com-
pleted the study (Table 3). Of the two participants with CTD-
ILD, one had RA and the other SSc. None of the subjects was
withdrawn from the study. Seven participants with IPF were
sufficient to achieve a precision of < 50% for the parameters of
interest Vrand/or SUV and therefore recruitment was stopped.
The small number of participants with CTD-ILD was due to
recruitment being stopped after the study had achieved its
primary endpoint in IPF subjects.

Use of prior and concomitant medications was reported in
all 7 subjects with IPF and 2 subjects with CTD-fILD. Use of
prior and concomitant medications was as expected in these
disease populations. Four subjects with IPF were taking
pirfenidone and two subjects were taking glucocorticoids
(one subject with IPF for comorbid shingles and one subject
for CTD).

Clinical safety and tolerability

A total of 10 subjects out of 15 (75%) experienced AEs during
the study (Table 4); none of which led to withdrawal. The
most frequently reported AE was pain in extremities, which
was reported in 4 subjects (27%), probably related to the ar-
terial cannulation procedure. Each of the remaining AEs was
reported in a single subject. All AEs were mild or moderate in
intensity and had resolved by the follow-up visit. None of the
AEs was considered by the investigator to be related to the test
material (PET radioligand) administration. There were no
deaths or SAEs.

Immunogenicity

Immunogenicity was assessed by the presence of antibodies to
A20FMDV?2. Antibodies were observed in 3 subjects. One
healthy participant had detectable antibodies prior to scanning
and at follow-up. Two IPF participants had detectable

Table 3 Demographics of

participants Demographics Healthy (N = 6) IPF (N=7) CTD-ILD (N=2)

Age in years (mean (SD)) 61.2 (9.22) 70.6 (5.65) 63.5 (3.54)
Sex (n (%))

Female 3 (50) 1(14) 1 (50)

Male 3 (50) 6 (86) 1 (50)
BMI (kg/m?) (mean (SD)) 25.35(2.91) 24.81 (3.26) 30.70 (3.39)
Height (cm) (mean (SD)) 171.5 (8.38) 175.7 (7.48) 168.0 (15.56)
Weight (kg) (mean (SD)) 74.7 (10.7) 76.6 (10.6) 87.9 (25.6)
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Table 4 Summary of all adverse

events by diagnosis (all subject Adverse events, preferred term  Healthy W=6) IPF(V=7) CID-ILD W=2)  Total* (N =15)

population)
Any event, n (%) 5(83) 4. (57) 1 (50) 10 (75)
Pain in extremity 3(50) 1(14) 0 4(27)
Back pain 0 1(14) 0 1(7)
Dizziness 1(17) 0 0 1(7)
Dysaesthesia 0 1(14) 0 1(7)
Headache 1(14) 0 1(7)
Restless legs syndrome 1(14) 0 1(7)
Catheter site bruise 1(14) 0 1(7)
Catheter site pain 1(17) 0 0 1(7)
Vessel puncture site bruise 0 1(50) 1(7)
Abdominal discomfort 1(17) 0 0 1(7)
Nasopharyngitis 1(14) 0 1(7)
Blood pressure increased 1(14) 0 1(7)

*Total is total number of subjects experiencing the event and not total number of events

antibodies prior to any scanning procedures, between the two
scans and at follow-up. These data may imply previous expo-
sure to FMDV?2 and the presence of a cross-reacting antibody
in subjects with IPF. All results were negative or very low (<2
titre) on re-testing.

Since all results were observed prior to scanning as well as
at follow-up, and all results remained as low titres during the
study, none of these results was considered clinically signifi-
cant. Antibodies were not detected in any other subject.

PET imaging

Human whole body dosimetry and pharmacokinetics of
['®F]FB-A20FMDV?2 are reported elsewhere [20].

Dynamic ['*F]JFB-A20FMDV2 PET images were suc-
cessfully acquired for six healthy participants (scan dura-
tion 56-240 min), seven IPF participants (dynamic test-
retest scans of 90 min in duration) and two CTD-ILD par-
ticipants (one had a single dynamic scan of 90 min in
duration and the other had dynamic test-retest scans of
90 min each in duration). Injected dose (MBq), molar ac-
tivity at injection time (GBg/pumol), injected mass (pg) and
type of blood sampling (arterial, venous or both) are tabu-
lated for each participant (Table 5). Due to variations in
radiochemical yield, a lower mass of radioligand and/or
lower radioactive dose was used for some scans.
However, the administered mass of radiotracer was always
sufficiently small to ensure it was at tracer concentrations,
and good quality image, blood and metabolite data were
acquired for all acquisitions. A qualitative assessment
showed that uptake of ['*F]FB-A20FMDV2 is low in lung
tissue with a normal appearance on CT and uptake is in-
creased in fibrotic regions as observed on CT image.
Images from a representative participant with IPF are pre-
sented (Fig. 1).
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Following intravenous administration, [18F]FB-
A20FMDV?2 was rapidly metabolised with 5% of parent ra-
dioactivity remaining in plasma approximately 30 min post
injection.

Time activity curves

Dynamic PET images were used to obtain TAC for the whole
lung (Fig. 2). Subjects with IPF had higher uptake than
healthy subjects using both uncorrected data (Fig. 2a) and
tissue fraction—corrected data (Fig. 2b).

Volume of distribution

Geometric mean values (95% CI of geomean) for volume of
distribution (V1) without tissue fraction correction were 0.88
(0.60, 1.29) mL/cm® for healthy participants, and 1.40 (1.22,
1.61) mL/cm? for subjects with IPF (Fig. 3a). Geometric mean
values for Vy with tissue fraction correction were 2.98 (2.17,
4.09) mL/cm® for healthy participants and 3.49 (3.11, 3.91)
mL/cm? for participants with IPF (Fig. 3b). V1 was higher in
subjects with IPF compared with healthy subjects, regardless
of tissue fraction correction (Fig. 3a and b).

Standardised uptake value

Geometric mean values for SUV without tissue fraction cor-
rection were 0.54 (0.36, 0.81) g/mL for healthy subjects and
1.03 (0.86, 1.22) g/mL for subjects with IPF (Fig. 3c¢).
Geometric mean values for SUV with tissue fraction correc-
tion were 1.82 (1.40, 2.36) g/mL for healthy subjects and 2.56
(2.22,2.97) g/mL for subjects with IPF (Fig. 3d).



Eur J Nucl Med Mol Imaging (2020) 47:967-979

973

Table 5 PET scan acquisition

data including injected dose Injected dose (MBq) A, @ injection Injected mass Blood samples
(MBq), molar activity (A,,) at (GBg/pmol) (ng)
injection time (GBg/umol),
injected mass (p1g) and type of Healthy
blood sampling (arterial, venous 201 130.8 31.6 945 Arterial
or both) )
202 160.9 16.9 21.7 Arterial
203 156.7 252 14.2 Arterial
204 146.4 20.7 16.1 Arterial
205 77.70 24.0 7.40 Arterial
206 90.50 12.0 17.2 Arterial
IPF
301 121.0 23.2 11.9 Arterial
301 33.94 60.1 1.29 Arterial
302 142.8 27.4 11.9 Venous
302 135.7 26.4 11.8 Venous
303 130.3 26.5 11.2 Venous
303 1349 16.2 19.1 Venous
304 78.51 78.5 2.29 Arterial
304 87.27 31.0 6.43 Arterial and venous
305 146.5 21.0 159 Arterial
305 94.38 18.4 11.7 Arterial and venous
306 83.41 29.9 6.38 Arterial and venous
306 1254 116 247 Arterial
307 96.87 16.0 13.8 Venous
307 157.7 25.8 14.0 Venous
CTD-ILD
401 113.9 24.5 10.7 Venous
402 124.8 20.0 14.3 Venous
402 129.0 14.1 20.9 Venous

Analysis of left and right lung separately

Vrand SUV were higher in participants with IPF when mea-
sured in the whole lung as well as in the individual left and
right lungs (Fig. 3).

V; and SUV changes in participants with IPF vs.
healthy participants

Geometric means and adjusted IPF/healthy ratio of V1 and
SUV of ['®F]FB-A20FMDV?2 in lungs of healthy and IPF
participants without (Fig. 4a and c respectively) and with
(Fig. 4b and d respectively) tissue fraction correction are
illustrated.

Without tissue fraction correction, the adjusted geometric
mean Vrp of the IPF/healthy ratio (95% CI of ratio) estimated
from the model was reported as 1.59 (1.09, 2.32) and was
considered statistically significant at the 5% level. The prob-
ability ratio > 1 = 0.988 and probability ratio > 2 = 0.096 was
also computed. Similarly, with tissue fraction correction, the
adjusted geometric mean Vr of the IPF/healthy ratio (95% CI

of ratio) was reported as 1.17 (0.85, 1.61) and was not con-
sidered statistically significant at the 5% level. The probability
ratio > 1 = 0.860 and probability ratio > 2 = 0.003 were also
computed).

Without tissue fraction correction, the adjusted geometric
mean SUV of the IPF/healthy ratio (95% CI of ratio) was
reported as 1.91 (1.27, 2.87) and was considered statistically
significant at the 5% level (probability ratio > 1 = 0.996,
probability ratio > 2 = 0.398). With tissue fraction correction,
the adjusted geometric mean SUV of the IPF/healthy ratio
(95% CI of ratio) was reported as 1.41 (1.08, 1.84) and was
considered statistically significant at the 5% level (probability
ratio > 1 = 0.991 and probability ratio > 2 = 0.008).

One of the healthy participants had V1 and SUV uptake
values that were higher than the other healthy subjects and
within the observed range for IPF participants. Whilst we
did not acquire diagnostic quality HRCT images for the
healthy participants, further examination of this participant’s
low dose AC-CT showed diffuse reticular shadowing consis-
tent with interstitial lung disease. The participant was referred
for appropriate clinical assessment and follow-up.
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Fig. 1 Representative images
from a participant with a
diagnosis of IPF and a healthy
control. Coronal (A, B, C) and
axial (D, E, F) images from a
participant with IPF are
presented. High-resolution
computed tomography alone (A,
D) and overlaid with the co-
registered PET images for the first
scan (B, E) and the second re-test
scan (C, F) are presented. For
comparison, axial, sagittal and
coronal co-registered PET/CT
images from a healthy participant
are shown (G, H, J). The average
SUV signal between 30 and

90 min post-dosing with ['*FJFB-
A20FMDV?2 is illustrated

1024

1024

0 SuUvV 1.15

0.25 1.25

Vr and SUV test/re-test variability within participants
with IPF

Figure 5 presents Bland-Altman plots of Vrand SUV to assess
reproducibility of scans in both lungs combined for ['*F]FB-
A20FMDV2 in participants with IPF. The mean difference of
the Vrand SUV (scan 2—scan 1) was in the range of 0 to 0.3
and 0 to 0.1 respectively, with and without tissue fraction
correction. The geometric mean ratio of the Vrand SUV (scan
2/scan 1) with and without tissue fraction correction were not
statistically significantly different from 1 at the 5% level.

Uptake in lungs of CTD-ILD

Only 2 participants with a diagnosis of CTD-ILD were recruit-
ed. The participant with RA-ILD had only 1 scan, and the
participant with SSc-ILD had 2 scans. Vrand SUV for SSC-
ILD were at the lower end of the range for both scans (SUV
scan 1 =0.42 g/mL and SUV scan 2 = 0.65 g/mL; Vrscan 1 =
0.56 and Vr scan 2 = 1.06). It may be significant that the
HRCT of this participant with SSc-ILD had mild fibrotic

@ Springer

0.25

SUV 1.25

changes in the lung bases posteriorly and very mild changes
anteriorly. For RA-ILD, Vyand SUV were at the higher end of
the range for scan 1 (SUV scan 1 = 1.40 mL/cm?® and Virscan 1
= 1.51 mL/cm?). This participant with RA-ILD had severe
fibrotic changes in all lobes on HRCT.

Discussion

['*F]FB-A20FMDV?2 is a potent, selective ligand for
integrin ocv36, as shown by in vitro cell-free and cellular
binding assays [18, 30, 31] and by in vivo animal models
of cancer [25, 32] and pulmonary fibrosis [33, 21]. In ad-
dition, it has been tested in a first dose in human study of
the safety, tolerability, biodistribution, radio-dosimetry and
immunogenicity of ['*FJFB-A20FMDV2 [20]. Visual in-
spection of these PET images from healthy humans sug-
gested that uptake of radioactivity was observed in the
thyroid, salivary glands, liver, stomach wall, spleen, ure-
ters and bladder [20]. Immunohistochemistry and SPECT
imaging of healthy rodent tissues revealed that avf36 is
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Fig.2 Tissue time-activity curves
(TACs) in the lungs of healthy
and IPF participants. a TACs are
not corrected for tissue fraction. b

—@Q— Healthy
~—@— |PF (Test)
—O— IPF (Retest)

s —@— Healthy
5k ~—0— |IPF (Test)
. —O— IPF (Retest)

TAC:s are corrected for tissue
fraction. Healthy participants (HV
in blue) and participants with IPF
(IPF-test scan 1 red; IPF-retest
scan 2 purple) are shown. Mean
SUV and SD are illustrated

40

expressed constitutively in the epithelium of the gall blad-
der, stomach wall, duodenum, ileum, colon, and at lower
levels in the lungs and skin [34, 35]; largely supporting the
observed expression in healthy humans [20].

In the current clinical study, ['*F]FB-A20FMDV2 PET/CT
was used to selectively image and quantify av[36 integrins in
the lungs of healthy individuals and those with established
fibrotic lung disease. As anticipated based on published im-
munohistochemistry of lung biopsies from subjects with IPF
[14], we demonstrate increased levels of ov[36 integrin ex-
pression in the lungs of subjects with IPF compared with lungs
of healthy subjects. This increased expression of av36

60
Time (minutes)

20 40 60

Time (minutes)

integrin was generally observed in fibrotic regions of the lung.
The ['*F]FB-A20FMDV?2 signal was shown to be reproduc-
ible over a 2-week period, indicating its potential as a measure
of'target engagement in early phase drug development studies.

Although av (36 integrins are induced on epithelial cells in
response to damage, detectable background levels of expres-
sion were observed in healthy human lungs, as previously
described in mice [21]. In one healthy, clinically asymptom-
atic participant however, an unexpectedly high PET signal
was observed that, together with the observation of possible
reticular shadowing on the AC-CT, suggested further investi-
gation and assessment of possible lung pathology. The

Fig. 3 Boxplot of volume of a?’ b s R
distribution (V1) and standard T T T
uptake values (SUV) of ['*F]FB- il il 1 ‘
A20FMDV2 in lungs. a . = =
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o =]
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Fig.4 Geometric means and adjusted [PF/healthy ratio of Vyand SUV of
["*F]FB-A20FMDV2 in lungs of healthy and IPF participants. Data from
individual participants is presented (scan 1 from healthy participants
numbers 201-206, scans 1 and 2 from IPF participants numbers 301—
307) in black and CTD-ILD participants numbers 401 and 402 in red). a,
b Geometric mean Vrand 95% Cl are illustrated using the left-hand axes.

identification of asymptomatic interstitial lung abnormalities
(ILAs) in screened healthy populations is an emerging prob-
lem in clinical trials and a proportion of these cases may prog-
ress towards IPF [36]. It is possible that identification of path-
ogenic pathways such as increased levels of the ocv[36 integrin
may help determine the natural history of this condition and
although no overt disease was observed in this volunteer, the
identification of radiological and molecular abnormalities
would suggest continued careful follow-up is indicated. No
further information on this participant is currently available.
Comparison of lung-based PET signals between healthy
and pulmonary fibrosis subjects is complicated by regional
differences in air and tissue fraction due to the fibrosis.
Tissue fraction (TF) correction is used to define the volume
of air (which cannot contain any radioligand) in the lung using
CT scan and removes this contribution from the analysis. The
lungs of IPF subjects have a smaller air fraction than healthy
subjects especially in the fibrotic regions; hence, an increased
PET signal could be observed due to the density change even
in the absence of altered tissue uptake [37]. In this study, even
after TF correction, a smaller, more variable, but still
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to the calculation of the geometric means or the adjusted IPF/Healthy
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significant increase in the SUV was observed in pulmonary
fibrosis. The kinetic modelling required to derive Vr also in-
creases the variability, and these two sources of increased
variability together are likely to explain why the difference
in tissue-fraction-corrected V1 between fibrotic and healthy
lungs did not meet the criterion for significance. On the other
hand, the test-retest reproducibility would suggest that TF
correction is not required in short-term studies using within-
subject comparisons, because tissue density is unlikely to
change over a few weeks.

Individuals with usual interstitial pneumonia (UIP) pattern
on HRCT and an underlying diagnosis of connective tissue
disease do not have IPF. However, due to the similar HRCT
pattern and underlying histopathology of UIP, there may be
similarities in the underlying mechanisms of fibrosis. We
show here that cv36 integrin expression can be measured
by PET scan in these subjects and is generally localised to
the fibrotic regions. As only two subjects with CTD-ILD were
included in the study, it is not possible to robustly compare
PET signals between CTD-ILD and IPF. Of the two CTD-ILD
subjects, the one with SSc-ILD had relatively low levels of
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av 6 expression whilst the subject with RA-ILD had relative-
ly high levels. These differences may be due to sampling bias
in such a small sample, may be related to the observed extent
of fibrotic disease in the lungs on HRCT, or to differing mech-
anisms of fibrosis between SSc and RA.

Other PET ligands are under development to quantify ex-
pression levels of the integrin ocv[36. Cystine knot peptides
have been conjugated with '*F-fluorobenzoate, injected into
mice xenografted with ocv[36-positive or acv[36-negative pan-
creatic tumours and PET scans conducted [38]. Target speci-
ficity was confirmed by low tumour uptake in av36-negative
tumours compared with high uptake in ocv36-positive tu-
mours. These cystine knot peptide tracers show translational
promise for molecular imaging of integrin ocv[36 overexpres-
sion in pancreatic and other cancers [38]. In fact, ['*F]FP-
RO1-MG-F2, an av36-specific cysteine knot peptide is under
development in a clinical study in 10 subjects with IPF
(NCTO03183570). It is currently premature to determine the
relative benefit of each of the av36 integrin PET ligands that
are under development, but emerging data may provide in-
sight into the optimal use of these tools.

There are limitations to the current study, such as the small
sample size, the observed increased PET signal in a ‘healthy’
subject and the complication of tissue density. However, the
data provides sufficient encouragement for ongoing testing of
the utility of this ligand in a variety of clinical settings. A first

time in human (FTIH) study of GSK3008348 (an inhibitor of
integrin «,3¢) in healthy volunteers and idiopathic pulmonary
fibrosis patients has completed and the manuscript is in prepa-
ration. This study used ['*FJFB-A20FMDV?2 to explore target
engagement in the lungs of IPF subjects (NCT02612051).
Another clinical study using [18F]FB A20FMDV?2 to evaluate
avf6 integrin expression in the lungs of patients receiving
pulmonary radiotherapy to treat non-small cell lung cancer
(NSCLC) has been completed [39, 40]. In addition, a study in
liver disease is also underway and will be reported separately.

In conclusion, we have developed a non-invasive imaging
technique using [ *FJFB-A20FMDV?2 to quantify expression
of av36 integrin in the lungs of subjects with fibrotic intersti-
tial lung disease. It is likely that PET approaches such as this
will have far-reaching implications in the development of nov-
el integrin targeting therapies for fibrotic diseases.
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