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This is an exciting time for molecular imaging as we are
witnessing a convergence and combination of various
imaging modalities driven by an unprecedented multidisci-
plinary collaboration between scientists. A consequence of
this growth is a paradigm shift in health care delivery that is
now revolutionizing clinical practice. Within the spectrum of
macroscopic medical imaging, sensitivity ranges from the
detection of millimolar to submillimolar concentrations of
contrast media with computed tomography (CT) and mag-
netic resonance imaging (MRI), respectively, to picomolar
concentrations in positron emission tomography (PET): a
108–109 difference [1]. Despite the remarkable progress and
outstanding scientific innovations achieved and the much
worthwhile successful research carried out both in academic
and corporate settings, there are still plenty of open research
questions that offer ample opportunities for the new
generation of molecular imaging scientists [2]. There is
no shortage of challenges and opportunities nowadays for
developing novel molecular imaging probes and technolo-
gies and for establishing their role through innovative
applications in clinical and research settings. The only limit
is the imagination and creativity of the investigators and the
challenge is the ability of opinion leaders to attract the best
scientists into this discipline.

It is the responsibility of scientists involved in today’s
molecular imaging research enterprise to debate about
essential issues related to the relevance of novel technolo-
gies with the aim of focusing the limited resources available
for the best benefit of our community. In this respect, the
issue of whether the development of molecular imaging

technologies should be driven by fundamental molecular
biology or design engineering was raised recently [3] and is
still a matter of debate [4]. What our community has
learned and accepted as a fact dictated by the unremitting
modernization of our profession is that medical physicists
must either learn to include the biology of molecular
imaging in their research programmes or prepare to become
irrelevant to the future of this discipline [3]. Among many
other issues, the important role of multimodality imaging is
growing steadily and gaining acceptance both in the clinical
setting [5] and experimental preclinical studies [6]. As
diagnostic techniques transition from the systems to the
molecular level, the role of multimodality imaging becomes
ever more important.

Multimodality imaging with high spatial resolution and
good sensitivity, allowing one to combine modalities and
record either sequentially or simultaneously complementary
information gathered from SPECT, PET, CT, MRI, ultra-
sound (US), optical imaging (OI), fluorescence and bio-
luminescence imaging, offers many advantages in certain
research experiments. MRI, US and CT are favourably
suited to assess perfusion, relative blood volume and vessel
permeability and as such functional data derived from these
imaging modalities may be combined with molecular
information provided by SPECT and PET. Optical imaging
is a very sensitive biological imaging technique to examine
gene expression due to the very low background light levels
[7]. Its capability to probe very small signals allows visual-
ization of early expression and signal changes compared to
PET imaging. However, PET is a quantitative modality that
can provide measurements of metabolic function.

While virtually all commercially available clinical and
hybrid imaging systems have been configured in the form of
SPECT/CT [8] or PET/CT [9], combined PET/MR scanners
[10, 11] allowing for simultaneous (as opposed to sequential
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scanning for the above-mentioned systems) clinical whole-
body imaging following the successful design of a brain
dedicated prototype [12] are being designed taking advan-
tage of significant financial support from European and
North American funding agencies targeting these particular
technologies. In this respect, there are clear indications that
several manufacturers are focusing their efforts on the
development of various designs of MR-compatible whole-
body PET systems. In parallel, potential applications of this
technology are being explored in the scientific literature
[13–16]. These technologies will allow exploitation of the
full potential of anatomical MRI in terms of high soft tissue
contrast sensitivity in addition to the many other possibil-
ities offered by this modality including BOLD imaging,
functional MRI (fMRI), diffusion-weighted imaging (DWI),
perfusion-weighted imaging (PWI), diffusion tensor imag-
ing (DTI) and MR spectroscopy (MRS) [17].

Hardware-based multimodality imaging is not limited to
the above combinations of techniques as several investi-
gators proposed and in many cases have implemented and
tested prototype dual-modality preclinical systems that
combine various imaging technologies such as SPECT
and PET [18], PET and OI [19] and MRI and OI [20].
Moreover, efforts are also underway to develop tri-modality
preclinical systems integrated in a single gantry including
PET/SPECT/CT [21, 22] and PET/SPECT/OI [23] as well
as PET/SPECT/US.

Image fusion techniques have been very popular since the
1990s where the move from 3-D (space) to 5-D (space+
time+function/metabolism) imaging driven by the develop-
ment of software-based image registration techniques was
pivotal to the clinical acceptance and triggered further the
development of multimodality imaging [24]. With the
highly sophisticated technologies available today, navigating
beyond the fifth dimension in vivo is becoming feasible by
incorporating cardiac or respiratory gating or both [25], CT
or MR contrast agent dynamics or alternatively multitracer
PET studies [26, 27] probing other biological or physiolog-
ical processes (e.g. tumour hypoxia in oncological imaging).
The latter can be achieved through the use of one of the
above-referenced dual-modality SPECT/CT systems [8] by
exploiting the capabilities offered by dual-tracer imaging
where multiple energy windows can be used for simulta-
neous imaging of radiotracers having different energies in
addition to the 5-D information provided by the CT
following contrast enhancement and online tracking of
contrast agent dynamics.

Typical examples of clinical studies involving signal
extraction from simultaneous dual-tracer imaging through
energy discrimination include stress and rest imaging in
myocardial SPECT perfusion imaging using 99mTc-sestamibi
(140 keV) and 201Tl (75 keV/167 keV), respectively [28],
and 99mTc (140 keV) perfusion and 123I (159 keV) neuro-

transmission brain imaging, respectively, which proved to
be useful in the diagnosis of neurodegenerative diseases
[29]. In this context, the use of simultaneous acquisition
increases patients’ throughput by reducing acquisition time
and thus also patient discomfort as well as image artefacts
due to patient motion. Another important benefit is that the
images resulting from the different tracers are perfectly regis-
tered in space and time and as such allow true multiparametric
imaging. The known complications associated with dual-
tracer imaging including the presence of crosstalk between the
multiple energy windows have been addressed in various
ways in the peer-reviewed literature (see e.g. [30, 31]).

Alternatively, one would use a tri-modality PET/SPECT/
CT imaging system where a positron-emitting radiotracer
probing presynaptic dopaminergic function (e.g. 18F-FDOPA)
for instance and a single photon emitting radiotracer probing
for example perfusion (e.g. 99mTc-HMPAO) are combined
to record and differentiate through energy discrimination
the two signals. Another more interesting and also more
technically challenging approach would be to exploit recent
developments in multitracer PET studies targeting different
physiological or biological processes [26, 27], where two to
three PET probes, e.g. 18F-FDG and 18F-EF5 [32], are
injected either sequentially or simultaneously to allow
imaging tumour glucose metabolism and tumour hypoxia,
respectively. However, the latter approach is difficult to
perform in PET imaging given that positron-emitting radio-
tracers produce the same energy following the annihilation
process (511 keV).

While sequential dual-tracer PET imaging reflecting
different biological features of disease (e.g. 18F-FDG for
glucose metabolism and 18F-FLT for tumour cell prolifer-
ation) is already performed routinely in some centres [27],
simultaneous dual-tracer imaging using PET is very
complicated to achieve and still is an immature field. The
possibility of fast scanning of multiple PET probes using a
well-designed dynamic imaging protocol allowing one to
extract the signal of each probe based upon inherent
differentiation between radionuclides’ half-lives, tracer
kinetics and biodistribution has been reported recently
[33, 34]. In these studies, the components of each probe
are assessed using principal component analysis (PCA) as
the most popular multivariate analysis tool available. The
authors reported promising results in terms of overlapping
signal recovery using the developed methodology com-
bined with a dynamic dual-tracer scanning protocol with
staggered injections. A follow-up study by the same group
confirmed that quantification of blood flow using 13N-
ammonia can be accomplished by means of the fast dual-
tracer technique in only 20 min allowing provision of blood
flow estimates with accuracy very similar to the conven-
tional extended single-injection standards [35]. One of the
limitations of this study is the limited number of subjects
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involved (six patients). The potential impact of this
methodology on patient management also still needs to be
defined. More recently, they come up with a more sophis-
ticated algorithm allowing improved tracer separation
where signal partitioning performance was assessed for
imaging various combinations of 18F-FDG (glucose metab-
olism) plus 62Cu-PTSM (blood flow) and/or 62Cu-ATSM
(hypoxia) [36]. In a follow-up study, the same group
performed sequential dynamic scanning using the above-
mentioned radiotracers in four dogs with pre-existing
tumours allowing combination of the acquired projection
data to emulate dual- and triple-tracer imaging where the
single-tracer data served as gold standard for performance
evaluation of the algorithm [37]. They report an accurate
recovery of static quantitative imaging measures (SUV) and
partial recovery of rate parameters derived from compart-
ment modelling (excellent agreement for k1 and k2 but large
discrepancy for k3). They concluded that the results
obtained so far are promising; however, further refinement
of the signal separation algorithms is essential for more
accurate recovery of quantitative imaging measures for
each radiotracer. This field is now an area of active research
[37–39], and to be successful the approach deserves further
research and development efforts and additional evaluation
for potential clinical use. The next challenge would be to
handle the enormous amount of data generated and to
develop flexible display strategies allowing one to overlay
and navigate through the multidimensional and multipara-
metric images in a visually compelling fashion.

It is worth noting that molecular imaging is also facing
many challenges. For example, it appears that ultrasmall
superparamagnetic iron oxide particles (USPIO) used for
MRI studies have been or will be shortly removed from the
clinical market by the pharmaceutical industry. Moreover,
most companies have substantially reduced their commer-
cial activities in contrast agent development, except for
SPECT and PET, since the market potential appears to be
too small and the production costs too high. Moreover, the
enormous costs involved with implementing the sophisti-
cated infrastructures needed to commercially produce and
distribute PET tracers is also another obstacle to the
widespread accessibility of molecular imaging.

The challenges faced by the molecular imaging commu-
nity include the shortage of qualified personnel to carry out
the various tasks associated with the use of this multifac-
eted technology. This is pertinent to the whole chain
including running cyclotron facilities, synthesizing routine
and new tracers and operating the multimodality imaging
units. There is a great demand for premium physicians and
scientists who are adequately trained to offer this type of
service with high standards.

Despite the enormous challenges faced, the development
and recognition of the potential of multi-parametric

molecular imaging has been very rapid and exciting, and
there is every reason to believe the field will move forward
more rapidly in the near future with the advent of novel
technologies and methodologies and the unlimited imagi-
nation of active researchers in the field. History demon-
strated that today’s research heads toward tomorrow’s
clinical practice. Thus, it is not farfetched to speculate that
in the future multi-parametric molecular imaging will likely
be the spotlight of medical practice where early and
accurate diagnoses and individualized therapy planning
will be made by appropriate imaging probes.
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