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Abstract Antimicrobial peptides/proteins (AMPs) are bio-
logically active molecules with diverse structural properties
that are produced by mammals, plants, insects, ticks, and mi-
croorganisms. They have a range of antibacterial, antifungal,
antiviral, and even anticancer activities, and their biological
properties could therefore be exploited for therapeutic and
prophylactic applications. Cancer and cancer drug resistance
are significant current health challenges, so the development
of innovative cancer drugs with minimal toxicity toward nor-
mal cells and novel modes of action that can evade resistance
may provide a new direction for anticancer therapy. The skin
is the first line of defense against heat, sunlight, injury, and
infection, and skin cancer is thus the most common type of
cancer. The skin that has been exposed to sunlight is particu-
larly susceptible, but lesions can occur anywhere on the body.
Skin cancer awareness and self-efficacy are necessary to im-
prove sun protection behavior, but more effective preventative
approaches are also required. AMPs may offer a new prophy-
lactic approach against skin cancer. In this mini review, we
draw attention to the potential use of insect AMPs for the
prevention and treatment of skin cancer.

Keywords Antimicrobial peptides . Prophylaxis . Skin
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Introduction

Despite efforts to develop effective new treatments, cancer
remains the second most common cause of death in the world
(Siegel et al. 2014). The worldwide occurrence of cancer is
increasing, and in the case of skin cancer, one relevant factor is
the prolonged exposure of the skin to the sun during normal
daily activities or as a leisure pursuit, resulting in high doses of
ultraviolet (UV) radiation (Holm 2014; Palanki et al. 2015).
UV radiation from artificial sources, such as tanning beds and
sunlamps, provides additional exposure scenarios (Palanki
et al. 2015). General risk factors for skin cancer include lack
of skin pigmentation, lesions such as moles, and compromised
immunity caused by immunosuppressive medication (e.g., for
organ transplants) or the presence of HIV/AIDS (Cakir et al.
2012; Chiao and Krown 2003; Eide et al. 2013; Iannacone
et al. 2015; Zhu et al. 2015).

Approximately 3.5 million people are diagnosed with skin
cancer annually in the USA (Robinson 2005; Rogers et al.
2010). There are three major types of skin cancer: basal cell
carcinoma, squamous cell carcinoma, and malignant melano-
ma (Stern 2010). Basal cell carcinoma is the most common
type, but it is also the least dangerous if detected early. It
involves cells from the deeper layers of skin, usually in parts
of the body that are exposed to the sun, such as the face, head,
neck, ears, shoulders, and back, with most cases occurring on
the face (Gordon and Carucci 2013; Telfer et al. 2008).
Squamous cell carcinoma is the second most common type,
involving cells of the upper skin layers, and is more likely to
spread to areas under the skin. It commonly occurs on the legs
and feet but may develop elsewhere (Ogden and Telfer 2009).
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Melanoma is the least common cancer of the skin but is
among the most aggressive of known cancers (Vera et al.
2015). It can occur anywhere on the skin but is more likely
to develop on the back or legs, and although curable in its
early stages, the later-stage tumors often become drug resis-
tant and therefore recalcitrant to chemotherapy (Korotkov and
Garcia 2012; Ogden and Telfer 2009; Riedl et al. 2011a).
Exposure to sun increases the risk of all three main types of
skin cancer (Gallagher et al. 2010), but exposure during child-
hood is particularly harmful in the case of melanomas and
basal cell carcinomas (Stewart and Wild 2014).

Skin cancer therapy involves the careful selection of one or
more modalities, including surgery, radiotherapy and chemo-
therapy. Current drugs for such indications are insufficiently
selective, resulting in deleterious effects against non-target cells,
particularly those that normally divide rapidly (Al-Benna et al.
2011; Kalyanaraman et al. 2002), resulting in symptoms such as
alopecia, rashes, vomiting, and even myelosuppression
(Ferguson and Pearson 1996; Harris et al. 2013; Sanderson
et al. 1996). Many tumors ultimately become resistant to con-
ventional chemotherapy due to the selection of multidrug-
resistant cells (Zahreddine and Borden 2013). It is therefore
imperative to find new products with novel modes of action,
such as cytotoxic antimicrobial peptides and proteins (AMPs)
(Chamorro et al. 2009; Koczulla and Bals 2003).

AMPs have been developed as alternatives for the treatment
of infectious diseases. Such peptides are produced naturally by
nearly all organisms as a part of the innate immune system
(Rahnamaeian et al. 2016; Tonk et al. 2014), and due to their
broad antimicrobial spectrum, they are often described as natural
antibiotics (Bolouri Moghaddam et al. 2015). Several insect
AMPs also show cytotoxic effects against diverse cancer cell
lines, such as mouse myeloma, melanoma, lymphoma, leuke-
mia, breast cancer, and lung cancer (Iwasaki et al. 2009; Kang
et al. 2012; Kim et al. 2013; Xiao et al. 2006). These anticancer
peptides (ACPs) are characterized by high therapeutic efficacy, a
low probability of resistance emerging in target cells, and limited
or no toxicity against mammalian erythrocytes, macrophages,
and fibroblasts (Barbault et al. 2003; Saido-Sakanaka et al.
2004; Yamada et al. 2005). ACPs are also easy to synthesize
and modify, they penetrate tumors efficiently, and they are bio-
compatible (Borghouts et al. 2005; Thayer 2011). On the other
hand, they are also immunogenic and susceptible to peptidase
activity and clearance through the kidneys, reducing their effec-
tive therapeutic half-life in vivo and making them more appro-
priate for topical applications (McGregor 2008; Rahnamaeian
and Vilcinskas 2015; Wiesner and Vilcinskas 2010).

Although the activity of insect ACPs against skin cancer
has not been studied in detail, proof-of-principle studies in-
volving the topical application of ACPs from other sources
have been successful. Rodrigues et al. (2008) showed that
gomesin from hemocytes of the spider Acanthoscurria
gomesian can arrest the growth of murine melanoma

B16F10-Nex2 cells when administered topically in a cream-
based formulation. Also, Gerashchenko et al. (2014) showed
that human β-defensin 2 (hBD-2) can inhibit the growth of
human carcinoma cells by suppressing the expression of B-
Raf, cyclin D1, and cyclin E, inducing the expression of
p21WAF1 and activating pRB. The greater abundance of neg-
atively charged membrane components such as sialic acid,
phosphatidylserine and heparan sulfate makes cancer cells
attract certain cationic amphipathic peptides (Wang et al.
2016; Riedl et al. 2011b). Particularly, phosphatidylserine in
cancer cell membranes is targeted by temporin-1CEa, anAMP
from the Chinese brown frog Rana chensinensis (Wang et al.
2016). Temporin-1CEa induces cell death in breast cancer
cells by releasing pro-apoptotic factors from the mitochondria
and also disrupts the plasma membrane by exposing
phosphatidylserine, increasing plasma membrane permeabili-
ty, and inducing membrane depolarization (Wang et al. 2013).

The active motifs of ACPs are short, so large-scale synthe-
sis is cost-effective. Certain ACPs not only show intrinsic
anticancer activity but also enhance the potency of conven-
tional drugs (Gaspar et al. 2013; Hancock et al. 2006; Silva
et al. 2012). There are currently 196 entries in the
Antimicrobial Peptide Database (APD) (http://aps.unmc.
edu/AP/database/antiC.php) describing peptides with
anticancer activity. Most ACPs achieve cell membrane
disruption by lytic activity or induce apoptosis in cancer
cells through mitochondrial damage, in many cases leaving
normal mammalian cells unharmed (Coffelt and Scandurro
2008; Hilchie et al. 2011). This review discusses the targets
and active mechanisms of ACPs and highlights their potential
as both prophylactic and therapeutic reagents indicated for the
prevention and treatment of cancer. We also consider the po-
tential inclusion of ACPs in cosmetics and personal care prod-
ucts, especially sun protection creams that could enhance pro-
tection against skin cancer by eliminating nascent cancer cells
before symptoms become evident.

The structure of ACPs

Insect AMPs are cationic and amphipathic, and although the
length, sequence and structure may vary, most have a compar-
atively low molecular mass (≥10 kDa). The structure includes
hydrophilic and hydrophobic regions, and the net charge is
highly positive (Dennison et al. 2006). The structure of
AMPs allows strong electrostatic binding with bacterial or
fungal cell membranes and certain enveloped viruses
(Hoskin and Ramamoorthy 2008; Reddy et al. 2004), but
ACPs also have the unique ability to bind cancer cell mem-
branes. Most ACPs contain six cysteine residues forming three
intramolecular disulfide bonds that assemble into hairpin like α-
helices, β-sheets, or mixed structures, but some extended
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structures have also been reported (Bulet and Stocklin 2005;
Hoskin and Ramamoorthy 2008; Wang et al. 2013).

The activity of ACPs

AMPs can be assigned to different classes according to their
diverse physicochemical properties, but only two general modes
of action have been described: membranolytic and non-
membranolytic (Schweizer 2009). The activity of ACPs de-
pends on their physicochemical characteristics, such as the pri-
mary sequence, secondary structure, net electric charge,
amphipathicity, hydrophobicity, and concentration, as well as
the composition of the target membrane (Adams et al. 2009;
Reddy et al. 2004; Teixeira et al. 2012). The ability of many
AMPs to permeabilize cell membranes correlates with their an-
timicrobial activities, e.g., in the case of defensins and cecropins
(Rahnamaeian 2011). Membrane disruption by AMPs may in-
volve pore formation (barrel-stave and toroidal pore models),
membrane thinning, membrane dissolution (carpet-like model),
or lipid-peptide domain formation. In other cases, AMPs bind to
intracellular targets in the pathogen including nucleic acids and
proteins (Bechinger and Lohner 2006; Brogden 2005; Chan
et al. 2006; Papo and Shai 2005; Rahnamaeian et al. 2015;
Yeaman and Yount 2003). Certain AMPs also display immuno-
modulatory activities (Jerala and Porro 2004; McPhee et al.
2005) such as the stimulation of chemokine and cytokine pro-
duction and leukocyte chemotaxis (Bowdish et al. 2005). The
ability of ACPs to kill tumor cells is poorly understood, although
both membranolytic and non-membranolytic mechanisms may
be involved. For example, several AMPs that interact with and
disrupt negatively charged bacterial membranes (Hancock and
Chapple 1999; Merrifield et al. 1995) can also kill mammalian
cancer cells by inducing membrane permeability or apoptosis
(Iwasaki et al. 2009; Papo and Shai 2005). ACPs are also able to
lyse the tumor cells by inducing the blebbing and perme-
abilization of the membrane after binding directly to plasma
membrane phospholipids such as phosphatidylinositol 4,5-
bisphosphate (PIP2) (Poon et al. 2014).

Themembranolytic activity of ACPs depends on the intrinsic
characteristics of the peptide as well as the properties of the
target membrane (Mulder et al. 2013). Also, the selectivity of
some ACPs against cancer cells depends on the net negative
charge of themembrane (Gaspar et al. 2013). Anionicmolecules
(phosphatidylserines, glycoproteins, glycosaminoglycans, hepa-
ran sulfate, O-glycosylated mucins, and sialylated gangliosides)
confer a net negative charge on themembranes of cancer cells, in
contrast to the typically zwitterionic membranes of normal cells
(Giuliani et al. 2007; Hoskin and Ramamoorthy 2008; Raz et al.
1980; Schweizer 2009; Utsugi et al. 1991). The mode of action
may involve electrostatic interactions between cationic peptides
and the anionic components of cancer cell membranes (Kim
et al. 2013). The same Bcarpet-like^ and Bbarrel-stave^ models

that explain the interaction between AMPs and bacterial mem-
branes can therefore also be invoked to describe interactions
with cancer cells (Oren and Shai 1998; Pouny and Shai 1992;
Schweizer 2009). Additional membranolytic events involve the
permeabilization and swelling of mitochondria, followed by the
release of cytochrome c and the induction of apoptosis (Mai
et al. 2001).

Although the rapid killing of cells by ACPs may indicate
the prevalence of a non-receptor-mediated mode of action,
some non-membranolytic activities have also been described
(Sharma 1992; Wachinger et al. 1998; Winder et al. 1998).
These include the inhibition of angiogenesis, which is essen-
tial for the formation of tumor-associated vasculature
(Schweizer 2009). Peptides can block the function of recep-
tors expressed on angiogenic endothelial cells and thus per-
turb the formation of the tumor-associated vasculature (Arap
et al. 1998; Lee et al. 2011; Mader and Hoskin 2006; Rosca
et al. 2011; Schweizer 2009). The primary objective of
antiangiogenic therapy is to normalize the tumor vasculature
instead of reducing the density of tumor blood vessels (Shang
et al. 2012). The development of therapeutic molecules which,
individually or in combination with other reagents, target sev-
eral aspects of angiogenesis might prove fruitful for cancer
treatment in the future (Rosca et al. 2011).

Impact of insect AMPs on cancer

Insects comprise ∼55 % of total biodiversity and ∼85 % of
animal biodiversity (Chernysh et al. 2002) and therefore pro-
vide a large potential source of ACPs. Only a few AMPs have
been identified as ACPs based on in vivo testing, although
others have been tested against tumor cell lines (Table 1).
Insect-derived ACPs have not been tested directly against skin
cancer cells, but as stated above, Rodrigues et al. (2008) suc-
cessfully showed that the spider peptide gomesin was effective
against subcutaneous murine B16F10-Nex2 melanoma cells
when administered topically. The efficacy of insect ACPs
against other types of cancer cells provides evidence that they
should also be active against skin cancer. For example, cecropin
B from Hyalophora cecropia increased the survival of mice
bearing ascitic murine colon adenocarcinoma cells (Moore
et al. 1994). Alloferon 1 isolated from bacteria-challenged lar-
vae of the blow fly Calliphora vicina was able to stimulate NK
cell activity and interferon (IFN) synthesis in animal and human
models and could enhance antiviral and antitumor activity in
mice (Chernysh et al. 2002). The harmoniasin analog HaA4
was found to be cytotoxic toward human leukemia cell lines
such as U937 and Jurkat cells by inducing both caspase-
dependent apoptosis and necrosis (Kim et al. 2013). D-
peptides A, B, C, and D, designed and synthesized based on
the sequences of 43-mer defensins from two beetles, were able
to inhibit the growth of several cancer cell lines with different
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levels of efficacy, and D-peptide B showed the most selective
activity against the mouse myeloma cell line P3-X63-Ag8.653.
Flow cytometry and scanning electron microscopy revealed
that this peptide disrupts myeloma membrane construction but
has no effect against normal leukocytes. In addition, combina-
tions of D-peptide B and dexamethasone showed synergistic
activity against a mouse myeloma cell line (Iwasaki et al.
2009). These peptides are therefore promising candidates for
novel anticancer drugs.

AMPs as prophylactic anticancer ingredients
in cosmetics

As stated above, skin cancer can often be cured by surgery and/
or chemotherapy following an early diagnosis, although both
approaches carry a moderate risk of recurrence (Guerra-Rosas
and Álvarez-Borrego 2015). However, skin cancer is also one
of the easiest diseases to prevent, because exposure to UV
radiation can be limited not only by wearing appropriate cloth-
ing and staying indoors, but also by applying barrier creams that
block the most dangerous wavelengths of UV radiation. The
success of such approaches depends on the compliance of an
informed at-risk population, because even the strongest barrier
creams have a limited effective duration of activity. Therefore,
the development of novel products that provide additional pro-
tection would reduce the incidence of skin cancer even further.
Endogenous AMPs are produced in the human skin, so addi-
tional peptides with broader properties (including anticancer
activity) could be used not only as a therapeutic intervention
but also as a prophylactic measure to counteract cancer cell
development by including the peptides in barrier creams,
ointments, functionalized wound dressings, and cosmetics.

Challenges of insect AMPs

Although AMPs from insects and other sources could be de-
veloped into new products for the prevention and treatment of
cancer, one challenge is the high cost of synthesis because
many AMPs are long and contain disulfide bridges. However,
the anticancer activity of AMPs is likely to resolve to certain
motifs, and if these motifs can be identified, they could be
produced in the context of a smaller artificial peptide.
Furthermore, different AMPs can complement each other via
potentiating interactions including synergy (Rahnamaeian et al.
2016; Bolouri Moghaddam et al. 2016). Therefore, hybrid pep-
tides containing functional motifs from different AMPs could
achieve greater therapeutic efficacy. Another concern is the
hemolytic activity of some AMPs, and peptide engineering
would be necessary to maximize their anticancer activity while
minimizing hemolysis, e.g., by increasing the positive charge
and hydrophobicity as well as changes in the spatialT
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configuration of particular amino acids (Rahnamaeian and
Vilcinskas 2015). The pH sensitivity of cationic AMPs also
affects their activity, so the pH and ionic strength of the carrier
matrix must be optimized to achieve the greatest efficacy.

Concluding remarks

AMPs have drawn the attention of the pharmaceutical indus-
try because they represent a promising next generation of
drugs with different modes of action compared to current an-
titumor agents. The latter tend to have severe side effects and
encourage the development of resistant cell populations.
AMPs offer a number of advantages over contemporary drugs
and anticancer vaccines, including their potent activity at low
concentrations, their high specificity (hence low toxicity to-
ward normal cells), and the ability to produce them as cost-
effective synthetic or recombinant peptides, particularly short
AMPs without disulfide bonds. AMPs provide a promising
source of new drugs for the prevention and treatment of skin
cancer because they are highly suitable for topical application
and can be formulated as creams and ointments, which are
suitable for self-administration or for parents to apply to their
children.
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