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Abstract Killer immunoglobulin-like receptors (KIRs) rep-
resent a highly polymorphic and diverse gene family in
rhesus macaques. Analyses of the respective gene products
have been hampered until now due to non-availability of
specific monoclonal antibodies and failure of cross-
reactivity of anti-human KIR antibodies. We utilised one
activating (KIR3DSWO0S) and two inhibitory (KIR3DLWO03
and KIR3DLO5) rhesus macaque KIR-Fc fusion proteins for
generation of monoclonal antibodies in mice. Besides
broadly reacting ones, we obtained anti-rhesus macaque
KIR antibodies with intermediate and with single specifici-
ty. These monoclonal antibodies were tested for binding to a
panel of rhesus macaque KIR proteins after heterologous
expression on transiently transfected cells. Epitope mapping
identified two polymorphic regions that are located next to
each other in the mature KIR proteins. The availability of
monoclonal antibodies against rhesus macaque KIR proteins
will enable future studies on KIR at the protein level in
rhesus macaques as important animal models of human
infectious diseases.

Electronic supplementary material The online version of this article
(doi:10.1007/s00251-012-0640-2) contains supplementary material,
which is available to authorized users.

M. Hermes - L. Walter (D<)

Primate Genetics Laboratory, German Primate Center,
Leibniz Institute for Primate Research,

Kellnerweg 4,

37077 Gottingen, Germany

e-mail: lwalter@gwdg.de

S. Weil - A. Groth - J. Koch
Institute of Biomedical Research, Georg-Speyer-Haus,
Frankfurt am Main, Germany

R. Dressel

Department of Cellular and Molecular Immunology,
University of Géttingen,

Gottingen, Germany

Published online: 15 August 2012

Keywords Monoclonal antibodies - Killerimmunoglobulin-
like receptor (KIR) - Epitope mapping - Rhesus macaque

There has been substantial progress recently in the analysis
of the KIR gene family of macaque species since their initial
description more than a decade ago (Grendell et al. 2001;
Hershberger et al. 2001). Rhesus macaque KIR genes and
haplotypes turned out to be at least as polymorphic and
diverse as their human counterparts (Blokhuis et al. 2011;
Kruse et al. 2010; Moreland et al. 2011; Hershberger et al.
2001). Whereas members of all K/R lineages known in Old
World monkeys and apes/humans are present, a particular
expansion of lineage Il KIR, i.e. KIR3D genes, was noticed
in rhesus and other macaque species (Bimber et al. 2008;
Blokhuis et al. 2010, 2011; Kruse et al. 2010). This expan-
sion of KIR3D genes is mirrored by expansion of Mamu-A
MHC class I genes (Otting et al. 2005, 2007), which encode
ligands for rhesus macaque KIR3D proteins (Colantonio et
al. 2011; Rosner et al. 2011). Studies on rhesus macaque
KIR proteins have been hampered so far by non-availability
of specific monoclonal antibodies (mAbs) and by lack of
cross-reactivity of anti-human KIR mAbs. Here, we de-
scribe a panel of eight mAbs raised in mice against recom-
binant rhesus macaque KIR-Fc fusion proteins.

C3H/HeN and C57BL/6 mice were immunised with
100 pg of either KIR3DLOS, KIR3IDLWO03 or KIR3IDSW08
recombinant proteins fused to the Fc domain of human IgG1
(Rosner et al. 2011; Older Aguilar et al. 2011). The first
immunisation was performed subcutaneously with Titermax
Gold (Sigma) as adjuvant, followed by two intra-peritoneal
injections at 4 weeks interval. The mice received a final boost
by intravenous injection of the KIR-Fc fusion protein without
adjuvant. Blood samples were collected before the first and
after the third immunisation and serum reactivity was moni-
tored using enzyme-linked immunosorbent assays (ELISA)
with the KIR-Fc protein used for immunisation. Generation,
selection and cloning of hybridoma cells were performed
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using the ClonaCell-HY Hybridoma Cloning kit (STEM-
CELL Technologies) following the manufacturer's protocol
and using mouse X63AG8.653 myeloma cell line (German
Collection of Microorganisms and Cell Culture, DSMZ).
Antibody-secreting hybridoma cells reacting with the
KIR-Fc fusion protein but not with control human IgG
were selected and cultured in the presence of DMEM/
20 % foetal calf serum/l1 % penicillin/streptavidin. The
immunoglobulin isotypes of the different mAbs were
determined with the Pierce Rapid ELISA Mouse mAb
Isotyping Kit (Thermo Scientific).

For establishment of K/R gene expression constructs, total
RNA from peripheral blood mononuclear cells was reverse
transcribed using oligo-dT primer and Moloney murine leu-
kaemia virus reverse transcriptase (Promega). As a further
source, various K/R ¢cDNA clones (Kruse et al. 2010) were
used for polymerase chain reaction (PCR) to amplify rhesus
macaque KIR cDNA with BioTherm Taq DNA Polymerase
(Genecraft) using the following primer pairs: KIR-EcoRI-
forward I: GATGAATTCAGCACCATGTCGCTCATAG,
KIR-EcoRI-forward II: GATGAATTCAGCACCAT
GTCGCTCATGG, KIR-BamHI-reverse I: GGTGGATC
CAGTCTCTTTTTGTCGG and KIR-BamHI-reverse II:
GGTGGATCCGGATAGAAGACAACTTTCGATC. PCR
products were digested with EcoRI and BamHI and
purified and ligated in EcoRI/BamHI-digested pAcGFP-
N1 expression vector (Clontech). This vector allows the
expression of AcGFP-tagged fusion proteins (Rosner et
al. 2010). KIR-AcGFP constructs were transiently trans-
fected in HEK293 cells using metafectene according to
the manufacturer's guidelines (Biontex). Supernatants of
anti-KIR antibody-secreting hybridoma cells were used
for staining of KIR-AcGFP-expressing HEK293 cells.

Cells (2% 10°) were incubated for 30 min at 4 °C with 50 pL
of supernatant and binding was detected with goat anti-mouse
IgG-PE-CyS5 polyclonal antibody (SC-3799, Santa Cruz). At
least 10,000 AcGFP-positive cells were measured in an LSR
II flow cytometer (BD Bioscience) and subsequently analysed
with FlowJo 8.8.7 software. The supernatant of antibody-
producing hybridoma cells grown in serum-free UltraCHO
medium for 3 days was collected, centrifuged (10 min,
200xg), filtered (0.45 um) and finally purified with a protein
G sepharose column (GE Healthcare).

Epitope mapping of anti-KIR mAb was performed
with peptide spot arrays. Peptides of rhesus macaque
KIR3DLWO03, KIR3DSWO08 or KIR3DL05 were synthes-
ised by Fmoc chemistry at activated PEG spacers on cellu-
lose membranes by automated parallel peptide synthesis on
a MultiPep RS instrument (Intavis) as described previously
(Dietrich et al. 2012; Koch 2011; Plewnia et al. 2007).
Membranes were incubated with 4 pg/ml anti-KIR antibody
or anti-mouse IgG/horseradish peroxidase (HRP) (Sigma-
Aldrich) as a negative control. Bound primary antibodies
were detected with anti-mouse IgG/HRP (Sigma-Aldrich)
and chemiluminescent detection with the Super Signal West
Femto kit (Thermo Scientific).

Immunisation of mice with rhesus macaque KIR3DLOS5,
KIR3DLWO03 and KIR3DSWO08 Fc fusion proteins resulted in
the establishment of numerous hybridoma clones. Supernatants
of the clones were tested in ELISA for binding to respective
KIR-Fc proteins that were used for immunisation and against
human IgG to identify clones reacting only with the KIR and
not the Fc portion. We selected eight clones (Table 1) and
determined the specificity of these mAbs for other rhesus
macaque KIR proteins using recombinant KIR-Fc proteins in
ELISA (not shown) as well as HEK293 cells transiently

Table 1 Characterisation of hy-

bridoma clones Clone Epitopes recognised Antigen used Mouse strain used
in peptide spot arrays for immunisation for immunisation
2H9 RCHYRGGFNN KIR3DLWO03 C3H/HeN
SYPHSPTE
4H11 RCHYRGGFNN KIR3DLWO03 C3H/HeN
SYPHSPTE
SHI1 RCHYRGGFNN KIR3DLWO03 C3H/HeN
SYPHSPTE
2H5 RCYYRDGLNN KIR3DLO5 C3H/HeN
SYPHSPTE
1C7 RCHYRGGFNN KIR3DSWO08 C57BL/6
SYPHSPTE
Epitope sequences (sequence 2H3 RCHYRRGLNN KIR3DSWO08 C57BL/6
stretches common in all reactive SYPHSPTE
peptide species) were deter- 2A4 RCHYRRGLNN KIR3DSWO08 C57BL/6
mined by subtractive alignment SYPHSPTE
of reactive spot sequences from  jpq4 SYPHSPTE KIR3DSWOS C57BL/6

peptide spot arrays
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Fig. 1 Specificity of binding of mAb to rhesus macaque KIR proteins.
Four hybridoma clones are shown: 1C7 reacts broadly and 2H3, 2H5
and 2H9 react specifically. HEK293 cells were transiently transfected
with various KIR-AcGFP expression constructs. After gating on
AcGFP-positive cells, relative binding intensity was calculated as the
ratio of mean fluorescence intensity (MFI) of KIR-AcGFP and MFI of
mock-transfected cells. Relative binding intensities above 3 (threshold
line) were regarded as specific binding. All experiments were carried
out at least three times

transfected with different KIR-AcGFP expression constructs
(Fig. 1 and Supplemental Figs.1 and 2). Determination of the
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Ig isotype revealed that all eight mAbs have an IgG1 heavy
chain and a kappa light chain (not shown).

Clone 1C7 showed broad binding to all tested KIR proteins
(Fig. 1), whereas clones 2A4, 1H4, 4H11 (not shown) and
2H3 (Fig. 1) revealed a more restricted reaction pattern.
Interestingly, we obtained two clones with high specificity:
clone 2HS5 reacted only with KIR3DLO5 used for immunisa-
tion, whereas clone 2H9 reacted strongly with KIR3DLWO03
(used for immunisation) and weakly with KIR3DSO05 (Fig. 1).
In those cases where specific binding is evident, the observed
differences between the receptors must not necessarily reflect
different avidity of the antibody to the various KIR proteins.
Such differences might also be due to (1) differences in
transfection efficiency and in amount of transfected DNA,
(2) differences in the stability of AcGFP fusion proteins and
(3) differences in the stability of inhibitory and activating KIR.

As all mAbs are suitable for immunoblot analysis (not
shown), we performed array-based oligo-peptide scanning
with spotted 18mer peptides (off-set by three amino acids)
covering the entire sequence of several rhesus macaque KIRs
(Supplementary Table 1) for epitope identification. The reac-
tion patterns of the tested mAbs were quite similar (Fig. 2a).
In particular, peptides PQGGHVTLRCHYRGGFNN
(Fig. 2a: spots 7 and 8) and AHAGTYRCRGSYPHSPTG
(Fig. 2a: spots 22/23 and 23/24) showed reactivity, indicating
that amino acids within these peptides contribute to the
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Fig. 2 Epitope mapping of anti-KIR mAb. a Peptide spot arrays of
three rhesus macaque KIR3D proteins (spot sequences, Supplementary
Table 1) were incubated with anti-KIR mAbs or anti-mouse IgG/HRP
as negative control (one representative array shown). Specific epitopes
(boxes) were identified in spots A7 and A22/23 (KIR3DLO03) and spots
A8 and A23/24 (KIR3DSWO08; KIR3DLO0S), respectively. Spots Al4
and A15 correspond to a non-specific reactivity, since they are detected
in the negative control as well. Additional reactive peptides for mAb
2HS (spots B18 and B19, marked green in b and ¢) and 1H4 (spots B31
and B32, marked magenta in b and ¢) were identified and presumably
represent methodical artefacts, e.g. spots corresponding to positions

B31 and B32 were also seen for other hybridoma upon overexposure of
the blot. b Structure of the KIR3DL1*001-pHLA-B*5701 complex
(Vivian et al. 2011; PDB accession number 3VHS) with coloured anti-
KIR mAb epitopes after subtractive alignment. The KIR3DL1*001
surface is shown in grey, the HLA structure in blue, (3,-microglobulin
in light blue and the HLA-bound peptide (LSSPVTKSF) in orange.
The identified epitopes from the spot arrays are depicted in yellow
(PRGGHVTLRCHYRHRFNN; spots 7 and 8) and red (AHAG-
NYTCRGSHPHSPTG; spots 22/23 and 23/24). ¢ Sequence alignment
of the different KIR3D subtypes. Monoclonal antibody epitopes are
coloured corresponding to b
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epitope. As the 3D structure of human KIR3DL 1 was recently
published (Vivian et al. 2011), we used this structure to
identify the location of the array-positive peptides in the
KIR3D three-dimensional structure. Epitope sequences (se-
quence stretches common in all reactive peptide species) were
determined by subtractive alignment of reactive peptide
sequences. As can be seen in Fig. 2b, the dominantly reacting
peptide stretches RCHYRHRFNN and SHPHSPTG (both
sequences from human KIR3L1 in the 3D structure) shown
in yellow and red, respectively, are surface exposed and
located next to each other in the DO domain of the KIR3D
protein. Therefore, we conclude that the antibodies recognise
a conformational epitope. Strikingly, despite the sequence
differences of the three KIR3D proteins used for immunisa-
tion (Table 1 and Fig. 2c), the mAbs bind to the surface-
exposed epitope region in all KIR3D tested. Nevertheless,
identical sequences at the epitope are not a guarantee for
binding, as for example antibody 2H3 (KIR3DSWO08,
KIR3DS07 and KIR3DLO07) does not bind to KIR3DLO0S5
and KIR3DL10 (Fig. 1), despite both having the same
epitope-constituting peptide sequences as KIR3DLO07 and
KIR3DS07. Thus, we hypothesise that other amino acid dif-
ferences might contribute to lower (cross-reactive KIRs) the
avidity or even abolish binding of the antibody to the confor-
mational epitope.

The mAbs were derived from inbred mouse strains C3H/
HeN and C57BL/6, yet the epitopes recognised by the various
mAbs are at corresponding positions, suggesting that this
position is immunodominant in mice or at least in the two
mouse strains used. Indeed, most rhesus macaque KIR inhib-
itory and activating KIR proteins can be distinguished at these
epitopes, with only few allelic polymorphisms (not shown).
Thus, despite the fact that we have tested only single alleles of
the various KIR proteins (Fig. 1), we expect our specific
mADbs to react with most if not all alleles of the respective
rhesus macaque KIR proteins. The availability of monoclonal
antibodies against rhesus macaque KIR proteins now enables
studies on KIR at the protein level in rhesus macaques as
animal models of human infectious diseases.
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